Abstract

The strong plasmonic response and wide electrostatic tunability of graphene make it a promising material for developing infrared optoelectronic components. In this paper, we present a mid-infrared wideband tunable cross polarization converter using periodically perforated graphene. The polarization converter consists of a metal ground plane, an insulator layer, and a rectangle-shape periodically perforated graphene sheet. By superimposing two localized surface plasmon modes, the polarization converter transforms a linear polarization to its cross polarization over a bandwidth as wide as ~5% of the central frequency (46.8THz) with a peak conversion ratio exceeding 90%. The polarization conversion performance is maintained over a wide range of incident angles up to 50°, and is highly tunable by electrostatic tuning of the graphene Fermi energy. Our proposed device enables the manipulation of light polarization for potential mid-infrared applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Triple-band cross-polarization converter based on an ultra-thin graphene-integrated metasurface

Zhifei Yao, Yueke Wang, Mengjia Lu, and Chunyang Zhang
J. Opt. Soc. Am. B 36(1) 7-11 (2019)

Tunable multifunctional reflection polarizer based on a graphene metasurface

Zhifei Yao, Tongtong Wei, Yueke Wang, Mengjia Lu, Chunyang Zhang, and Lulu Zhang
Appl. Opt. 58(13) 3570-3574 (2019)

Graphene-based mid-infrared biosensor

Zohreh Vafapour, Yaser Hajati, Morteza Hajati, and Hossain Ghahraloud
J. Opt. Soc. Am. B 34(12) 2586-2592 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Hu, J. Meyer, K. Richardson, and L. Shah, “Feature issue introduction: mid-IR photonic materials,” Opt. Mater. Express 3(9), 1571–1575 (2013).
    [Crossref]
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  3. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  4. M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
    [Crossref]
  5. G. Chen, A. Haddadi, A.-M. Hoang, R. Chevallier, and M. Razeghi, “Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application,” Opt. Lett. 40(1), 45–47 (2015).
    [Crossref] [PubMed]
  6. A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
    [Crossref] [PubMed]
  7. K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
    [Crossref]
  8. G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
    [Crossref]
  9. C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
    [Crossref]
  10. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  11. B. Vasić and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
    [Crossref]
  12. A. Y. Zhu, F. Yi, J. C. Reed, and E. Cubukcu, “Cavity-enhanced mid-infrared absorption in perforated graphene,” J. Nanophotonics 8(1), 083888 (2014).
    [Crossref]
  13. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref] [PubMed]
  14. B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
    [Crossref] [PubMed]
  15. X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, and Q. J. Wang, “A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.,” Nanoscale 8(1), 327–332 (2016).
    [Crossref] [PubMed]
  16. Z. Li and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
    [Crossref]
  17. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
    [Crossref] [PubMed]
  18. H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
    [Crossref]
  19. H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
    [Crossref]
  20. J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
    [Crossref]
  21. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  22. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
    [Crossref]
  23. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
    [Crossref]
  24. J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
    [Crossref]
  25. X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
    [Crossref]
  26. Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
    [Crossref]
  27. J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
    [Crossref] [PubMed]
  28. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
    [Crossref] [PubMed]
  29. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
    [Crossref] [PubMed]
  30. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
    [Crossref]
  31. A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
    [Crossref]
  32. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  33. H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
    [Crossref] [PubMed]
  34. J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
    [Crossref]
  35. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  36. B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
    [Crossref] [PubMed]
  37. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099 (1983).
    [Crossref] [PubMed]
  38. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  39. I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
    [Crossref] [PubMed]
  40. P. Neugebauer, M. Orlita, C. Faugeras, A.-L. Barra, and M. Potemski, “How perfect can graphene be?” Phys. Rev. Lett. 103(13), 136403 (2009).
    [Crossref] [PubMed]

2016 (2)

X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, and Q. J. Wang, “A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.,” Nanoscale 8(1), 327–332 (2016).
[Crossref] [PubMed]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

2015 (3)

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

G. Chen, A. Haddadi, A.-M. Hoang, R. Chevallier, and M. Razeghi, “Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application,” Opt. Lett. 40(1), 45–47 (2015).
[Crossref] [PubMed]

2014 (6)

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

A. Y. Zhu, F. Yi, J. C. Reed, and E. Cubukcu, “Cavity-enhanced mid-infrared absorption in perforated graphene,” J. Nanophotonics 8(1), 083888 (2014).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

2013 (9)

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref] [PubMed]

B. Vasić and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Z. Li and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
[Crossref] [PubMed]

J. Hu, J. Meyer, K. Richardson, and L. Shah, “Feature issue introduction: mid-IR photonic materials,” Opt. Mater. Express 3(9), 1571–1575 (2013).
[Crossref]

2012 (9)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

2011 (2)

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

2010 (1)

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

2009 (3)

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

P. Neugebauer, M. Orlita, C. Faugeras, A.-L. Barra, and M. Potemski, “How perfect can graphene be?” Phys. Rev. Lett. 103(13), 136403 (2009).
[Crossref] [PubMed]

2008 (2)

G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

1999 (1)

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

1983 (1)

Ajayan, P. M.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Alaee, R.

