Abstract

Flexible fiber-optic endoscopes provide a solution for imaging at depths beyond the reach of conventional microscopes. Current endoscopes require focusing and/or scanning mechanisms at the distal end, which limit miniaturization, frame-rate, and field of view. Alternative wavefront-shaping based lensless solutions are extremely sensitive to fiber-bending. We present a lensless, bend-insensitive, single-shot imaging approach based on speckle-correlations in fiber bundles that does not require wavefront shaping. Our approach computationally retrieves the target image by analyzing a single camera frame, exploiting phase information that is inherently preserved in propagation through convnetional fiber bundles. Unlike conventional fiber-based imaging, planar objects can be imaged at variable working distances, the resulting image is unpixelated and diffraction-limited, and miniaturization is limited only by the fiber diameter.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Widefield lensless endoscopy with a multicore fiber

Viktor Tsvirkun, Siddharth Sivankutty, Géraud Bouwmans, Ori Katz, Esben Ravn Andresen, and Hervé Rigneault
Opt. Lett. 41(20) 4771-4774 (2016)

Fiber bundle shifting endomicroscopy for high-resolution imaging

Khushi Vyas, Michael Hughes, Bruno Gil Rosa, and Guang-Zhong Yang
Biomed. Opt. Express 9(10) 4649-4664 (2018)

Calibration-free imaging through a multicore fiber using speckle scanning microscopy

Nicolino Stasio, Christophe Moser, and Demetri Psaltis
Opt. Lett. 41(13) 3078-3081 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref] [PubMed]
  2. G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Optical Fiber Technology 19(6), 760–771 (2013).
    [Crossref]
  3. S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40(4), 534–537 (2015).
    [Crossref] [PubMed]
  4. R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single,” Nat. Commun. 5, 5581 (2014).
    [Crossref]
  5. G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
    [Crossref] [PubMed]
  6. J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
    [Crossref]
  7. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
    [Crossref]
  8. R. D. Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
    [Crossref] [PubMed]
  9. S. Bianchi and R. D. Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [Crossref]
  10. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref] [PubMed]
  11. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  12. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
    [Crossref] [PubMed]
  13. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529–535 (2015).
    [Crossref]
  14. S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv:1506.08586 (2015).
  15. Standard specifications for imagefibres (Fujikura, 2016), http://www.fujikura.co.uk/media/18438/image%20fibre.PDF
  16. N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16(11), 8016–8025 (2008).
    [Crossref] [PubMed]
  17. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36(9), 1707–1709 (2011).
    [Crossref] [PubMed]
  18. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38(5), 609–611 (2013).
    [Crossref] [PubMed]
  19. E. R. Andresen, G. B.s, Serge Monnere, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Lett. 21(18), 20713–20721 (2013).
  20. D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
    [Crossref] [PubMed]
  21. N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, “Light control in a multicore fiber using the memory effect,” Opt. Express 23(23), 30532–30544 (2015).
    [Crossref] [PubMed]
  22. N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” Opt. Express 41(13), 3078–3081 (2016).
  23. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [Crossref] [PubMed]
  24. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
    [Crossref]
  25. K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22(25), 31426–31433 (2014).
    [Crossref]
  26. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).
  27. R. K. Tyson, Principles of Adaptive Optics, 3rd ed. (Academic, 2010).
    [Crossref]
  28. I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
    [Crossref]
  29. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328 (1988).
    [Crossref] [PubMed]
  30. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [Crossref] [PubMed]
  31. B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37(16), 3384–3386 (2012).
    [Crossref]
  32. H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
    [Crossref]
  33. T. Pitts and J. F. Greenleaf, “Fresnel transform phase retrieval from magnitude,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 50(8), 1035–1045 (2003).
    [Crossref]
  34. E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
    [Crossref] [PubMed]
  35. S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” arXiv:1606.08169 (2016).
  36. S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, and H. Thienpont, “Numerical characterization of an ultra-high na coherent fiber bundle part ii: point spread function analysis,” Opt. Express 21(21), 25403–25417 (2013).
    [Crossref] [PubMed]
  37. C. Ventalon, J. Mertz, and V. Emilani, “Depth encoding with lensless structured illumination fluorescence micro-endoscopy,” in Focus On Microscopy (2009).
  38. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full field optical coherence microscopy,” Opt. Express 23(4), 244–246 (1998).
  39. J. C. Dainty, Laser Speckle and Related Phenomena (Springer, 1984).

