Abstract

We experimentally demonstrated the simultaneous nonlinearity mitigation of PDM-16QAM WDM signals using complementary-spectrally-inverted optical phase conjugation (CSI-OPC). We achieved reserved-band-less, guard-band-less, and polarization independent OPC based on periodically poled LiNbO3 waveguides. By employing the CSI-OPC, 2.325-THz-band (93 × 25 GHz) complementary spectral inversion was achieved while retaining the original WDM bandwidth. A Q2-factor improvement of over 0.4 dB and a 5120 km transmission with a Q2-factor above the FEC limit were confirmed using a 10-channel WDM transmission at the signal band center and signal band edge. We then demonstrated the mitigation of the nonlinear impairments in a 3840 km long-haul WDM signal transmission for all 92-channel 180-Gbit/s PDM-16QAM quasi-Nyquist-WDM signals.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

Hao Hu, Robert M. Jopson, Alan H. Gnauck, Sebastian Randel, and S. Chandrasekhar
Opt. Express 25(3) 1618-1628 (2017)

Kerr nonlinearity mitigation in 5 × 28-GBd PDM 16-QAM signal transmission over a dispersion-uncompensated link with backward-pumped distributed Raman amplification

Isaac Sackey, Francesco Da Ros, Mahmoud Jazayerifar, Thomas Richter, Christian Meuer, Markus Nölle, Lutz Molle, Christophe Peucheret, Klaus Petermann, and Colja Schubert
Opt. Express 22(22) 27381-27391 (2014)

Waveband-shift-free optical phase conjugator based on difference-frequency generation

Yasuhiro Okamura and Atsushi Takada
Opt. Express 28(5) 7596-7606 (2020)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  2. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  3. I. Sackey, F. D. Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, “Kerr nonlinearity mitigation: mid-link spectral inversion versus digital backpropagation in 5×28-GBd PDM 16-QAM signal transmission,” J. Lightwave Technol. 33(9), 1821–1827 (2015).
    [Crossref]
  4. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4(2), 52–54 (1979).
    [Crossref] [PubMed]
  5. K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using nonlinear optical phase conjugator,” in Proc. Optical Amplifiers and Their Applications (OAA’93) (1993), paper SuC1.
  6. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
    [Crossref]
  7. K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM transmission impairment mitigation by multiple phase conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
    [Crossref]
  8. H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
    [Crossref]
  9. T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.2.
    [Crossref]
  10. S. Yoshima, Y. Sun, K. R. H. Bottrill, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Nonlinearity mitigation through optical phase conjugation in a deployed fibre link with full bandwidth utilization,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.3.
    [Crossref]
  11. A. D. Ellis, I. D. Phillips, M. Tan, M. F. C. Stephens, M. E. McCarthy, M. A. Z. Al Kahteeb, M. A. Iqbal, A. Perentos, S. Fabbri, V. Gordienko, D. Lavery, G. Liga, M. G. Saavedra, R. Maher, S. Sygletos, P. Harper, N. J. Doran, P. Bayvel, and S. K. Turitsyn, “Enhanced superchannel transmission using phase conjugation,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.4.
  12. A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Zaki Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
    [Crossref]
  13. M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
    [Crossref]
  14. J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
    [Crossref]
  15. T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
    [Crossref]
  16. T. Umeki, T. Kazama, O. Tadanaga, K. Enbutsu, M. Asobe, Y. Miyamoto, and H. Takenouchi, “PDM signal amplification using PPLN-based polarization-independent phase-sensitive amplifier,” J. Lightwave Technol. 33(7), 1326–1332 (2015).
    [Crossref]
  17. T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC, 2016), paper M3D.1.
    [Crossref]
  18. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
    [Crossref]
  19. D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC, 2012), paper OW1H.4.
    [Crossref]

2016 (2)

2015 (2)

2010 (2)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

2009 (1)

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

2008 (1)

2006 (2)

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

2003 (1)

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

1979 (1)

Asobe, M.

T. Umeki, T. Kazama, O. Tadanaga, K. Enbutsu, M. Asobe, Y. Miyamoto, and H. Takenouchi, “PDM signal amplification using PPLN-based polarization-independent phase-sensitive amplifier,” J. Lightwave Technol. 33(7), 1326–1332 (2015).
[Crossref]

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Bayvel, P.

Dario Pilori, S.

H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
[Crossref]

de Waardt, H.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Doran, N.

Ellis, A. D.

Enbutsu, K.

Essiambre, R. J.

Fabbri, S.

Fekete, D.

Fischer, J. K.

Foschini, G. J.

Gnauck, A. H.

