Abstract

The independent excitation and tuning of double plasmonic waves are realized in a free-standing graphene-spacer-grating-spacer-graphene (GSGSG) hybrid slab, which consists of two graphene field effect transistors placed back-to-back to each other. Resulted from the high transparency and the tight confinement of surface plasmonic mode for the graphene, double plasmonic waves can be independently excited by guided-mode resonances (GMRs). Theoretical and numerical investigations are performed in the mid-infrared band. Furthermore, the tuning of individual GMR resonant wavelengths with respect to the system parameters is studied. The results provide opportunities to engineer the proposed hybrid slab for wavelength selective and multiplexing applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiple resonant excitations of surface plasmons in a graphene stratified slab by Otto configuration and their independent tuning

Jin Yao, Ying Chen, Longfang Ye, Na Liu, Guoxiong Cai, and Qing Huo Liu
Photon. Res. 5(4) 377-384 (2017)

Excitation and tuning of a dual graphene plasmonic wave based on a trapezoidal grating structure

Qianjun Mao and Chunzao Feng
Appl. Opt. 58(17) 4762-4770 (2019)

Scaling phenomenon of graphene surface plasmon modes in grating-spacer-graphene hybrid systems

Linlong Tang, Jinglei Du, Chunlei Du, Peng Zhu, and Haofei Shi
Opt. Express 22(17) 20214-20222 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  2. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [Crossref]
  3. P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
    [Crossref]
  4. R. Magnusson, H. G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and S. H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
    [Crossref]
  5. L. J. Meng, D. Zhao, Z. C. Ruan, Q. Li, Y. Q. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
    [Crossref] [PubMed]
  6. W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref] [PubMed]
  7. W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
    [Crossref] [PubMed]
  8. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  9. D. Sadot and E. Boimovich, “Tunable optical filters for dense wdm networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
    [Crossref]
  10. B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
    [Crossref]
  11. X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064-and 1074-nm dual-wavelength Nd:YAG laser using a fabry-perot band-pass filter as output mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
    [Crossref]
  12. S. C. Song, Q. Chen, L. Jin, and F. H. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
    [Crossref] [PubMed]
  13. Y. P. Zhang, T. T. Li, B. B. Zeng, H. Y. Zhang, H. H. Lv, X. Y. Huang, W. L. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
    [Crossref] [PubMed]
  14. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref] [PubMed]
  15. Z. S. Wang, T. Sang, L. Wang, J. T. Zhu, Y. G. Wu, and L. Y. Chen, “Guided-mode resonance brewster filters with multiple channels,” Appl. Phys. Lett. 88(25), 251115 (2006).
    [Crossref]
  16. A. Greenwell, S. Boonruang, and M. G. Moharam, “Control of resonance separation over a wide spectral range in multiwavelength resonant grating filters,” Appl. Opt. 46(25), 6355–6361 (2007).
    [Crossref] [PubMed]
  17. R. Magnusson, “Spectrally dense comb-like filters fashioned with thick guided-mode resonant gratings,” Opt. Lett. 37(18), 3792–3794 (2012).
    [Crossref] [PubMed]
  18. H. Yun, S. Y. Lee, and B. Lee, “Hybrid multibands of surface plasmon and Fabry-Pérot resonances,” IEEE Photonics Technol. Lett. 26(20), 2027–2030 (2014).
    [Crossref]
  19. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  20. R. Feng, W. Q. Ding, L. H. Liu, L. X. Chen, J. Qiu, and G. Q. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(5), A335–A343 (2014).
    [Crossref] [PubMed]
  21. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  22. H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, “Infrared spectroscopy of wafer-scale graphene,” ACS Nano 5(12), 9854–9860 (2011).
    [Crossref] [PubMed]
  23. P. B. Catrysse and S. H. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
    [Crossref] [PubMed]
  24. H. Y. Jang, S. K. Lee, S. H. Cho, J. H. Ahn, and S. Park, “Fabrication of metallic nanomesh: Pt nano-mesh as a proof of concept for stretchable and transparent electrodes,” Chem. Mater. 25(17), 3535–3538 (2013).
    [Crossref]
  25. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  26. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
    [Crossref]
  27. Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(06), 063020 (2013).
    [Crossref]
  28. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  29. E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett. 98(18), 186806 (2007).
    [Crossref] [PubMed]
  30. N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214–223 (2015).
    [Crossref]
  31. N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
    [Crossref]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  33. L. L. Tang, J. L. Du, C. L. Du, P. Zhu, and H. F. Shi, “Scaling phenomenon of graphene surface plasmon modes in grating-spacer-graphene hybrid systems,” Opt. Express 22(17), 20214–20222 (2014).
    [Crossref] [PubMed]
  34. Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale 7(35), 14561–14576 (2015).
    [Crossref] [PubMed]
  35. B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
    [Crossref]