2016 (2)

N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” Opt. Express 41(13), 3078–3081 (2016).

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
[Crossref] [PubMed]

2015 (4)

N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, “Light control in a multicore fiber using the memory effect,” Opt. Express 23(23), 30532–30544 (2015).
[Crossref] [PubMed]

S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40(4), 534–537 (2015).
[Crossref] [PubMed]

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529–535 (2015).
[Crossref]

2014 (4)

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single,” Nat. Commun. 5, 5581 (2014).
[Crossref]

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22(25), 31426–31433 (2014).
[Crossref]

2013 (4)

2012 (8)

S. Bianchi and R. D. Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37(16), 3384–3386 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
[Crossref]

2008 (1)

2005 (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

2003 (1)

T. Pitts and J. F. Greenleaf, “Fresnel transform phase retrieval from magnitude,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 50(8), 1035–1045 (2003).
[Crossref]

1998 (1)

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full field optical coherence microscopy,” Opt. Express 23(4), 244–246 (1998).

1990 (1)

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328 (1988).
[Crossref] [PubMed]

1982 (1)

1970 (1)

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

Andresen, E. R.

E. R. Andresen, G. B.s, Serge Monnere, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Lett. 21(18), 20713–20721 (2013).

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38(5), 609–611 (2013).
[Crossref] [PubMed]

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” arXiv:1606.08169 (2016).

B.s, G.

E. R. Andresen, G. B.s, Serge Monnere, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Lett. 21(18), 20713–20721 (2013).

Barankov, R.

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single,” Nat. Commun. 5, 5581 (2014).
[Crossref]

Batrin, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Beaurepaire, E.

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full field optical coherence microscopy,” Opt. Express 23(4), 244–246 (1998).

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref] [PubMed]

Bianchi, S.

S. Bianchi and R. D. Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref]

R. D. Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[Crossref] [PubMed]

Bixler, J. N.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

Blanchot, L.

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full field optical coherence microscopy,” Opt. Express 23(4), 244–246 (1998).

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref] [PubMed]

Boccara, A. C.

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full field optical coherence microscopy,” Opt. Express 23(4), 244–246 (1998).

Bourg-Heckly, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Bouwmans, G.

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38(5), 609–611 (2013).
[Crossref] [PubMed]

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” arXiv:1606.08169 (2016).

Bozinovic, N.

Braud, F.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Brevier, J.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Buczynski, R.

Cao, H.

Chapman, H. N.

H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
[Crossref]

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Choi, W.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Chung, E.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Optical Fiber Technology 19(6), 760–771 (2013).
[Crossref]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529–535 (2015).
[Crossref]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Conkey, D. B.

Dainty, J. C.

J. C. Dainty, Laser Speckle and Related Phenomena (Springer, 1984).

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Druilhe, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Ducourthial, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Dunsby, C.

Edrei, E.

Emilani, V.

C. Ventalon, J. Mertz, and V. Emilani, “Depth encoding with lensless structured illumination fluorescence micro-endoscopy,” in Focus On Microscopy (2009).

Fabert, M.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328 (1988).
[Crossref] [PubMed]

Fienup, J. R.

Fink, M.

S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40(4), 534–537 (2015).
[Crossref] [PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Fleischer, J. W.

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Ford, T.

French, P. M. W.

Freund, I.

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328 (1988).
[Crossref] [PubMed]

Gigan, S.