H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
[Crossref]

Goebel, B.

Gordienko, V.

Harper, P.

Hu, H.

H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
[Crossref]

Inoue, T.

Ip, E.

Iqbal, M. A.

Jamshidifar, M.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

Jansen, S. L.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Jazayerifar, M.

Jopson, R. M.

H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
[Crossref]

Kahn, J. M.

Kazama, T.

Khoe, G.-D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Kramer, G.

Krummrich, P. M.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Lavery, D.

Liga, G.

Maher, R.

Marhic, M. E.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

McCarthy, M. E.

Miyamoto, Y.

Miyazawa, H.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Mondaca, G. S.

Morioka, T.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Namiki, S.

Ohara, T.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Pelusi, M.

Pepper, D. M.

Perentos, A.

Petermann, K.

Peucheret, C.

Phillips, I. D.

Richter, T.

Ros, F. D.

Sackey, I.

Sato, K.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Schubert, C.

Solis-Trapala, K.

Spalter, S.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Stephens, M. F. C.

Sygletos, S.

Tadanaga, O.

T. Umeki, T. Kazama, O. Tadanaga, K. Enbutsu, M. Asobe, Y. Miyamoto, and H. Takenouchi, “PDM signal amplification using PPLN-based polarization-independent phase-sensitive amplifier,” J. Lightwave Technol. 33(7), 1326–1332 (2015).
[Crossref]

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Takada, A.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Takara, H.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Takenouchi, H.

Tan, H. N.

Tan, M.

Turitsyn, S. K.

Umeki, T.

T. Umeki, T. Kazama, O. Tadanaga, K. Enbutsu, M. Asobe, Y. Miyamoto, and H. Takenouchi, “PDM signal amplification using PPLN-based polarization-independent phase-sensitive amplifier,” J. Lightwave Technol. 33(7), 1326–1332 (2015).
[Crossref]

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

van den Borne, D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Vedadi, A.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

Winzer, P. J.

Yamawaku, J.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Yariv, A.

Zaki Al-Khateeb, M. A.

Electron. Lett. (1)

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

J. Lightwave Technol. (6)

A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Zaki Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

T. Umeki, T. Kazama, O. Tadanaga, K. Enbutsu, M. Asobe, Y. Miyamoto, and H. Takenouchi, “PDM signal amplification using PPLN-based polarization-independent phase-sensitive amplifier,” J. Lightwave Technol. 33(7), 1326–1332 (2015).
[Crossref]

K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM transmission impairment mitigation by multiple phase conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
[Crossref]

I. Sackey, F. D. Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, “Kerr nonlinearity mitigation: mid-link spectral inversion versus digital backpropagation in 5×28-GBd PDM 16-QAM signal transmission,” J. Lightwave Technol. 33(9), 1821–1827 (2015).
[Crossref]

Opt. Lett. (1)

Other (7)

K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using nonlinear optical phase conjugator,” in Proc. Optical Amplifiers and Their Applications (OAA’93) (1993), paper SuC1.

H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
[Crossref]

T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.2.
[Crossref]

S. Yoshima, Y. Sun, K. R. H. Bottrill, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Nonlinearity mitigation through optical phase conjugation in a deployed fibre link with full bandwidth utilization,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.3.
[Crossref]

A. D. Ellis, I. D. Phillips, M. Tan, M. F. C. Stephens, M. E. McCarthy, M. A. Z. Al Kahteeb, M. A. Iqbal, A. Perentos, S. Fabbri, V. Gordienko, D. Lavery, G. Liga, M. G. Saavedra, R. Maher, S. Sygletos, P. Harper, N. J. Doran, P. Bayvel, and S. K. Turitsyn, “Enhanced superchannel transmission using phase conjugation,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.4.

T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC, 2016), paper M3D.1.
[Crossref]

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC, 2012), paper OW1H.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagrams of long-haul WDM transmission using complementary spectral inverted optical phase conjugation (CSI-OPC)
Fig. 2
Fig. 2 Configuration of PPLN-based CSI-OPC device.
Fig. 3
Fig. 3 Optical spectra for B-to-B and 3840 km transmissions at the recirculating loop output.
Fig. 4
Fig. 4 Experimental setup for multi-span transmission.
Fig. 5
Fig. 5 Comparison of tolerance to nonlinear impairments with and without OPC for (a) edge and (b) center 10 WDM signals after 5120 km transmission.
Fig. 6
Fig. 6 (a) Q2 factors after 3840 km transmission for all 92 WDM channels with and without OPC, (b) constellations with and without OPC for channel 19 (1531.12 nm).

Metrics