Abstract

Avoided resonance crossings (ARC) in plasmonic nanodisk structures due to near field or far field couplings were numerically demonstrated. Near field coupling in disk dimmer with both vertical or side-by-side arrangement leads to both energy and linewidth anti-crossing by varying one disk size across the other. Far field coupling in double layered disk arrays of extremely small gap size or gap size with Fabry Perot resonant condition close to the frequency selective surface (FSS) stopband center leads to non-reciprocal absorption spectrum as one disk size varying across the other. We observe linewidth anti-crossing but energy crossing of the absorption peak from different side illumination by varying either the size of one disk array or the gap in hetero disk arrays. The disappearing of Fabry-Perot resonant mode from one side illumination and the appearing of nonreciprocal nearly perfect absorption from the other side illumination are well explained by a FSS-Fabry-Perot model.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes

Élodie Lamothe, Gaëtan Lévêque, and Olivier J. F. Martin
Opt. Express 15(15) 9631-9644 (2007)

High Q-factor with the excitation of anapole modes in dielectric split nanodisk arrays

Shao-Ding Liu, Zhi-Xing Wang, Wen-Jie Wang, Jing-Dong Chen, and Zhi-Hui Chen
Opt. Express 25(19) 22375-22387 (2017)

Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky
Opt. Express 20(25) 27725-27739 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(1), 929–932 (2000).
    [Crossref] [PubMed]
  2. J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97(25), 253901 (2006).
    [Crossref] [PubMed]
  3. H. Cao and J. Wiersig, “Dielectric microcavities model systems for wave chaos and non-Hermitian Physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
    [Crossref]
  4. Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105(5), 053902 (2010).
    [Crossref] [PubMed]
  5. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19(14), 13578–13589 (2011).
    [Crossref] [PubMed]
  6. J. W. Ryu, S. Y. Lee, and S. W. Kim, “Coupled nonidentical microdisks avoided crossing of energy levels and unidirectional far field emission,” Phys. Rev. A 79(5), 053858 (2009).
    [Crossref]
  7. S. V. Boriskina, “Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules,” Opt. Lett. 32(11), 1557–1559 (2007).
    [Crossref] [PubMed]
  8. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  9. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
    [Crossref] [PubMed]
  10. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
    [Crossref]
  11. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17(22), 20256–20265 (2009).
    [Crossref] [PubMed]
  12. S. Deb and S. D. Gupta, “Critical coupling in a Fabry Perot cavity with metamaterial mirrors,” Opt. Commun. 283(23), 4764–4769 (2010).
    [Crossref]
  13. A.C, de C. Lima, and E.A. Parker, “Fabry Perot approach to the design of double layer FSS,” IEEE Proc. Microw. Antennas Prop. 143(2), 157–162 (1996).
  14. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  15. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for EM waves theory design and realization,” Phys. Rev. Appl. 3(3), 037001 (2015).
    [Crossref]
  16. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  17. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  18. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express 16(20), 15431–15438 (2008).
    [Crossref] [PubMed]
  19. A. Kolomenskii, S. Peng, J. Hembd, A. Kolomenski, J. Noel, J. Strohaber, W. Teizer, and H. Schuessler, “Interaction and spectral gaps of surface plasmon modes in gold nano-structures,” Opt. Express 19(7), 6587–6598 (2011).
    [Crossref] [PubMed]
  20. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [Crossref] [PubMed]
  21. R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
    [Crossref]
  22. H. Park, S. Y. Lee, J. Kim, B. Lee, and H. Kim, “Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide,” Opt. Express 23(19), 24464–24474 (2015).
    [Crossref] [PubMed]
  23. T. T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T. Y. Huang, and T.-J. Yen, “Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials,” Opt. Express 20(7), 7580–7589 (2012).
    [Crossref] [PubMed]
  24. T. Y. Huang, C. W. Tseng, T. T. Yeh, T. T. Yeh, C. W. Luo, T. Akalin, and T.-J. Yen, “Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process,” Sci. Rep. 5, 18605 (2015).
    [Crossref] [PubMed]
  25. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
    [Crossref] [PubMed]
  26. V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, “Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators,” Sci. Rep. 6, 19519 (2016).
    [Crossref] [PubMed]
  27. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett. 28(20), 1906–1908 (2003).
    [Crossref] [PubMed]
  28. T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9(6), 2343–2349 (2009).
    [Crossref] [PubMed]
  29. H. X. Cui, X. W. Cao, M. Kang, T. F. Li, M. Yang, T. J. Guo, Q. H. Guo, and J. Chen, “Exceptional points in extraordinary optical transmission through dual subwavelength metallic gratings,” Opt. Express 21(11), 13368–13379 (2013).
    [Crossref] [PubMed]
  30. F. Fratini, E. Mascarenhas, L. Safari, J.-Ph. Poizat, D. Valente, A. Auffèves, D. Gerace, and M. F. Santos, “Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification,” Phys. Rev. Lett. 113(24), 243601 (2014).
    [Crossref] [PubMed]
  31. L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
    [Crossref] [PubMed]
  32. A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
    [Crossref] [PubMed]
  33. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]