S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40(4), 534–537 (2015).
[Crossref] [PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Gilboa, D.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv:1506.08586 (2015).

Greenleaf, J. F.

T. Pitts and J. F. Greenleaf, “Fresnel transform phase retrieval from magnitude,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 50(8), 1035–1045 (2003).
[Crossref]

Habert, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Heyvaert, S.

Jabbour, J. M.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Katz, O.

S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40(4), 534–537 (2015).
[Crossref] [PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv:1506.08586 (2015).

Kim, D.

Kim, J.

Kim, M.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Kogan, D.

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” arXiv:1606.08169 (2016).

Kolenderska, S. M.

Kudlinski, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Kujawa, I.

Labeyrie, A.

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Lebec, M.

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full field optical coherence microscopy,” Opt. Express 23(4), 244–246 (1998).

Leclerc, P.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Leonardo, R. D.

S. Bianchi and R. D. Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref]

R. D. Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[Crossref] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Louradour, F.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Maitland, K. C.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

Mansuryan, T.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Mertz, J.

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single,” Nat. Commun. 5, 5581 (2014).
[Crossref]

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16(11), 8016–8025 (2008).
[Crossref] [PubMed]

C. Ventalon, J. Mertz, and V. Emilani, “Depth encoding with lensless structured illumination fluorescence micro-endoscopy,” in Focus On Microscopy (2009).

Monnere, Serge

E. R. Andresen, G. B.s, Serge Monnere, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Lett. 21(18), 20713–20721 (2013).

Monneret, S.

Moon, J.

Moser, C.

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Neil, M. A. A.

Nugent, K. A.

H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
[Crossref]

Oh, G.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Optical Fiber Technology 19(6), 760–771 (2013).
[Crossref]

Oron, D.

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” arXiv:1606.08169 (2016).

Ottevaere, H.

Papadopoulos, I. N.

Paterson, C.

Pitts, T.

T. Pitts and J. F. Greenleaf, “Fresnel transform phase retrieval from magnitude,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 50(8), 1035–1045 (2003).
[Crossref]

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529–535 (2015).
[Crossref]

Psaltis, D.

Redding, B.

Rigneault, H.

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38(5), 609–611 (2013).
[Crossref] [PubMed]

E. R. Andresen, G. B.s, Serge Monnere, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Lett. 21(18), 20713–20721 (2013).

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” arXiv:1606.08169 (2016).

Rosen, S.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv:1506.08586 (2015).

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328 (1988).
[Crossref] [PubMed]

Saint-Jalmes, H.

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full field optical coherence microscopy,” Opt. Express 23(4), 244–246 (1998).

Saldua, M. A.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

Scarcelli, G.

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Silberberg, Y.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv:1506.08586 (2015).

Sivankutty, S.

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” arXiv:1606.08169 (2016).

Stasio, N.

N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” Opt. Express 41(13), 3078–3081 (2016).

N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, “Light control in a multicore fiber using the memory effect,” Opt. Express 23(23), 30532–30544 (2015).
[Crossref] [PubMed]

Takasaki, K. T.

Thiberville, L.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Thienpont, H.

Thompson, A. J.

Tsvirkun, V.

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” arXiv:1606.08169 (2016).

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529–535 (2015).
[Crossref]

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics, 3rd ed. (Academic, 2010).
[Crossref]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref] [PubMed]

Ventalon, C.

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16(11), 8016–8025 (2008).
[Crossref] [PubMed]

C. Ventalon, J. Mertz, and V. Emilani, “Depth encoding with lensless structured illumination fluorescence micro-endoscopy,” in Focus On Microscopy (2009).

