Abstract

Planar photonics using metasurfaces is of great interest because a metasurface can control the flow of light beyond that attainable with natural materials. The resonance wavelength of a binary-grating metasurface is adjustable by changing the width and thickness of the nanostructure. We propose a novel combination of nematic liquid crystals and a binary-grating metasurface with which the diffraction efficiency can be controlled by adjusting the applied voltage.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid-crystal tunable color filters based on aluminum metasurfaces

Zu-Wen Xie, Jhen-Hong Yang, Vishal Vashistha, Wei Lee, and Kuo-Ping Chen
Opt. Express 25(24) 30764-30770 (2017)

Electrically switchable diffractive waveplates with metasurface aligned liquid crystals

Jeffrey Chou, Lalitha Parameswaran, Brian Kimball, and Mordechai Rothschild
Opt. Express 24(21) 24265-24273 (2016)

Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography

C. Provenzano, P. Pagliusi, and G. Cipparrone
Opt. Express 15(9) 5872-5878 (2007)

References

  • View by:
  • |
  • |
  • |

  1. T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, 1999).
  2. M. Tyboroski, N. Anderson, and R. Camley, “An effective medium study of surface plasmon polaritons in nanostructured gratings using attenuated total reflection,” J. Appl. Phys. 115(1), 013104 (2014).
    [Crossref]
  3. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converge. 1(1), 1–17 (2014).
    [Crossref]
  4. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  5. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
    [Crossref] [PubMed]
  6. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
    [Crossref] [PubMed]
  7. J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
    [Crossref] [PubMed]
  8. M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
    [Crossref] [PubMed]
  9. F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10(5), 1787–1792 (2010).
    [Crossref] [PubMed]
  10. M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
    [Crossref] [PubMed]
  11. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
    [Crossref] [PubMed]
  12. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
    [Crossref] [PubMed]
  13. A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” arXiv preprint arXiv:1604.01330 (2016).
  14. Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” arXiv preprint arXiv:1511.09380 (2015).
  15. Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, “Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves,” Appl. Phys. Lett. 105(3), 031117 (2014).
    [Crossref]
  16. Z.-Y. Yang and K.-P. Chen, “Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas,” Opt. Express 22(11), 12737–12749 (2014).
    [Crossref] [PubMed]
  17. M.-S. L. Lee, P. Lalanne, J.-C. Rodier, and E. Cambril, “Wide-field-angle behavior of blazed-binary gratings in the resonance domain,” Opt. Lett. 25(23), 1690–1692 (2000).
    [Crossref] [PubMed]
  18. J. M. Miller, M. R. Taghizadeh, J. Turunen, and N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32(14), 2519–2525 (1993).
    [Crossref] [PubMed]
  19. T. Roy, A. E. Nikolaenko, and E. T. Rogers, “A meta-diffraction-grating for visible light,” J. Opt. 15(8), 085101 (2013).
    [Crossref]
  20. Z. Peng, D. A. Fattal, A. Faraon, M. Fiorentino, J. Li, and R. G. Beausoleil, “Reflective silicon binary diffraction grating for visible wavelengths,” Opt. Lett. 36(8), 1515–1517 (2011).
    [Crossref] [PubMed]
  21. M. Collischon, H. Haidner, P. Kipfer, A. Lang, J. T. Sheridan, J. Schwider, N. Streibl, and J. Lindolf, “Binary blazed reflection gratings,” Appl. Opt. 33(16), 3572–3577 (1994).
    [Crossref] [PubMed]
  22. A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
    [Crossref] [PubMed]
  23. M. W. Farn, “Binary gratings with increased efficiency,” Appl. Opt. 31(22), 4453–4458 (1992).
    [Crossref] [PubMed]
  24. B. K. Singh and A. C. Hillier, “Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings,” Anal. Chem. 80(10), 3803–3810 (2008).
    [Crossref] [PubMed]
  25. W.-H. Yeh, J. W. Petefish, and A. C. Hillier, “Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating,” Anal. Chem. 83(15), 6047–6053 (2011).
    [Crossref] [PubMed]
  26. J. A. Davis, K. O. Valadéz, and D. M. Cottrell, “Encoding amplitude and phase information onto a binary phase-only spatial light modulator,” Appl. Opt. 42(11), 2003–2008 (2003).
    [Crossref] [PubMed]
  27. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [Crossref] [PubMed]
  28. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  29. M. Moharam, T. Gaylord, D. A. Pommet, and E. B. Grann, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  30. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [Crossref]
  31. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [Crossref]
  32. S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2014).
    [Crossref] [PubMed]