2016 (1)

V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, “Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators,” Sci. Rep. 6, 19519 (2016).
[Crossref] [PubMed]

2015 (5)

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref] [PubMed]

H. Park, S. Y. Lee, J. Kim, B. Lee, and H. Kim, “Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide,” Opt. Express 23(19), 24464–24474 (2015).
[Crossref] [PubMed]

T. Y. Huang, C. W. Tseng, T. T. Yeh, T. T. Yeh, C. W. Luo, T. Akalin, and T.-J. Yen, “Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process,” Sci. Rep. 5, 18605 (2015).
[Crossref] [PubMed]

H. Cao and J. Wiersig, “Dielectric microcavities model systems for wave chaos and non-Hermitian Physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for EM waves theory design and realization,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

2014 (3)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
[Crossref]

F. Fratini, E. Mascarenhas, L. Safari, J.-Ph. Poizat, D. Valente, A. Auffèves, D. Gerace, and M. F. Santos, “Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification,” Phys. Rev. Lett. 113(24), 243601 (2014).
[Crossref] [PubMed]

2013 (2)

H. X. Cui, X. W. Cao, M. Kang, T. F. Li, M. Yang, T. J. Guo, Q. H. Guo, and J. Chen, “Exceptional points in extraordinary optical transmission through dual subwavelength metallic gratings,” Opt. Express 21(11), 13368–13379 (2013).
[Crossref] [PubMed]

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

2012 (3)

2011 (3)

2010 (4)

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105(5), 053902 (2010).
[Crossref] [PubMed]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref] [PubMed]

S. Deb and S. D. Gupta, “Critical coupling in a Fabry Perot cavity with metamaterial mirrors,” Opt. Commun. 283(23), 4764–4769 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (3)

Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17(22), 20256–20265 (2009).
[Crossref] [PubMed]

J. W. Ryu, S. Y. Lee, and S. W. Kim, “Coupled nonidentical microdisks avoided crossing of energy levels and unidirectional far field emission,” Phys. Rev. A 79(5), 053858 (2009).
[Crossref]

T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9(6), 2343–2349 (2009).
[Crossref] [PubMed]

2008 (3)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express 16(20), 15431–15438 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97(25), 253901 (2006).
[Crossref] [PubMed]

2003 (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett. 28(20), 1906–1908 (2003).
[Crossref] [PubMed]

2000 (1)

W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(1), 929–932 (2000).
[Crossref] [PubMed]

Abbas, M. N.

Akalin, T.

T. Y. Huang, C. W. Tseng, T. T. Yeh, T. T. Yeh, C. W. Luo, T. Akalin, and T.-J. Yen, “Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process,” Sci. Rep. 5, 18605 (2015).
[Crossref] [PubMed]

Altewischer, E.

Auffèves, A.

F. Fratini, E. Mascarenhas, L. Safari, J.-Ph. Poizat, D. Valente, A. Auffèves, D. Gerace, and M. F. Santos, “Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification,” Phys. Rev. Lett. 113(24), 243601 (2014).
[Crossref] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Ayache, M.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Bonod, N.

Boriskina, S. V.

Brown, L. V.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref] [PubMed]

Cao, H.

H. Cao and J. Wiersig, “Dielectric microcavities model systems for wave chaos and non-Hermitian Physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105(5), 053902 (2010).
[Crossref] [PubMed]

Cao, X. W.

Chang, Y. C.

Chen, G.

Chen, H. T.

Chen, J.

Chen, L.

Chen, Y. F.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Cheng, C. W.

Chiu, C. W.

Costa, F.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

T. T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T. Y. Huang, and T.-J. Yen, “Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials,” Opt. Express 20(7), 7580–7589 (2012).
[Crossref] [PubMed]

Cui, H. X.

