Abstract

We present experimental results on the observation of a bulk second-order nonlinear susceptibility, derived from both free-space and integrated measurements, in silicon nitride. Phase-matching is achieved through dispersion engineering of the waveguide cross-section, independently revealing multiple components of the nonlinear susceptibility, namely χ(2)yyy = 0.14 ± 0.08 pm/V and χ(2)xxy = 0.30 ± 0.18 pm/V. Additionally, we show how the second-harmonic signal may be tuned through the application of bias voltages across silicon nitride. The material properties measured here are anticipated to allow for the realization of new nanophotonic devices in CMOS-compatible silicon nitride waveguides, adding to their viability for telecommunication, data communication, and optical signal processing applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Harmonic generation in silicon nitride ring resonators

Jacob S. Levy, Mark A. Foster, Alexander L. Gaeta, and Michal Lipson
Opt. Express 19(12) 11415-11421 (2011)

Integrated GaN photonic circuits on silicon (100) for second harmonic generation

Chi Xiong, Wolfram Pernice, Kevin K. Ryu, Carsten Schuck, King Y. Fong, Tomas Palacios, and Hong X. Tang
Opt. Express 19(11) 10462-10470 (2011)

Third-harmonic UV generation in silicon nitride nanostructures

Tingyin Ning, Outi Hyvärinen, Henna Pietarinen, Tommi Kaplas, Martti Kauranen, and Göery Genty
Opt. Express 21(2) 2012-2017 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  2. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  3. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954 (2003).
    [Crossref]
  4. A. Bristow, N. Rotenberg, and H. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
    [Crossref]
  5. M. Lipson, “Compact electro-optic modulators on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1520–1526 (2006).
    [Crossref]
  6. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
    [Crossref] [PubMed]
  7. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
    [Crossref] [PubMed]
  8. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011).
    [Crossref] [PubMed]
  9. M. W. Puckett, J. S. Smalley, M. Abashin, A. Grieco, and Y. Fainman, “Tensor of the second-order nonlinear susceptibility in asymmetrically strained silicon waveguides: analysis and experimental validation,” Opt. Lett. 39(6), 1693–1696 (2014).
    [Crossref] [PubMed]
  10. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  11. C. Torres-Torres, A. López-Suárez, L. Tamayo-Rivera, R. Rangel-Rojo, A. Crespo-Sosa, J. C. Alonso, and A. Oliver, “Thermo-optic effect and optical third order nonlinearity in nc-Si embedded in a silicon-nitride film,” Opt. Express 16(22), 18390–18396 (2008).
    [Crossref] [PubMed]
  12. D. Moss, R. Morandotti, A. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  13. J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  14. S. Khan, J. Chile, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
    [Crossref]
  15. T. Ning, H. Pietarinen, O. Hyvarinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
    [Crossref]
  16. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
    [Crossref] [PubMed]
  17. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12(3), 416–427 (1995).
    [Crossref]
  18. T. Suhara and M. Fujimura, Waveguide Nonlinear Optic Devices (Springer, 2003).
  19. COMSOL, Inc., http://www.comsol.com
  20. M. W. Puckett, F. Vallini, A. Grieco, and Y. Fainman, “Multichannel Bragg gratings in silicon waveguides with asymmetric sidewall modulation,” Opt. Lett. 40(3), 379–382 (2015).
    [Crossref] [PubMed]
  21. R. Sharma, M. W. Puckett, H. H. Lin, A. Isichenko, F. Vallini, and Y. Fainman, “Effect of dielectric claddings on the electro-optic behavior of silicon waveguides,” Opt. Lett. 41(6), 1185–1188 (2016).
    [Crossref] [PubMed]
  22. X. Guo, C. Zou, C. Schuck, H. Jung, R. Cheng, and H. Tang, “Parametric down-conversion photon pair source on a nanophotonic chip,” arXiv:1603.0372v1 (2003).
  23. Y. Wang, Y. Wang, L. Cao, and Z. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
    [Crossref]
  24. M. Bortz, S. Field, M. Fejer, D. Nam, R. Waarts, and D. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
    [Crossref]
  25. H. Wagner, M. Kuhnelt, W. Langbein, and J. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
    [Crossref]
  26. J. Khurgin, T. Stievater, M. Pruessner, and W. Rabinovich, “On the origin of the second-order nonlinearity in strained Si–SiN structures,” J. Opt. Soc. Am. B 32(12), 2494–2499 (2015).
    [Crossref]
  27. T. Ning, C. Tan, T. Niemi, M. Kauranen, and G. Genty, “Enhancement of second-harmonic generation from silicon nitride with gold gratings,” Opt. Express 23(24), 30695–30700 (2015).
    [Crossref] [PubMed]
  28. N. Bloembergen, Nonlinear Optics (World Scientific, 1996).
  29. S. Minisalle, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
    [Crossref]

2016 (1)

2015 (3)

2014 (1)

2013 (2)