Vever-Bizet, C.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref] [PubMed]

Yang, T. D.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

Yun, S. H.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Optical Fiber Technology 19(6), 760–771 (2013).
[Crossref]

Ann. Biomed. Eng. (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref]

Appl. Opt. (1)

Astron. Astrophys. (1)

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

IEEE Trans. Ultrason. Ferroelect. Freq. Control (1)

T. Pitts and J. F. Greenleaf, “Fresnel transform phase retrieval from magnitude,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 50(8), 1035–1045 (2003).
[Crossref]

Lab Chip (1)

S. Bianchi and R. D. Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref]

Nat. Commun. (2)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

R. Barankov and J. Mertz, “High-throughput imaging of self-luminous objects through a single,” Nat. Commun. 5, 5581 (2014).
[Crossref]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Nat. Photonics (4)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9, 529–535 (2015).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

H. N. Chapman and K. A. Nugent, “Coherent lensless x-ray imaging,” Nat. Photonics 4, 833–839 (2010).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref] [PubMed]

Opt. Express (8)

Opt. Lett. (6)

Optica (1)

Optical Fiber Technology (1)

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Optical Fiber Technology 19(6), 760–771 (2013).
[Crossref]

Phys. Rev. Lett. (2)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328 (1988).
[Crossref] [PubMed]

Physica A (1)

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

Sci. Rep. (1)

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Other (6)

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” arXiv:1506.08586 (2015).

Standard specifications for imagefibres (Fujikura, 2016), http://www.fujikura.co.uk/media/18438/image%20fibre.PDF

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” arXiv:1606.08169 (2016).

C. Ventalon, J. Mertz, and V. Emilani, “Depth encoding with lensless structured illumination fluorescence micro-endoscopy,” in Focus On Microscopy (2009).