Dai, X.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Davoyan, A. R.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref] [PubMed]

Deb, S.

S. Deb and S. D. Gupta, “Critical coupling in a Fabry Perot cavity with metamaterial mirrors,” Opt. Commun. 283(23), 4764–4769 (2010).
[Crossref]

Ding, W.

Engheta, N.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref] [PubMed]

Enoch, S.

Fainman, Y.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Feng, L.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Feng, R.

Fratini, F.

F. Fratini, E. Mascarenhas, L. Safari, J.-Ph. Poizat, D. Valente, A. Auffèves, D. Gerace, and M. F. Santos, “Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification,” Phys. Rev. Lett. 113(24), 243601 (2014).
[Crossref] [PubMed]

Genovesi, S.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

T. T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T. Y. Huang, and T.-J. Yen, “Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials,” Opt. Express 20(7), 7580–7589 (2012).
[Crossref] [PubMed]

Gerace, D.

F. Fratini, E. Mascarenhas, L. Safari, J.-Ph. Poizat, D. Valente, A. Auffèves, D. Gerace, and M. F. Santos, “Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification,” Phys. Rev. Lett. 113(24), 243601 (2014).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Guo, J.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Guo, Q. H.

Guo, T. J.

Gupta, S. D.

S. Deb and S. D. Gupta, “Critical coupling in a Fabry Perot cavity with metamaterial mirrors,” Opt. Commun. 283(23), 4764–4769 (2010).
[Crossref]

Halas, N. J.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Heiss, W. D.

W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(1), 929–932 (2000).
[Crossref] [PubMed]

Hembd, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Huang, J.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Huang, T. Y.

T. Y. Huang, C. W. Tseng, T. T. Yeh, T. T. Yeh, C. W. Luo, T. Akalin, and T.-J. Yen, “Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process,” Sci. Rep. 5, 18605 (2015).
[Crossref] [PubMed]

T. T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T. Y. Huang, and T.-J. Yen, “Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials,” Opt. Express 20(7), 7580–7589 (2012).
[Crossref] [PubMed]

Jansen, F.

Jauregui, C.

Käll, M.

T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9(6), 2343–2349 (2009).
[Crossref] [PubMed]

Kang, M.

Kim, H.

Kim, J.

Kim, S. W.

J. W. Ryu, S. Y. Lee, and S. W. Kim, “Coupled nonidentical microdisks avoided crossing of energy levels and unidirectional far field emission,” Phys. Rev. A 79(5), 053858 (2009).
[Crossref]

Kolomenski, A.

Kolomenskii, A.

Lai, K. T.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lassiter, J. B.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref] [PubMed]

Lee, B.

Lee, S. Y.

H. Park, S. Y. Lee, J. Kim, B. Lee, and H. Kim, “Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide,” Opt. Express 23(19), 24464–24474 (2015).
[Crossref] [PubMed]

J. W. Ryu, S. Y. Lee, and S. W. Kim, “Coupled nonidentical microdisks avoided crossing of energy levels and unidirectional far field emission,” Phys. Rev. A 79(5), 053858 (2009).
[Crossref]

Li, T. F.

Li, Y. X.

Limpert, J.

Liu, L.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, Y. L.

Lu, M. H.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Luo, C. W.

T. Y. Huang, C. W. Tseng, T. T. Yeh, T. T. Yeh, C. W. Luo, T. Akalin, and T.-J. Yen, “Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process,” Sci. Rep. 5, 18605 (2015).
[Crossref] [PubMed]

Mahmoud, A. M.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref] [PubMed]

Manara, G.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Mascarenhas, E.

F. Fratini, E. Mascarenhas, L. Safari, J.-Ph. Poizat, D. Valente, A. Auffèves, D. Gerace, and M. F. Santos, “Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification,” Phys. Rev. Lett. 113(24), 243601 (2014).
[Crossref] [PubMed]

Maystre, D.

Merkel, A.

V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, “Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators,” Sci. Rep. 6, 19519 (2016).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Monorchio, A.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

T. T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T. Y. Huang, and T.-J. Yen, “Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials,” Opt. Express 20(7), 7580–7589 (2012).
[Crossref] [PubMed]

Noel, J.

Nordlander, P.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pagneux, V.