Alexander, R. W.

An, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Arigong, B.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Bardou, N.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Barra, A.-L.

P. Neugebauer, M. Orlita, C. Faugeras, A.-L. Barra, and M. Potemski, “How perfect can graphene be?” Phys. Rev. Lett. 103(13), 136403 (2009).
[Crossref] [PubMed]

Beck, W. A.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Beekman, D. W.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bouchon, P.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Cao, J. X.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Capasso, F.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Chae, S. J.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, G.

Chen, S.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

Chen, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Cheng, H.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Chevallier, R.

Choi, H.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Chu, H. S.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
[Crossref]

Clark, W. W.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Cubukcu, E.

A. Y. Zhu, F. Yi, J. C. Reed, and E. Cubukcu, “Cavity-enhanced mid-infrared absorption in perforated graphene,” J. Nanophotonics 8(1), 083888 (2014).
[Crossref]

de Abajo, F. J. G.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Deng, L.

Dhar, N. K.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Ding, J.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Dong, Z.

X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, and Q. J. Wang, “A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.,” Nanoscale 8(1), 327–332 (2016).
[Crossref] [PubMed]

Duan, X.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Dupuis, C.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Dyer, W. R.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Falkner, M.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Farhat, M.

Faugeras, C.

P. Neugebauer, M. Orlita, C. Faugeras, A.-L. Barra, and M. Potemski, “How perfect can graphene be?” Phys. Rev. Lett. 103(13), 136403 (2009).
[Crossref] [PubMed]

Gajic, R.

B. Vasić and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

Gan, C. H.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
[Crossref]

García de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Geim, A. K.

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Goldberg, A. C.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Haddadi, A.

Haïdar, R.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, J.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Heinz, T. F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Helgert, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Hoang, A.-M.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hu, J.

Hu, X.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref] [PubMed]

Huang, X.

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jaeck, J.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Jian, S.

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Ju, L.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Kats, M. A.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Kennerly, S. W.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Kley, E.-B.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Kong, J.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Leavitt, R. P.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Lederer, F.

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Lee, Y. H.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Lévesque, Q.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Li, E. P.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
[Crossref]

Li, J.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

Li, T.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Li, X.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref] [PubMed]

Li, Z.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Z. Li and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Liang, G.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref] [PubMed]

Lim, S.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Lin, Y.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Lin, Z.

Little, J. W.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Liu, H.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Liu, T.

X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, and Q. J. Wang, “A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.,” Nanoscale 8(1), 327–332 (2016).
[Crossref] [PubMed]

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref] [PubMed]

Liu, W.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Liu, Y.

X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, and Q. J. Wang, “A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.,” Nanoscale 8(1), 327–332 (2016).
[Crossref] [PubMed]

Liu, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Long, L. L.

Maeng, I.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Makhsiyan, M.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Meng, B.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref] [PubMed]

Menzel, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Meyer, J.

Mutlu, M.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Neugebauer, P.

P. Neugebauer, M. Orlita, C. Faugeras, A.-L. Barra, and M. Potemski, “How perfect can graphene be?” Phys. Rev. Lett. 103(13), 136403 (2009).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Ordal, M. A.

Orlita, M.

P. Neugebauer, M. Orlita, C. Faugeras, A.-L. Barra, and M. Potemski, “How perfect can graphene be?” Phys. Rev. Lett. 103(13), 136403 (2009).
[Crossref] [PubMed]

Ozbay, E.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Pardo, F.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Pelouard, J.-L.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Perruisseau-Carrier, J.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Pertsch, T.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Pollehn, H. K.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Potemski, M.

P. Neugebauer, M. Orlita, C. Faugeras, A.-L. Barra, and M. Potemski, “How perfect can graphene be?” Phys. Rev. Lett. 103(13), 136403 (2009).
[Crossref] [PubMed]

Pshenay-Severin, E.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Qiu, M.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Razeghi, M.

Reed, J. C.

A. Y. Zhu, F. Yi, J. C. Reed, and E. Cubukcu, “Cavity-enhanced mid-infrared absorption in perforated graphene,” J. Nanophotonics 8(1), 083888 (2014).
[Crossref]

Ren, G.

Ren, H.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Ren, Q.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Richardson, K.

Rockstuhl, C.

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Shah, L.

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Shao, J.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Son, J.-H.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Tao, J.

X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, and Q. J. Wang, “A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.,” Nanoscale 8(1), 327–332 (2016).
[Crossref] [PubMed]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Tian, J.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

Tidrow, M. Z.