2015 (5)

Y. P. Zhang, T. T. Li, B. B. Zeng, H. Y. Zhang, H. H. Lv, X. Y. Huang, W. L. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale 7(35), 14561–14576 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (5)

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

S. C. Song, Q. Chen, L. Jin, and F. H. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

H. Y. Jang, S. K. Lee, S. H. Cho, J. H. Ahn, and S. Park, “Fabrication of metallic nanomesh: Pt nano-mesh as a proof of concept for stretchable and transparent electrodes,” Chem. Mater. 25(17), 3535–3538 (2013).
[Crossref]

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(06), 063020 (2013).
[Crossref]

B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
[Crossref]

2012 (5)

R. Magnusson, “Spectrally dense comb-like filters fashioned with thick guided-mode resonant gratings,” Opt. Lett. 37(18), 3792–3794 (2012).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

R. Magnusson, H. G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and S. H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

2011 (3)

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, “Infrared spectroscopy of wafer-scale graphene,” ACS Nano 5(12), 9854–9860 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2010 (2)

P. B. Catrysse and S. H. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

2009 (1)

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

2008 (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

Z. S. Wang, T. Sang, L. Wang, J. T. Zhu, Y. G. Wu, and L. Y. Chen, “Guided-mode resonance brewster filters with multiple channels,” Appl. Phys. Lett. 88(25), 251115 (2006).
[Crossref]

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

2002 (1)

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

1998 (1)

D. Sadot and E. Boimovich, “Tunable optical filters for dense wdm networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

1993 (1)

Adam, S.

E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett. 98(18), 186806 (2007).
[Crossref] [PubMed]

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Ahn, J. H.

H. Y. Jang, S. K. Lee, S. H. Cho, J. H. Ahn, and S. Park, “Fabrication of metallic nanomesh: Pt nano-mesh as a proof of concept for stretchable and transparent electrodes,” Chem. Mater. 25(17), 3535–3538 (2013).
[Crossref]

Ajayan, P. M.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Avouris, P.

H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, “Infrared spectroscopy of wafer-scale graphene,” ACS Nano 5(12), 9854–9860 (2011).
[Crossref] [PubMed]

Azad, A. K.

Y. P. Zhang, T. T. Li, B. B. Zeng, H. Y. Zhang, H. H. Lv, X. Y. Huang, W. L. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Boimovich, E.

D. Sadot and E. Boimovich, “Tunable optical filters for dense wdm networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

Bol, A. A.

H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, “Infrared spectroscopy of wafer-scale graphene,” ACS Nano 5(12), 9854–9860 (2011).
[Crossref] [PubMed]

Boltasseva, A.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Boonruang, S.

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Bu, Y. K.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064-and 1074-nm dual-wavelength Nd:YAG laser using a fabry-perot band-pass filter as output mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Cai, G. X.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064-and 1074-nm dual-wavelength Nd:YAG laser using a fabry-perot band-pass filter as output mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Cai, Z. P.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064-and 1074-nm dual-wavelength Nd:YAG laser using a fabry-perot band-pass filter as output mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Catrysse, P. B.

P. B. Catrysse and S. H. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Chen, G. Q.

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chen, L. J.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064-and 1074-nm dual-wavelength Nd:YAG laser using a fabry-perot band-pass filter as output mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Chen, L. X.

Chen, L. Y.

Z. S. Wang, T. Sang, L. Wang, J. T. Zhu, Y. G. Wu, and L. Y. Chen, “Guided-mode resonance brewster filters with multiple channels,” Appl. Phys. Lett. 88(25), 251115 (2006).
[Crossref]

Chen, Q.

S. C. Song, Q. Chen, L. Jin, and F. H. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Chen, Y. P.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Cho, S. H.

H. Y. Jang, S. K. Lee, S. H. Cho, J. H. Ahn, and S. Park, “Fabrication of metallic nanomesh: Pt nano-mesh as a proof of concept for stretchable and transparent electrodes,” Chem. Mater. 25(17), 3535–3538 (2013).
[Crossref]

Chung, T. F.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Das Sarma, S.