2014 (6)

M. Tyboroski, N. Anderson, and R. Camley, “An effective medium study of surface plasmon polaritons in nanostructured gratings using attenuated total reflection,” J. Appl. Phys. 115(1), 013104 (2014).
[Crossref]

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converge. 1(1), 1–17 (2014).
[Crossref]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, “Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves,” Appl. Phys. Lett. 105(3), 031117 (2014).
[Crossref]

Z.-Y. Yang and K.-P. Chen, “Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas,” Opt. Express 22(11), 12737–12749 (2014).
[Crossref] [PubMed]

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2014).
[Crossref] [PubMed]

2013 (5)

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

T. Roy, A. E. Nikolaenko, and E. T. Rogers, “A meta-diffraction-grating for visible light,” J. Opt. 15(8), 085101 (2013).
[Crossref]

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

2011 (4)

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Z. Peng, D. A. Fattal, A. Faraon, M. Fiorentino, J. Li, and R. G. Beausoleil, “Reflective silicon binary diffraction grating for visible wavelengths,” Opt. Lett. 36(8), 1515–1517 (2011).
[Crossref] [PubMed]

W.-H. Yeh, J. W. Petefish, and A. C. Hillier, “Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating,” Anal. Chem. 83(15), 6047–6053 (2011).
[Crossref] [PubMed]

2010 (2)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

2009 (1)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

2008 (1)

B. K. Singh and A. C. Hillier, “Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings,” Anal. Chem. 80(10), 3803–3810 (2008).
[Crossref] [PubMed]

2003 (1)

2000 (1)

1996 (2)

1995 (1)

1994 (1)

1993 (1)

1992 (1)

1989 (1)

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abb, M.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Aizpurua, J.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Albella, P.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Albrektsen, O.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Anderson, N.

M. Tyboroski, N. Anderson, and R. Camley, “An effective medium study of surface plasmon polaritons in nanostructured gratings using attenuated total reflection,” J. Appl. Phys. 115(1), 013104 (2014).
[Crossref]

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converge. 1(1), 1–17 (2014).
[Crossref]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Basov, D. N.

Baumberg, J. J.

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

Beausoleil, R. G.

Blanchard, R.

Bozhevolnyi, S. I.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Cambril, E.

Camley, R.

M. Tyboroski, N. Anderson, and R. Camley, “An effective medium study of surface plasmon polaritons in nanostructured gratings using attenuated total reflection,” J. Appl. Phys. 115(1), 013104 (2014).
[Crossref]

Capasso, F.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chang, C.-Y.

Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, “Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves,” Appl. Phys. Lett. 105(3), 031117 (2014).
[Crossref]

Chen, C.-Y.

Chen, K.-P.

Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, “Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves,” Appl. Phys. Lett. 105(3), 031117 (2014).
[Crossref]

Z.-Y. Yang and K.-P. Chen, “Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas,” Opt. Express 22(11), 12737–12749 (2014).
[Crossref] [PubMed]

Chen, Y.-H.

Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, “Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves,” Appl. Phys. Lett. 105(3), 031117 (2014).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Collischon, M.

Cottrell, D. M.

Davis, J. A.

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Faraon, A.

Farn, M. W.

Fattal, D. A.

Fiorentino, M.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gaylord, T.

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Glenn, W. H.

Grann, E. B.

Haidner, H.

Hillier, A. C.

W.-H. Yeh, J. W. Petefish, and A. C. Hillier, “Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating,” Anal. Chem. 83(15), 6047–6053 (2011).
[Crossref] [PubMed]

B. K. Singh and A. C. Hillier, “Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings,” Anal. Chem. 80(10), 3803–3810 (2008).
[Crossref] [PubMed]

Huang, F.