V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, “Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators,” Sci. Rep. 6, 19519 (2016).
[Crossref] [PubMed]

Pakizeh, T.

T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9(6), 2343–2349 (2009).
[Crossref] [PubMed]

Park, H.

Peng, S.

Poizat, J.-Ph.

F. Fratini, E. Mascarenhas, L. Safari, J.-Ph. Poizat, D. Valente, A. Auffèves, D. Gerace, and M. F. Santos, “Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification,” Phys. Rev. Lett. 113(24), 243601 (2014).
[Crossref] [PubMed]

Popov, E.

Prati, E.

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Qiu, J.

Ra’di, Y.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for EM waves theory design and realization,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Richoux, O.

V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, “Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators,” Sci. Rep. 6, 19519 (2016).
[Crossref] [PubMed]

Romero-García, V.

V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, “Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators,” Sci. Rep. 6, 19519 (2016).
[Crossref] [PubMed]

Ryu, J. W.

J. W. Ryu, S. Y. Lee, and S. W. Kim, “Coupled nonidentical microdisks avoided crossing of energy levels and unidirectional far field emission,” Phys. Rev. A 79(5), 053858 (2009).
[Crossref]

Safari, L.

F. Fratini, E. Mascarenhas, L. Safari, J.-Ph. Poizat, D. Valente, A. Auffèves, D. Gerace, and M. F. Santos, “Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification,” Phys. Rev. Lett. 113(24), 243601 (2014).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Santos, M. F.

F. Fratini, E. Mascarenhas, L. Safari, J.-Ph. Poizat, D. Valente, A. Auffèves, D. Gerace, and M. F. Santos, “Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification,” Phys. Rev. Lett. 113(24), 243601 (2014).
[Crossref] [PubMed]

Scherer, A.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Schuessler, H.

Shih, M. H.

Simovski, C. R.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for EM waves theory design and realization,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sobhani, H.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref] [PubMed]

Song, Q. H.

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105(5), 053902 (2010).
[Crossref] [PubMed]

Strohaber, J.

Stutzki, F.

Tang, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Tayeb, G.

Teizer, W.

Theocharis, G.

V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, “Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators,” Sci. Rep. 6, 19519 (2016).
[Crossref] [PubMed]

Tournat, V.

V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, “Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators,” Sci. Rep. 6, 19519 (2016).
[Crossref] [PubMed]

Tretyakov, S. A.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for EM waves theory design and realization,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Tseng, C. W.

T. Y. Huang, C. W. Tseng, T. T. Yeh, T. T. Yeh, C. W. Luo, T. Akalin, and T.-J. Yen, “Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process,” Sci. Rep. 5, 18605 (2015).
[Crossref] [PubMed]

Tünnermann, A.

Valente, D.

F. Fratini, E. Mascarenhas, L. Safari, J.-Ph. Poizat, D. Valente, A. Auffèves, D. Gerace, and M. F. Santos, “Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification,” Phys. Rev. Lett. 113(24), 243601 (2014).
[Crossref] [PubMed]

van Exter, M. P.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, Q. Y.

Wen, S.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Wiersig, J.

H. Cao and J. Wiersig, “Dielectric microcavities model systems for wave chaos and non-Hermitian Physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97(25), 253901 (2006).
[Crossref] [PubMed]

Woerdman, J. P.

Xiang, Y.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Xie, Y. S.

Xu, Y. L.

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Yang, M.

Yang, Q. H.

Yeh, T. T.

T. Y. Huang, C. W. Tseng, T. T. Yeh, T. T. Yeh, C. W. Luo, T. Akalin, and T.-J. Yen, “Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process,” Sci. Rep. 5, 18605 (2015).
[Crossref] [PubMed]

T. Y. Huang, C. W. Tseng, T. T. Yeh, T. T. Yeh, C. W. Luo, T. Akalin, and T.-J. Yen, “Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process,” Sci. Rep. 5, 18605 (2015).
[Crossref] [PubMed]

T. T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T. Y. Huang, and T.-J. Yen, “Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials,” Opt. Express 20(7), 7580–7589 (2012).
[Crossref] [PubMed]

Yen, T.-J.

T. Y. Huang, C. W. Tseng, T. T. Yeh, T. T. Yeh, C. W. Luo, T. Akalin, and T.-J. Yen, “Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process,” Sci. Rep. 5, 18605 (2015).
[Crossref] [PubMed]

T. T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T. Y. Huang, and T.-J. Yen, “Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials,” Opt. Express 20(7), 7580–7589 (2012).
[Crossref] [PubMed]

Zhang, H.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

Zhang, H. W.