E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett. 98(18), 186806 (2007).
[Crossref] [PubMed]

de Abajo, F. J. G.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Dimitrakopoulos, C.

H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, “Infrared spectroscopy of wafer-scale graphene,” ACS Nano 5(12), 9854–9860 (2011).
[Crossref] [PubMed]

Ding, W. Q.

Du, C. L.

Du, J. L.

Emani, N. K.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Fan, S.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Fan, S. H.

P. B. Catrysse and S. H. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Feng, R.

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(06), 063020 (2013).
[Crossref]

Freitag, M.

H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, “Infrared spectroscopy of wafer-scale graphene,” ACS Nano 5(12), 9854–9860 (2011).
[Crossref] [PubMed]

Gajic, R.

B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
[Crossref]

Gao, W. L.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(06), 063020 (2013).
[Crossref]

Greenwell, A.

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Guinea, F.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Huang, X. Y.

Y. P. Zhang, T. T. Li, B. B. Zeng, H. Y. Zhang, H. H. Lv, X. Y. Huang, W. L. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Hwang, E. H.

E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett. 98(18), 186806 (2007).
[Crossref] [PubMed]

Isic, G.

B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jang, H. Y.

H. Y. Jang, S. K. Lee, S. H. Cho, J. H. Ahn, and S. Park, “Fabrication of metallic nanomesh: Pt nano-mesh as a proof of concept for stretchable and transparent electrodes,” Chem. Mater. 25(17), 3535–3538 (2013).
[Crossref]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Jin, L.

S. C. Song, Q. Chen, L. Jin, and F. H. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Jin, Z. H.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Joannopoulos, J. D.

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Kildishev, A. V.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Kono, J.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Lee, B.

H. Yun, S. Y. Lee, and B. Lee, “Hybrid multibands of surface plasmon and Fabry-Pérot resonances,” IEEE Photonics Technol. Lett. 26(20), 2027–2030 (2014).
[Crossref]

Lee, S. K.

H. Y. Jang, S. K. Lee, S. H. Cho, J. H. Ahn, and S. Park, “Fabrication of metallic nanomesh: Pt nano-mesh as a proof of concept for stretchable and transparent electrodes,” Chem. Mater. 25(17), 3535–3538 (2013).
[Crossref]

Lee, S. Y.

H. Yun, S. Y. Lee, and B. Lee, “Hybrid multibands of surface plasmon and Fabry-Pérot resonances,” IEEE Photonics Technol. Lett. 26(20), 2027–2030 (2014).
[Crossref]

Li, Q.

Li, T. T.

Y. P. Zhang, T. T. Li, B. B. Zeng, H. Y. Zhang, H. H. Lv, X. Y. Huang, W. L. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Liu, L. H.

Lv, H. H.

Y. P. Zhang, T. T. Li, B. B. Zeng, H. Y. Zhang, H. H. Lv, X. Y. Huang, W. L. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Magnusson, R.

Maier, S. A.

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(06), 063020 (2013).
[Crossref]

Martin-Moreno, L.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Meng, L. J.

Moharam, M. G.

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, S.

H. Y. Jang, S. K. Lee, S. H. Cho, J. H. Ahn, and S. Park, “Fabrication of metallic nanomesh: Pt nano-mesh as a proof of concept for stretchable and transparent electrodes,” Chem. Mater. 25(17), 3535–3538 (2013).
[Crossref]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Prokopeva, L. J.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Qiu, C. Y.

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Qiu, J.

Qiu, M.

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Ruan, Z. C.

Sadot, D.

D. Sadot and E. Boimovich, “Tunable optical filters for dense wdm networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

Sang, T.

Z. S. Wang, T. Sang, L. Wang, J. T. Zhu, Y. G. Wu, and L. Y. Chen, “Guided-mode resonance brewster filters with multiple channels,” Appl. Phys. Lett. 88(25), 251115 (2006).
[Crossref]

Shalaev, V. M.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

Shen, J. T.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Shi, G.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Shi, H. F.

Shin, H.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Shokooh-Saremi, M.

R. Magnusson, H. G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and S. H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

Shu, J.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Song, S. C.

S. C. Song, Q. Chen, L. Jin, and F. H. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Song, S. H.

R. Magnusson, H. G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and S. H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Sun, F. H.

S. C. Song, Q. Chen, L. Jin, and F. H. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Svavarsson, H. G.

R. Magnusson, H. G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and S. H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

Tang, L. L.

Tulevski, G.