R. K. Tyson, Principles of Adaptive Optics, 3rd ed. (Academic, 2010).
[Crossref]

J. C. Dainty, Laser Speckle and Related Phenomena (Springer, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Conventional vs. speckle-correlations based fiber bundle endoscopy: (a), In a conventional fiber bundle endoscope, the intensity image of an object placed adjacent to the input facet is transferred to the output facet. (b), When the object is placed at a distance, U, from the input facet, a blurred and seemingly information-less image is formed at the output facet. However, even though two different point sources at the object plane (red and blue) produce indistinguishable patterns at the output facet, the relative tilt between their wavefronts results in a spatial shift of the resulting speckle patterns when observed at a small distance, V, from the output facet. (c), Speckle-based imaging: For an extended object, the image of the light intensity at the distance V from the output facet is the sum of many shifted speckle patterns, and its autocorrelation provides an estimate to the object’s autocorrelation. The diffraction-limited object image is retrieved from this autocorrelation via a phase-retrieval algorithm.
Fig. 2
Fig. 2 Experimental demonstration and comparison to conventional bundle imaging. (a), conventional imaging through a fiber bundle when the object is placed at U=0mm. (b), The original object. (c), conventional imaging through a fiber bundle when the object is placed at U=8.5mm from the bundle’s input facet. No imaging information is directly obtainable. (d), Same situation as in (c) but using the presented speckle-based approach; All scalebars are 100μm.
Fig. 3
Fig. 3 Experimental single-shot imaging of various objects at different working distances, U: (a), Raw camera image. (b), Autocorrelation of (a). (c), Object reconstruction from (b). (d), original object. (e–l), same as (a–d) for different objects from 1951 USAF target. In (ah) U = 161mm, in (i–l) U = 65mm. Scalebars: (a,e)=10mm, (i)=5mm, (b,c,d,f,g,h)=0.5mm, (j,k,l)=0.25mm.
Fig. 4
Fig. 4 Imaging resolution at different working distances. (a), Resolution (speckle grain size) as a function of the object’s distance from the bundle facet (U): Measured (blue circles); theoretical diffraction-limit according to Eq. (3) with Dbundle = 570μm and NA = 0.22 (blue line). Calculated resolution of conventional lensless bundle imaging (green line, described also in the inlet in logarithmic scaling); Calculated resolution of conventional lens-based bundle imaging assuming a distal objective with a focus at U = 5mm (red line); Umin is the minimum working distance (see discussion). (b), Test object from the 1951 USAF target, group 3, Scalebar=100μm. (c), Conventional bundle imaging of (b) when placed at U = 0, (d–h), Speckle-based single-shot reconstructions of (b) at distances of 5–13mm.
Fig. 5
Fig. 5 Speckle imaging with broadband illumination. (a), Object pattern. (b), Reconstruction of (a) from a single speckle image through the bundle with illumination of 10nm bandwidth (800nm central wavelength). (c), Increased reconstruction fidelity obtained by ensemble averaging of the speckle autocorrelaiton over 20 different camera shots. Each shot provides an independent speckle realization by slight bending of the the bundle. (d), Experimentally measured spectral correlations of the 48.5cm long fiber bundle used (Schott 153333385); Scalebar=100μm.
Fig. 6
Fig. 6 FOV limitation: (a), a plot of the full autocorrelation of the speckle pattern used to reconstruct the image of Fig. 2(d), showing the periodicity of the speckle pattern generated by the ordered bundle cores. The FOV is limited by half of the angle between the replicas in the autocorrelation: FOV = λ/2Dintercore ≈ 35.5mrad, since it is smaller than the memory effect angle (θmem = λ/dcore ≈ 0.1rad FWHM, see Appendix C). (b), autocorrelation of an object that spans almost the entire available FOV. (c), reconstruction from the autocorrelation of (b), scalebar = 10 mrad; (d), original object imaged in (b–c).
Fig. 7
Fig. 7 Optical setup used for all experiments in transmission geometry. L1,L2 - focusing lenses.
Fig. 8
Fig. 8 Imaging in reflection geometry: a, Reflection setup. L1,L2,L3 - focusing lenses. b–d, Diffusive reflecting objects and the images reconstructed from measured speckle patterns. Scalebars: 0.5mm. Both objects were imaged with a distance of U2 ≈ 22mm between the object and the bundle’s input facet.
Fig. 9
Fig. 9 Measured speckle angular correlation range for a SCHOTT fiber bundle used in Figures 24.
Fig. 10