S. Khan, J. Chile, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

D. Moss, R. Morandotti, A. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

2012 (2)

S. Minisalle, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

T. Ning, H. Pietarinen, O. Hyvarinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

2011 (3)

2010 (2)

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

2008 (2)

2007 (1)

A. Bristow, N. Rotenberg, and H. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

2006 (3)

M. Lipson, “Compact electro-optic modulators on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1520–1526 (2006).
[Crossref]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[Crossref]

2003 (2)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954 (2003).
[Crossref]

Y. Wang, Y. Wang, L. Cao, and Z. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[Crossref]

1998 (1)

H. Wagner, M. Kuhnelt, W. Langbein, and J. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

1995 (1)

1994 (1)

M. Bortz, S. Field, M. Fejer, D. Nam, R. Waarts, and D. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

Abashin, M.

Alic, N.

Alonso, J. C.

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Bianco, F.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Bolten, J.

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Bortz, M.

M. Bortz, S. Field, M. Fejer, D. Nam, R. Waarts, and D. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

Bristow, A.

A. Bristow, N. Rotenberg, and H. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

Cao, L.

Y. Wang, Y. Wang, L. Cao, and Z. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[Crossref]

Cao, Z.

Y. Wang, Y. Wang, L. Cao, and Z. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[Crossref]

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Chile, J.

S. Khan, J. Chile, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Chmielak, B.

Crespo-Sosa, A.

Dal Negro, L.

S. Minisalle, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954 (2003).
[Crossref]

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Fainman, Y.

Fathpour, S.

S. Khan, J. Chile, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[Crossref]

Fejer, M.

M. Bortz, S. Field, M. Fejer, D. Nam, R. Waarts, and D. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

Field, S.

M. Bortz, S. Field, M. Fejer, D. Nam, R. Waarts, and D. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

Foster, M.

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Foster, M. A.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Gaeta, A.

D. Moss, R. Morandotti, A. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gaeta, A. L.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954 (2003).
[Crossref]

Genty, G.

T. Ning, C. Tan, T. Niemi, M. Kauranen, and G. Genty, “Enhancement of second-harmonic generation from silicon nitride with gold gratings,” Opt. Express 23(24), 30695–30700 (2015).
[Crossref] [PubMed]

T. Ning, H. Pietarinen, O. Hyvarinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Ghulinyan, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Gondarenko, A.

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Grieco, A.

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Hayden, L. M.

Herman, W. N.

Hvam, J.

H. Wagner, M. Kuhnelt, W. Langbein, and J. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Hyvarinen, O.

T. Ning, H. Pietarinen, O. Hyvarinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Ikeda, K.

Isichenko, A.

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Jalali, B.

Kauranen, M.

T. Ning, C. Tan, T. Niemi, M. Kauranen, and G. Genty, “Enhancement of second-harmonic generation from silicon nitride with gold gratings,” Opt. Express 23(24), 30695–30700 (2015).
[Crossref] [PubMed]

T. Ning, H. Pietarinen, O. Hyvarinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Khan, S.

S. Khan, J. Chile, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Khurgin, J.

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Kuhnelt, M.

H. Wagner, M. Kuhnelt, W. Langbein, and J. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Kurz, H.

Langbein, W.

H. Wagner, M. Kuhnelt, W. Langbein, and J. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Levy, J.

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Levy, J. S.

Lin, H. H.

Lipson, M.

D. Moss, R. Morandotti, A. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
[Crossref] [PubMed]

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

M. Lipson, “Compact electro-optic modulators on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1520–1526 (2006).
[Crossref]

López-Suárez, A.

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Ma, J.

S. Khan, J. Chile, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Matheisen, C.

Merget, F.

Minisalle, S.

S. Minisalle, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Morandotti, R.

D. Moss, R. Morandotti, A. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D.

D. Moss, R. Morandotti, A. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Nagel, M.

Nam, D.

M. Bortz, S. Field, M. Fejer, D. Nam, R. Waarts, and D. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

Niemi, T.

Ning, T.

T. Ning, C. Tan, T. Niemi, M. Kauranen, and G. Genty, “Enhancement of second-harmonic generation from silicon nitride with gold gratings,” Opt. Express 23(24), 30695–30700 (2015).
[Crossref] [PubMed]

T. Ning, H. Pietarinen, O. Hyvarinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Oliver, A.

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Pavesi, L.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Pietarinen, H.

T. Ning, H. Pietarinen, O. Hyvarinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Pruessner, M.

Pucker, G.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Puckett, M. W.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954 (2003).
[Crossref]

Rabinovich, W.

Rangel-Rojo, R.

Ripperda, C.

Rotenberg, N.

A. Bristow, N. Rotenberg, and H. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

Saperstein, R. E.

Sharma, R.

Simonen, J.

T. Ning, H. Pietarinen, O. Hyvarinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Smalley, J. S.

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Stievater, T.

Tamayo-Rivera, L.

Tan, C.

Torres-Torres, C.