H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, “Infrared spectroscopy of wafer-scale graphene,” ACS Nano 5(12), 9854–9860 (2011).
[Crossref] [PubMed]

Vajtai, R.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Vasic, B.

B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
[Crossref]

Veronis, G.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Walsh, B. M.

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

Wang, D.

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Wang, L.

Z. S. Wang, T. Sang, L. Wang, J. T. Zhu, Y. G. Wu, and L. Y. Chen, “Guided-mode resonance brewster filters with multiple channels,” Appl. Phys. Lett. 88(25), 251115 (2006).
[Crossref]

Wang, S. S.

Wang, X. Z.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064-and 1074-nm dual-wavelength Nd:YAG laser using a fabry-perot band-pass filter as output mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Wang, Z. F.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064-and 1074-nm dual-wavelength Nd:YAG laser using a fabry-perot band-pass filter as output mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Wang, Z. S.

Z. S. Wang, T. Sang, L. Wang, J. T. Zhu, Y. G. Wu, and L. Y. Chen, “Guided-mode resonance brewster filters with multiple channels,” Appl. Phys. Lett. 88(25), 251115 (2006).
[Crossref]

Wu, Y. G.

Z. S. Wang, T. Sang, L. Wang, J. T. Zhu, Y. G. Wu, and L. Y. Chen, “Guided-mode resonance brewster filters with multiple channels,” Appl. Phys. Lett. 88(25), 251115 (2006).
[Crossref]

Xia, F. N.

H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, “Infrared spectroscopy of wafer-scale graphene,” ACS Nano 5(12), 9854–9860 (2011).
[Crossref] [PubMed]

Xu, Q. F.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Yan, H. G.

H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, “Infrared spectroscopy of wafer-scale graphene,” ACS Nano 5(12), 9854–9860 (2011).
[Crossref] [PubMed]

Yang, Y. Q.

Yoon, J.

R. Magnusson, H. G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and S. H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

Yun, H.

H. Yun, S. Y. Lee, and B. Lee, “Hybrid multibands of surface plasmon and Fabry-Pérot resonances,” IEEE Photonics Technol. Lett. 26(20), 2027–2030 (2014).
[Crossref]

Zeng, B. B.

Y. P. Zhang, T. T. Li, B. B. Zeng, H. Y. Zhang, H. H. Lv, X. Y. Huang, W. L. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, H. Y.

Y. P. Zhang, T. T. Li, B. B. Zeng, H. Y. Zhang, H. H. Lv, X. Y. Huang, W. L. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, Q.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Zhang, W. L.

Y. P. Zhang, T. T. Li, B. B. Zeng, H. Y. Zhang, H. H. Lv, X. Y. Huang, W. L. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, Y. P.

Y. P. Zhang, T. T. Li, B. B. Zeng, H. Y. Zhang, H. H. Lv, X. Y. Huang, W. L. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhao, D.

Zhao, Y.

Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale 7(35), 14561–14576 (2015).
[Crossref] [PubMed]

Zhu, J. T.

Z. S. Wang, T. Sang, L. Wang, J. T. Zhu, Y. G. Wu, and L. Y. Chen, “Guided-mode resonance brewster filters with multiple channels,” Appl. Phys. Lett. 88(25), 251115 (2006).
[Crossref]

Zhu, P.

Zhu, W. J.

H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, “Infrared spectroscopy of wafer-scale graphene,” ACS Nano 5(12), 9854–9860 (2011).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale 7(35), 14561–14576 (2015).
[Crossref] [PubMed]

ACS Nano (3)

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, “Infrared spectroscopy of wafer-scale graphene,” ACS Nano 5(12), 9854–9860 (2011).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

R. Magnusson, H. G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and S. H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

Z. S. Wang, T. Sang, L. Wang, J. T. Zhu, Y. G. Wu, and L. Y. Chen, “Guided-mode resonance brewster filters with multiple channels,” Appl. Phys. Lett. 88(25), 251115 (2006).
[Crossref]

Chem. Mater. (1)

H. Y. Jang, S. K. Lee, S. H. Cho, J. H. Ahn, and S. Park, “Fabrication of metallic nanomesh: Pt nano-mesh as a proof of concept for stretchable and transparent electrodes,” Chem. Mater. 25(17), 3535–3538 (2013).
[Crossref]

IEEE Commun. Mag. (1)

D. Sadot and E. Boimovich, “Tunable optical filters for dense wdm networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

IEEE Photonics J. (1)