Fig. 10 Decorrelation of speckle patterns for enhanced ensemble averaging. a, Decorrelation of the speckle pattern due to changing polarization. The correlations presented are between speckle patterns taken using the setup shown in Fig. 7, where a linear polarizer was added adjacent to the bundle’s output facet. The correlations were taken with respect to the speckle pattern taken at polarizer angle 0. One can see that the two orthogonal polarizations give two uncorrelated speckle patterns. b, Decorrelation of speckle patterns with different fiber bundle’s bending. In the graph are 25 different speckle patterns taken using the setup shown in Fig. 7, where each pattern was created with a different slight bending of the bundle. Each color is showing the correlation between one speckle patterns to all the remaining 24. One can see that virtually no correlation exists between the different patterns.
Fig. 11
Fig. 11 Block diagram of the iterative phase-retrieval algorithm used. The algorithm used is the Fienup’s HIO phase-retrieval algorithm [30] that was implemented according to Bertolotti et al. [23], followed by Fienup’s error-reduction algorithm. Both algorithms are based on an iterative modified Gerchberg-Saxton algorithm whose block diagram is shown. Smeas(kx, ky) is the Fourier transform amplitude of the experimentally measured autocorrelation, which is used to approximates the object’s power spectrum, as described in Eq. (12) in the article main text.
Fig. 12
Fig. 12 Example of a lowest-error reconstruction out of 100 runs of the reconstruction algorithm with different random initial conditions, for the object of Fig. 2. Although the displayed reconstruction is the one having the lowest mean square error between its Fourier spectrum and the Fourier transform of the measured autocorrelation, in some cases reconstructions of slightly larger calculated errors gave results that better estimate the object.
Fig. 13
Fig. 13 Imaging with spatially coherent illumination. a, The bundle facet image gives the intensity of the Franhufer diffraction pattern of the test object shown in (e), sampled by the bundle cores; b, Fourier transform of (a); c, Reconstructed object from (b); d, Autocorrelation of the object shown in (e); e, The test object used, from the 1951 USAF target, group 2; All scale bars are equal to 0.1mm.
Fig. 14
Fig. 14 Simulations of the effect of the number of cores. (a), Simulated bundle facet containing 32,025 cores. (b), close up on the simulated cores of (a). (c), The speckle pattern created in the far field by the bundle of (a) with random relative phases. (d), The autocorrelation of the speckle pattern presented in (c), displaying a diffraction-limited autocorrelation peak on top of a background, with fluctuations proportional to 1 / N speckles. (e–h), the same as (a–d) for a bundle containing 1,281 cores. The lower number of cores increases the background fluctuations in the autocorrelation but does not affect the width of its central peak, which determines the imaging resolution.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = O ( r ) * PSF ( r )
I ( r ) I ( r ) = ( O ( r ) O ( r ) ) * ( PSF ( r ) PSF ( r ) )
δ x [ ( λ D bundle U ) 2 + ( λ NA ) 2 ] 1 / 2
E out ( r ) = ( { [ E in * F ] comb exp ( i R ) } * F ) ( r )
FT ( E out ( r ) ) = ( { [ E ˜ in F ˜ ] * FT [ comb exp ( i R ) ] } F ˜ ) ( k )
I ( k ) = | FT ( E out ( r ) ) | 2 = | { [ δ ( k k in ) F ˜ ( k ) ] * S ( k ) } F ˜ ( k ) | 2 = | F ˜ ( k in ) S ( k k in ) F ˜ ( k ) | 2
I ( k , k in ) = I ( k + δ k , k in + δ k ) = | F ˜ ( k in + δ k ) S ( k k in ) F ˜ ( k + δ k ) | 2
C ( I , I ) = ( I I ¯ ) ( I I ¯ ) d k ( ( I I ¯ ) 2 d k ( I I ¯ ) 2 d k ) 1 / 2 | E E * | 2 d k ( ( I I ¯ ) 2 d k ( I I ¯ ) 2 d k ) 1 / 2
C ( I , I ) | E E * | 2 d k ( ( I I ¯ ) 2 d k ( ( I I ¯ ) 2 ) d k ) 1 / 2 =
| F ˜ ( k in ) F ˜ * ( k in + δ k ) S 2 2 | 2 | F ˜ ( k in ) F ˜ * ( k in + δ k ) S 2 2 | 2 | F ˜ ( k ) F ˜ * ( k + δ k ) | 2 d k ( ( | F ˜ ( k ) | 2 | F ˜ ( k ) ¯ | 2 ) 2 d k ( | F ˜ ( k + δ k ) | 2 | F ˜ ( k + δ k ) ¯ | 2 ) 2 d k ) 1 / 2 =
| F ˜ ( k ) F ˜ * ( k + δ k ) | 2 d k ( | F ˜ ( k ) | 2 | F ˜ ( k ) ¯ | 2 ) 2 d k
NA = λ d mode
R ( x , y ) = I ( x , y ) * I ( x , y ) = FT 1 { | FT { I ( x , y ) } | 2 }
S meas ( k x , k y ) = | FT { W ( x , y ) R ( x , y ) } |
g k + 1 ( x , y ) = { g k ( x , y ) ( x , y ) Γ 0 ( x , y ) Γ
g k + 1 ( x , y ) = { g k ( x , y ) ( x , y ) Γ g k ( x , y ) β g k ( x , y ) ( x , y ) Γ
E ( x ) = E obj ( x ) * S ( x )
E ( x ) E ( x ) = ( E obj ( x ) E obj ( x ) ) * ( S ( x ) S ( x ) )
FT { E ( x ) E ( x ) } = | E ˜ ( k ) | 2

Metrics