Abstract

A fully stabilized EO comb is demonstrated by phase locking the two degrees of freedom of an EO comb to a low noise mode-locked fiber comb. Division/magnification of residual phase noise of locked beats is observed by measuring an out-of-loop beat. By phase locking the 200 th harmonics of the EO comb and a driving cw frequency to a fiber comb, a record low phase noise EO comb across +/− 200 harmonics (from 1544.8 nm to 1577.3 nm) is demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

21 July 2016: A correction was made to the author listing.

References

  • View by:
  • |
  • |
  • |

  1. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
    [Crossref] [PubMed]
  2. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
    [Crossref]
  3. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  4. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref] [PubMed]
  5. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [Crossref]
  6. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
    [Crossref] [PubMed]
  7. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
    [Crossref] [PubMed]
  8. V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Ultrahigh Count Coherent WDM Channels Transmission Using Optical Parametric Comb-Based Frequency Synthesizer,” J. Lightwave Technol. 33(3), 694–699 (2015).
    [Crossref]
  9. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
    [Crossref]
  10. X. Fang, M. Bai, X. Ye, J. Miao, and Z. Zheng, “Ultra-broadband microwave frequency down-conversion based on optical frequency comb,” Opt. Express 23(13), 17111–17119 (2015).
    [Crossref] [PubMed]
  11. X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
    [Crossref] [PubMed]
  12. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
    [Crossref] [PubMed]
  13. D. C. Cole, K. Beha, F. N. Baynes, P. Del’Haye, A. Rolland, T. M. Fortier, F. Quinlan, S. Diddams, and S. B. Papp, “Self-referencing a 10 GHz Electro-optic Comb,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper STh4N.5.
  14. N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24(3), 3095–3102 (2016).
    [Crossref] [PubMed]
  15. N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, “Precision polarization-maintaining Er optical frequency comb based on a nonlinear amplifying loop mirror,” in CLEO 2016 (OSA, 2016), paper SM3H.4.
  16. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21(24), 29186–29194 (2013).
    [Crossref] [PubMed]
  17. A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
    [Crossref] [PubMed]
  18. J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
    [Crossref] [PubMed]
  19. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref] [PubMed]
  20. N. Kuse and M. E. Fermann, “Full stabilization of an electro-optic comb to a mode-locked fiber comb,” in Optical Fiber Communications Conference 2016 (OSA, 2016), paper W3K.1.
    [Crossref]
  21. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19(23), 22402–22409 (2011).
    [Crossref] [PubMed]
  22. A. J. Metcalf, V. T Campany, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013).
    [Crossref]
  23. D. S. Wu, D. J. Richardson, and R. Slavík, “Optical Fourier synthesis of high-repetition-rate pulses,” Optica 2(1), 18–26 (2015).
    [Crossref]
  24. J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87(2), 023802 (2013).
    [Crossref]
  25. Phase noise plot from N5183B with Option UNY, http://literature.cdn.keysight.com/litweb/pdf/5991-3131EN.pdf?id=2408629 .
  26. G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
    [Crossref]

2016 (3)

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24(3), 3095–3102 (2016).
[Crossref] [PubMed]

A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (3)

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

2013 (5)

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21(24), 29186–29194 (2013).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87(2), 023802 (2013).
[Crossref]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

A. J. Metcalf, V. T Campany, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013).
[Crossref]

2012 (2)

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
[Crossref] [PubMed]

2011 (2)

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19(23), 22402–22409 (2011).
[Crossref] [PubMed]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

2009 (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

2008 (1)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Alic, N.

Aspelmeyer, M.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Ataie, V.

Bai, M.

Beichman, C.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Beppu, S.

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Bishof, M.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Bloom, B. J.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Bottom, M.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Brasch, V.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Bromley, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Campany, V. T

A. J. Metcalf, V. T Campany, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013).
[Crossref]

Campbell, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Chen, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Cole, G. D.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Das, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Deschênes, J.-D.

J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87(2), 023802 (2013).
[Crossref]

Diddams, S.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Diddams, S. A.

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Doppmann, G.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Fang, X.

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Fermann, M. E.

Fitzgerald, M. P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Freude, W.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Furlan, E.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Gagne, J.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Gao, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Genest, J.

J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87(2), 023802 (2013).
[Crossref]

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Goto, T.

A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
[Crossref] [PubMed]

Gotoh, H.

A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
[Crossref] [PubMed]

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Hänsch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Herr, T.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Hitachi, K.

A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
[Crossref] [PubMed]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Ishizawa, A.

Jiang, J.

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Kärtner, F. X.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Kasai, K.

Katori, H.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Kippenberg, T. J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Koga, M.

Koos, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Kuo, B. P. P.

Kuo, B. P.-P.

Kuse, N.

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Leaird, D. E.

A. J. Metcalf, V. T Campany, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Lee, C.-C.

Lee, H.

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

Leifer, S.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Leuthold, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Li, J.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Liu, L.

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Martin, E. C.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Martin, M. J.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Metcalf, A. J.

A. J. Metcalf, V. T Campany, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013).
[Crossref]

Miao, J.

Mizutori, A.

Myslivets, E.

Nakano, H.

Nakazawa, M.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Nicholson, T. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Nishikawa, T.

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Ohkubo, T.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Pfeifle, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Picqué, N.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Plavchan, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Radic, S.