Turner-Foster, A.

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Vallini, F.

van Driel, H.

A. Bristow, N. Rotenberg, and H. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Waarts, R.

M. Bortz, S. Field, M. Fejer, D. Nam, R. Waarts, and D. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Wagner, H.

H. Wagner, M. Kuhnelt, W. Langbein, and J. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Wahlbrink, T.

Waldow, M.

Wang, Y.

Y. Wang, Y. Wang, L. Cao, and Z. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[Crossref]

Y. Wang, Y. Wang, L. Cao, and Z. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[Crossref]

Welch, D.

M. Bortz, S. Field, M. Fejer, D. Nam, R. Waarts, and D. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

Yerci, S.

S. Minisalle, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954 (2003).
[Crossref]

A. Bristow, N. Rotenberg, and H. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

S. Khan, J. Chile, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

T. Ning, H. Pietarinen, O. Hyvarinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Y. Wang, Y. Wang, L. Cao, and Z. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[Crossref]

S. Minisalle, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Bortz, S. Field, M. Fejer, D. Nam, R. Waarts, and D. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Lipson, “Compact electro-optic modulators on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1520–1526 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

D. Moss, R. Morandotti, A. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Nature (1)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. B (1)

H. Wagner, M. Kuhnelt, W. Langbein, and J. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Other (4)

N. Bloembergen, Nonlinear Optics (World Scientific, 1996).

T. Suhara and M. Fujimura, Waveguide Nonlinear Optic Devices (Springer, 2003).

COMSOL, Inc., http://www.comsol.com

X. Guo, C. Zou, C. Schuck, H. Jung, R. Cheng, and H. Tang, “Parametric down-conversion photon pair source on a nanophotonic chip,” arXiv:1603.0372v1 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the Maker fringe setup employed in this work. (b) Measured second-harmonic signal as a function of the pump polarization angle for s- and p-polarized input pump beams, and for 200 and 500 nm-thick nitride films. (c) Power in the second harmonic signal vs pump power exhibiting a quadratic trend (d) Normalized intensity of the p-polarized second-harmonic signal (in terms of counts in the PMT) as a function of nitride film thickness, exhibiting a clear quadratic trend.

Fig. 2
Fig. 2

(a) Effective indices of the TM-like pump (blue) and two second-harmonic modes (red, black) as a function of the waveguide width, as well as the average effective index of the TE- and TM-like pump modes (green). Phase-matching based on nonzero nonlinear coefficients occurs at widths of approximately 1045 and 1140 nm, respectively (dashed black lines). (b-c) Arbitrarily normalized electric field profiles of the TM- and TE-like second-harmonic modes, respectively, assuming a pump wavelength of 1550 nm and a base waveguide width of 1050 nm.

Fig. 3
Fig. 3

SEM micrograph of an unclad silicon nitride waveguide, showing the slope of the sidewalls and the remaining unetched HSQ layer.

Fig. 4
Fig. 4

(a) Measured TM power generated in a 1010 nm-wide silicon nitride waveguide, as a function of the pump wavelength, for several different pump powers. (b) Power dependences of the measured fluorescence background and the second-harmonic signal at the phase-matched wavelength. (c) Measured TE second-harmonic power generated in a 1070 nm-wide silicon nitride waveguide, as a function of the pump wavelength.

Fig. 5
Fig. 5

(a) Schematic of the proposed mode of voltage application across a silicon nitride waveguide. Superimposed is the electric field simulated in SILVACO for the same structure with an applied voltage of 130 V. (b) SEM micrograph of a silicon nitride waveguide clad with layers of silicon dioxide and aluminum. (c) Spectrometer-measured second-harmonic signal, plotted as a function of wavelength, for several different bias voltages. (d) Peak count of the second-harmonic signal vs. the applied voltage, exhibiting a quadratic trend as would be expected for a linear increase in the second-order susceptibility.

Tables (1)

Tables Icon

Table 1 χ(2) calculated from the Maker fringes method.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P SH t film 2
d eff p = d 15 cos( θ 2 )sin( 2 θ 1 ) sin 2 ( φ' ) d 31 sin( θ 2 )( cos 2 ( θ 1 ) sin 2 ( φ' )+ cos 2 ( φ' ) ) d 33 sin( θ 2 ) sin 2 ( θ 1 ) sin 2 ( φ' )
d eff s = d 15 sin( θ 1 )sin( 2φ' )
χ yyy (2) = 4 A 2ω ( Γ 1W )ω ε 0 L A ω 2
Γ= Si N x E y,2ω * ( x,y ) E y,ω 2 ( x,y )dxdy
χ xxy (2) = 2 A 2ω ( Γ 1W )ω ε 0 L A ω,TE A ω,TM
Γ= Si N x E x,2ω * ( x,y ) E y,ω,TM ( x,y ) E x,ω,TE ( x,y )dxdy
P 2ω = ε 0 2 χ (3) ( 0,ω,ω ) E DC E ω E ω

Metrics