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Tünnermann, A.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Vasic, B.

B. Vasić and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

Wang, F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Wang, Q. J.

X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, and Q. J. Wang, “A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.,” Nanoscale 8(1), 327–332 (2016).
[Crossref] [PubMed]

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref] [PubMed]

Wang, S. M.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Wang, Y.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Ward, C. A.

Xie, B.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Yang, D.

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Yang, H.

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Yang, J.

J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
[Crossref] [PubMed]

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

Yang, J. K. W.

X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, and Q. J. Wang, “A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.,” Nanoscale 8(1), 327–332 (2016).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Yi, F.

A. Y. Zhu, F. Yi, J. C. Reed, and E. Cubukcu, “Cavity-enhanced mid-infrared absorption in perforated graphene,” J. Nanophotonics 8(1), 083888 (2014).
[Crossref]

Yu, N.

Z. Li and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

Yu, P.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

Yu, X.

X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, and Q. J. Wang, “A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.,” Nanoscale 8(1), 327–332 (2016).
[Crossref] [PubMed]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zeng, Y.

X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, and Q. J. Wang, “A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.,” Nanoscale 8(1), 327–332 (2016).
[Crossref] [PubMed]

Zhang, B. Y.

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref] [PubMed]

Zhang, H.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Zhang, J.

J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
[Crossref] [PubMed]

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

Zheng, S.

Zhou, L.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhou, M.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Zhu, A. Y.

A. Y. Zhu, F. Yi, J. C. Reed, and E. Cubukcu, “Cavity-enhanced mid-infrared absorption in perforated graphene,” J. Nanophotonics 8(1), 083888 (2014).
[Crossref]

Zhu, B.

Zhu, S. N.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Zhu, X.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Z. Li and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

B. Vasić and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

J. Appl. Phys. (2)

X. Huang, D. Yang, and H. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Nanophotonics (1)

A. Y. Zhu, F. Yi, J. C. Reed, and E. Cubukcu, “Cavity-enhanced mid-infrared absorption in perforated graphene,” J. Nanophotonics 8(1), 083888 (2014).
[Crossref]

Nano Lett. (4)

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett. 12(2), 551–555 (2012).
[Crossref] [PubMed]

Nanoscale (1)

X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, and Q. J. Wang, “A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.,” Nanoscale 8(1), 327–332 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. A (1)

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Phys. Rev. B (2)

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85(12), 125431 (2012).
[Crossref]

Phys. Rev. Lett. (3)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

P. Neugebauer, M. Orlita, C. Faugeras, A.-L. Barra, and M. Potemski, “How perfect can graphene be?” Phys. Rev. Lett. 103(13), 136403 (2009).
[Crossref] [PubMed]

Plasmonics (2)

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

Proc. SPIE (1)

M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane array applications of QWIP and MCT,” Proc. SPIE 3629, 100–113 (1999).
[Crossref]

Science (1)

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

Solid State Commun. (1)

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the proposed cross polarization converter consisting of a rectangle-shape perforated graphene sheet on top of a dielectric spacer layer backed with a metal ground plane. (b) Unit-cell of the structure with parameters of p = 190 nm, d = 1.1 µm, L1 = 120 nm, and L2 = 100 nm.
Fig. 2
Fig. 2 (a) Simulated reflectance and (b) PCR of the cross polarization converter. Magnetic field profile at the interface between graphene and air for the resonant mode at (c) 46.4 THz and (d) 47.4 THz.
Fig. 3
Fig. 3 (a) Simulated reflectance and (b) phase difference for the two eigenmodes with incident polarizations of 45° and −45° counterclockwise from the x-axis direction. Magnetic field profile at the interface between graphene and air for the resonant mode at (c) 46.1 THz and (d) 47.7 THz.
Fig. 4
Fig. 4 Simulated absorption of the eigenmode at 46.1 THz (a) and 47.7 THz (b), and (c) phase difference of the two eigenmodes as a function of the dielectric spacer thickness. (d) PCRs of the polarization converter for different dielectric spacer thicknesses.
Fig. 5
Fig. 5 Simulated PCRs of the structure with (a) different L2 and (b) different L1.
Fig. 6
Fig. 6 Simulated PCRs of the structure with different periods.
Fig. 7
Fig. 7 Simulated PCRs of the structure for different incident angles.
Fig. 8
Fig. 8 Simulated PCRs of the structure for (a) different graphene Fermi energies and (b) different electron scattering times.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ=i e 2 k B T π 2 (ωi τ 1 ) [ μ c k B T +2ln( e μ c k B T +1)]i e 2 4π ln[ 2| μ c |(ωi τ 1 ) 2| μ c |+(ωi τ 1 ) ]
R=( R xx R xy R yx R yy )
PCR= | R yx | 2 | R xx | 2 + | R yx | 2

Metrics