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064-and 1074-nm dual-wavelength Nd:YAG laser using a fabry-perot band-pass filter as output mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Yun, S. Y. Lee, and B. Lee, “Hybrid multibands of surface plasmon and Fabry-Pérot resonances,” IEEE Photonics Technol. Lett. 26(20), 2027–2030 (2014).
[Crossref]

J. Appl. Phys. (1)

B. Vasić, G. Isić, and R. Gajić, “Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies,” J. Appl. Phys. 113(1), 013110 (2013).
[Crossref]

Laser Photonics Rev. (1)

N. K. Emani, D. Wang, T. F. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photonics Rev. 9(6), 650–655 (2015).
[Crossref]

Laser Phys. (1)

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

Nano Lett. (2)

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

P. B. Catrysse and S. H. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4(1), 214–223 (2015).
[Crossref]

Nanoscale (3)

Y. Zhao and Y. Zhu, “Graphene-based hybrid films for plasmonic sensing,” Nanoscale 7(35), 14561–14576 (2015).
[Crossref] [PubMed]

S. C. Song, Q. Chen, L. Jin, and F. H. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Y. P. Zhang, T. T. Li, B. B. Zeng, H. Y. Zhang, H. H. Lv, X. Y. Huang, W. L. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

New J. Phys. (1)

Y. Francescato, V. Giannini, and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(06), 063020 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (3)

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Phys. Rev. Lett. (1)

E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett. 98(18), 186806 (2007).
[Crossref] [PubMed]

Science (3)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the proposed free-standing graphene-spacer-grating-spacer-graphene (GSGSG) hybrid slab, and (b) cross sectional view with geometrical parameters. VA and VB are bias voltages between the graphene and the gate electrode. (c) The phase matching mechanism for GMRs on the GSGSG hybrid slab.
Fig. 2
Fig. 2 (a) Transmission spectra for four hybrid slabs composed of the graphene A only (red), the graphene B only (blue), the both (dark yellow), and the none (black dashed). (b) and (c) Electric field distributions of the GSGSG hybrid slab at the resonant wavelength points I and II, corresponding to the GMR resonance A and B, respectively. The black solid lines sketch the profile of different materials, while the two magenta dashed lines denote two graphene sheets.
Fig. 3
Fig. 3 (a) Transmission spectra with various Fermi levels in each graphene. The red dashed line indicates the independence of the GMR A on Fermi level EFB, while the red dotted line indicates the invariance of the GMR B with respect to EFA. (b) Dependence of double resonant wavelengths on the corresponding Fermi level. The dotted lines labelled by “theory” represents the analytically estimate results by Eq. (4). (c) Electric field distribution at the wavelength point where two resonance merges.
Fig. 4
Fig. 4 Dependence of FWHMs and FHs of double GMR resonances on the corresponding Fermi level.
Fig. 5
Fig. 5 (a) Transmittance of the proposed GSGSG hybrid slab as the function of wavelength and spacer thickness dB. (b) Dependence of FHs of double GMR resonances on the occupation ratio w/p. Both first-order and second-order cases are presented.
Fig. 6
Fig. 6 Dependence of transmittance, reflectance and absorptance on the grating height h. Investigation on different spacer thickness d is also presented. dA=dB=d. (a) GMR A, and (b) GMR B. Data are extracted at the resonant wavelength point. The use of solid line and dashed line indicates different dependence of absorptance on h and d.
Fig. 7
Fig. 7 (a) Bulk sensitivities of the proposed GSGSG hybrid slab as the function of the corresponding Fermi level. The dotted lines labelled by “theory” represent the analytically estimate results by Eq. (5). (b) Dependence of FoM factors on the corresponding Fermi level.
Fig. 8
Fig. 8 Thin film sensitivities as the function of the target film thickness. GMR B was utilized as the probing signal. The inset shows the transmission spectra for the proposed hybrid slab covered by dielectric thin films with constant nSB = 1.333 and various thicknesses tSB = 2 nm, 4 nm, 8 nm, 10 nm, 20 nm, 50 nm, and 100 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k sp ( ω ) ε 0 ( ε r 1 + ε r 2 ) j ω σ ( ω )
k grating ( ω ) = 2 π p
σ ( ω ) = e 2 E F π 2 j ω j τ 1
λ GMR = π c e 2 p ε 0 ( ε r 1 + ε r 2 ) E F
RIS = d λ GMR d n s = π c e 2 p ε 0 E F n s n s 2 + ε r 2

Metrics