Richardson, D. J.

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Sandhu, J.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Schibli, T. R.

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Schmogrow, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Slavík, R.

Sogawa, T.

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Takada, A.

Takamoto, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Takara, H.

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Temprana, E.

Ushijima, I.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Vahala, K.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Vahala, K. J.

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

Vasisht, G.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Weimann, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Weiner, A. M.

A. J. Metcalf, V. T Campany, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Williams, J. R.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Wu, D. S.

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Ycas, G.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Ye, J.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Ye, X.

Yi, X.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

Yoshida, M.

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Zhang, W.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Zhang, X.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Zheng, Z.

IEEE J. Sel. Top. Quantum Electron. (1)

A. J. Metcalf, V. T Campany, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013).
[Crossref]

J. Lightwave Technol. (1)

Nat. Commun. (1)

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Nat. Photonics (6)

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Nature (3)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Opt. Express (6)

Optica (1)

Phys. Rev. A (1)

J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87(2), 023802 (2013).
[Crossref]

Sci. Rep. (1)

A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
[Crossref] [PubMed]

Science (1)

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

Other (4)

N. Kuse and M. E. Fermann, “Full stabilization of an electro-optic comb to a mode-locked fiber comb,” in Optical Fiber Communications Conference 2016 (OSA, 2016), paper W3K.1.
[Crossref]

N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, “Precision polarization-maintaining Er optical frequency comb based on a nonlinear amplifying loop mirror,” in CLEO 2016 (OSA, 2016), paper SM3H.4.

D. C. Cole, K. Beha, F. N. Baynes, P. Del’Haye, A. Rolland, T. M. Fortier, F. Quinlan, S. Diddams, and S. B. Papp, “Self-referencing a 10 GHz Electro-optic Comb,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper STh4N.5.

Phase noise plot from N5183B with Option UNY, http://literature.cdn.keysight.com/litweb/pdf/5991-3131EN.pdf?id=2408629 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of EO comb. PM, phase modulators; IM, intensity modulator; LPF, low pass filter; PS, phase shifter; EDFA, Er doped fiber amplifier; FBG; fiber Bragg grating; HNLF, highly nonlinear fiber. (b) Optical spectrum after IM. (c) Optical spectrum after HNLF.

Fig. 2
Fig. 2

Schematic of locking setup. BPF; bandpass filter; DRO, dielectric resonator.

Fig. 3
Fig. 3

Schematic of locking cases.

Fig. 4
Fig. 4

(a) RF spectrum of phase locked fbeat(cw) with 300 Hz resolution bandwidth and 10 kHz span. (b) RF spectra of fbeat(out) for case 0. Red, blue, and green traces are fbeat(out) at 10 th, 50 th, and 200 th harmonics with 300 Hz resolution bandwidth and 10 kHz span, respectively. (c) RF spectra of fbeat(in) (red) and fbeat(out) at the 50 th harmonics (blue) with 1 kHz resolution bandwidth and 1 MHz span for case 1. (d) RF spectrum of fbeat(out) at the 200 th harmonics with 1 kHz resolution bandwidth and 10 MHz span for case 1. (e) RF spectra of fbeat(in) (red) and fbeat(out) at the 10 th (green) and 50 th (blue) harmonics with 1 kHz resolution bandwidth and 1 MHz span for case 2. (f) RF spectra of fbeat(in) (red) and fbeat(out) (blue) with 1 kHz resolution bandwidth and 1 MHz span for case 3.

Fig. 5
Fig. 5

(a) RF spectrum of phase locked fbeat(cw). (b) Single sideband PSD (red) and integrated in-loop phase noise (blue) of phase locked fbeat(cw) with 10 kHz resolution bandwidth. Black dotted line is the noise floor. (c) RF spectrum of phase locked fbeat(in) at the 200 th harmonics with 10 kHz resolution bandwidth. (d) Single sideband PSD (red) and integrated in-loop phase noise (blue) of phase locked fbeat(in) at the 200 th harmonics. Black dotted line is the noise floor.

Fig. 6
Fig. 6

The schematic of coherent addition of multiple beats. Yellow area shows the filtered spectrum.

Fig. 7
Fig. 7

(a) RF spectrum of multiple of optical beats between EO and ML comb at 10 kHz resolution bandwidth. The same variation of EO comb mode power can be observed in both optical and RF domain. (b) RF spectrum of coherently added beats. Green curve for one optical beat, blue curve for three optical beats, and red curve for seven optical beats.

Fig. 8
Fig. 8

Acheivable phase noise estimation of 10 GHz carrier by phase locking an EO comb to an ML comb. Green, black, and blue dotted curve shows phase noise of a free-running 10 GHz oscillator [25], the shot noise limit, and a low noise fiber comb with scaling to 10 GHz, respectively. Red curve shows the achievable phase noise of 10 GHz carrier.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i s u m i = n + 1 n + N A i cos ( 2 π Δ i t + ϕ i ( t ) )
i s u m N A cos ( 2 π Δ t )
N s u m P c o m b s + i = n + 1 n + N P E O , i = P c o m b s + N P E O , n
N 1 P c o m b s + P E O , n
φ c w ( f ) = φ c e o ( f ) + n 2 φ r e p ( f )
φ m ( f ) = Δ 2 N 2 φ r e p ( f ) = ( f m f r e p ) 2 φ r e p ( f )

Metrics