ACS Nano (1)

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4(2), 819–832 (2010).
[Crossref] [PubMed]

IEEE Trans. Antenn. Propag. (1)

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9(6), 2343–2349 (2009).
[Crossref] [PubMed]

Nat. Commun. (1)

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Deb and S. D. Gupta, “Critical coupling in a Fabry Perot cavity with metamaterial mirrors,” Opt. Commun. 283(23), 4764–4769 (2010).
[Crossref]

Opt. Express (10)

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

H. X. Cui, X. W. Cao, M. Kang, T. F. Li, M. Yang, T. J. Guo, Q. H. Guo, and J. Chen, “Exceptional points in extraordinary optical transmission through dual subwavelength metallic gratings,” Opt. Express 21(11), 13368–13379 (2013).
[Crossref] [PubMed]

N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express 16(20), 15431–15438 (2008).
[Crossref] [PubMed]

A. Kolomenskii, S. Peng, J. Hembd, A. Kolomenski, J. Noel, J. Strohaber, W. Teizer, and H. Schuessler, “Interaction and spectral gaps of surface plasmon modes in gold nano-structures,” Opt. Express 19(7), 6587–6598 (2011).
[Crossref] [PubMed]

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
[Crossref]

H. Park, S. Y. Lee, J. Kim, B. Lee, and H. Kim, “Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide,” Opt. Express 23(19), 24464–24474 (2015).
[Crossref] [PubMed]

T. T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T. Y. Huang, and T.-J. Yen, “Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials,” Opt. Express 20(7), 7580–7589 (2012).
[Crossref] [PubMed]

Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17(22), 20256–20265 (2009).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19(14), 13578–13589 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

J. W. Ryu, S. Y. Lee, and S. W. Kim, “Coupled nonidentical microdisks avoided crossing of energy levels and unidirectional far field emission,” Phys. Rev. A 79(5), 053858 (2009).
[Crossref]

Phys. Rev. Appl. (1)

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for EM waves theory design and realization,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(1), 929–932 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97(25), 253901 (2006).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

F. Fratini, E. Mascarenhas, L. Safari, J.-Ph. Poizat, D. Valente, A. Auffèves, D. Gerace, and M. F. Santos, “Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification,” Phys. Rev. Lett. 113(24), 243601 (2014).
[Crossref] [PubMed]

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105(5), 053902 (2010).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

H. Cao and J. Wiersig, “Dielectric microcavities model systems for wave chaos and non-Hermitian Physics,” Rev. Mod. Phys. 87(1), 61–111 (2015).
[Crossref]

Sci. Rep. (3)

T. Y. Huang, C. W. Tseng, T. T. Yeh, T. T. Yeh, C. W. Luo, T. Akalin, and T.-J. Yen, “Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process,” Sci. Rep. 5, 18605 (2015).
[Crossref] [PubMed]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref] [PubMed]

V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, “Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators,” Sci. Rep. 6, 19519 (2016).
[Crossref] [PubMed]

Science (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Other (1)

A.C, de C. Lima, and E.A. Parker, “Fabry Perot approach to the design of double layer FSS,” IEEE Proc. Microw. Antennas Prop. 143(2), 157–162 (1996).

Supplementary Material (6)

NameDescription
» Visualization 1: MP4 (1316 KB)      FSS-FP model for metal
» Visualization 2: MP4 (1762 KB)      FSS-FP model for thin gap
» Visualization 3: MP4 (1036 KB)      FSS-FP model for PEC substrate
» Visualization 4: MP4 (1247 KB)      FSS-FP model for 3 times loss
» Visualization 5: MP4 (1141 KB)      FSS-FP model for small loss
» Visualization 6: MP4 (936 KB)      FSS-FP model for no loss

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Eigen energy real ε (upper row) and imaginary γ part (lower row) of Hamiltonian of E1 = 1 + δ - 0.1j and E2 = 1 - 0.1j with (a) V = 0.05 - 0.05j (b) V = - 0.05 - 0.05j (c) V = - 0.05j. The color of the line indicates the same mode.
Fig. 2
Fig. 2 Near field coupling of vertically aligned disks. (a) Geometry of heterodimer disks. (b) Extinction spectrum of r2 = r1 = 80 nm with schematic charge distribution for dark (I) and bright (II) modes. (c) Extinction spectrum vs. r2. The black(red) line indicates the dark(bright) mode resonant peak. (d) Surface charge distribution of disk dimmers. (e) Q factor for dark (black), bright (red) modes and single disk (green) vs. r2.
Fig. 3
Fig. 3 Near field coupling of horizontally aligned disks. (a) Geometry of heterodimer disks. (b) Q factor for dark (black), bright (red) modes and single disk (green) vs. r2 (c) surface charge distribution of disk dimers.
Fig. 4
Fig. 4 Far field coupling of two disk arrays. (a) Geometry (b) Reflection/transmission spectrum of individual disk array with r1 = 70 nm or r2 = 80 nm. (c) Fabry Perot model of two disk arrays. (d) Phase of two disk arrays around its frequency selective surface stopband center (e) 2 port network schemes for ABCD and S matrix. Single admittance Y diagram represents an individual disk array. The pi-network of admittances Y1, Y2, and Y3 represent the two disk array system.
Fig. 5
Fig. 5 Disk arrays with top (upper row) and bottom (lower row) illumination for different r1 size at fixed gap = 495nm. (a)(b) Absorption spectrum. The insect is the intensity distribution at λ1. (c)(d) Color maps of absorption spectrum. (e)(f) Reflection spectrum. (g)(h) Transmission spectrum. The circles indicate mode at λ1
Fig. 6
Fig. 6 Disk arrays with top (upper row) and bottom (lower row) illumination for different gap size with r1 = 70 nm and r2 = 80 nm (a)(b) Absorption spectrum. The insect is the intensity distribution at λ1 and λ2. (c)(d) Color maps of absorption spectrum. (e)(f) Reflection spectrum (g)(h) Transmission spectrum. The circles indicate mode at λ1 or λ2
Fig. 7
Fig. 7 Reflection, transmission and absorption spectrum for top (upper row) and bottom (lower row) illumination at gap (a)(b) 495nm (c)(d) 525nm (e)(f) 555nm.
Fig. 8
Fig. 8 Energy (peak wavelength) crossing and linewidth (Q) anticrossing for hetero disk arrays with top and bottom illuminations by varying (a)(b) disk array radius r1 and (c)(d) gap distance. (e)(f) The charge and intensity distributions at λ1 and (g) (h) at λ2

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

H=( E 1 V V E 2 )
E ± = E 1 + E 2 2 ±Δ , Δ= ( E 1 E 2 2 ) 2 + V 2 .
ψ ± =( V E 2 E 1 2 ±Δ ).
H eff =( ε 1 ±k' ±k' ε 2 )j( γ 1 k" k" γ 2 )
H eff =( E 1 0 0 E 2 )j( γ 1 k" k" γ 2 )
Y= 1 Z =1/ ( 1 jωc +jωL+R ) .
( V 1 I 1 )=( A B C D )( V 2 I 2 )
V 1,in + V 1,out = V 1 , V 1,in η 0 V 1,out η 0 = I 1 , V 2,in + V 2,out = V 2 , V 2,out η 0 V 2,in η 0 =( I 2 )
( V 1,out V 2,out )=( S 11 S 12 S 21 S 22 )( V 1,in V 2,in )
S 11 = A+B/ η 0 C η 0 D A+B/ η 0 +C η 0 +D = Y 2+Y , S 12 = 2(ADBC) A+B/ η 0 +C η 0 +D = S 21
S 21 = 2 A+B/ η 0 +C η 0 +D = 2 2+Y , S 22 = A+B/ η 0 C η 0 +D A+B/ η 0 +C η 0 +D = S 11
( V 1 I 1 )=( cosδ j η 0 sinδ j η 0 sinδ cosδ )( V 2 I 2 )
τ= tt' e jδ/2 1rr' e jδ ,Γ=r+ r' t 2 e jδ 1rr' e jδ
τ'= t't e jδ/2 1r'r e jδ ,Γ'=r'+ rt ' 2 e jδ 1rr' e jδ
r= Y 1 / ( 2+ Y 1 ) ,t=2/ ( 2+ Y 1 ), r'= Y 2 / ( 2+ Y 2 ) ,t'=2/ ( 2+ Y 2 )
Y 1 =1/ ( 1 jω c 1 +jω L 1 + R 1 ) , Y 2 =1/ ( 1 jω c 2 +jω L 2 + R 2 )

Metrics