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

Jacob, Z.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converge. 1(1), 1–17 (2014).
[Crossref]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kats, M. A.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Kipfer, P.

Kong, J.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Lalanne, P.

Lang, A.

Lee, M.-J.

Lee, M.-S. L.

Lee, W.

Lee, Y.-H.

Li, J.

Li, L.

Lindolf, J.

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Meltz, G.

Miller, J. M.

Moharam, M.

Morey, W. W.

Morris, G. M.

Muskens, O. L.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Nikolaenko, A. E.

T. Roy, A. E. Nikolaenko, and E. T. Rogers, “A meta-diffraction-grating for visible light,” J. Opt. 15(8), 085101 (2013).
[Crossref]

Ou, J.-Y.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Peng, Z.

Petefish, J. W.

W.-H. Yeh, J. W. Petefish, and A. C. Hillier, “Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating,” Anal. Chem. 83(15), 6047–6053 (2011).
[Crossref] [PubMed]

Plum, E.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Pommet, D. A.

Pors, A.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Qazilbash, M. M.

Radko, I. P.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Ramanathan, S.

Rodier, J.-C.

Rogers, E. T.

T. Roy, A. E. Nikolaenko, and E. T. Rogers, “A meta-diffraction-grating for visible light,” J. Opt. 15(8), 085101 (2013).
[Crossref]

Ross, N.

Roy, T.

T. Roy, A. E. Nikolaenko, and E. T. Rogers, “A meta-diffraction-grating for visible light,” J. Opt. 15(8), 085101 (2013).
[Crossref]

Schwider, J.

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converge. 1(1), 1–17 (2014).
[Crossref]

Sheridan, J. T.

Shih, M.-H.

Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, “Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves,” Appl. Phys. Lett. 105(3), 031117 (2014).
[Crossref]

Singh, B. K.

B. K. Singh and A. C. Hillier, “Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings,” Anal. Chem. 80(10), 3803–3810 (2008).
[Crossref] [PubMed]

Song, X.

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Streibl, N.

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Sun, S.-H.

Taghizadeh, M. R.

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Turunen, J.

Tyboroski, M.

M. Tyboroski, N. Anderson, and R. Camley, “An effective medium study of surface plasmon polaritons in nanostructured gratings using attenuated total reflection,” J. Appl. Phys. 115(1), 013104 (2014).
[Crossref]

Valadéz, K. O.

Yang, Z.

Yang, Z.-Y.

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yeh, W.-H.

W.-H. Yeh, J. W. Petefish, and A. C. Hillier, “Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating,” Anal. Chem. 83(15), 6047–6053 (2011).
[Crossref] [PubMed]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zhang, J.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Zhang, X.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Zheludev, N. I.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Anal. Chem. (2)

B. K. Singh and A. C. Hillier, “Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings,” Anal. Chem. 80(10), 3803–3810 (2008).
[Crossref] [PubMed]

W.-H. Yeh, J. W. Petefish, and A. C. Hillier, “Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating,” Anal. Chem. 83(15), 6047–6053 (2011).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, “Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves,” Appl. Phys. Lett. 105(3), 031117 (2014).
[Crossref]

Biomed. Opt. Express (1)

J. Appl. Phys. (1)

M. Tyboroski, N. Anderson, and R. Camley, “An effective medium study of surface plasmon polaritons in nanostructured gratings using attenuated total reflection,” J. Appl. Phys. 115(1), 013104 (2014).
[Crossref]

J. Opt. (1)

T. Roy, A. E. Nikolaenko, and E. T. Rogers, “A meta-diffraction-grating for visible light,” J. Opt. 15(8), 085101 (2013).
[Crossref]

J. Opt. Soc. Am. A (3)

Nano Converge. (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converge. 1(1), 1–17 (2014).
[Crossref]

Nano Lett. (5)

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (3)

T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, 1999).

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” arXiv preprint arXiv:1604.01330 (2016).

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” arXiv preprint arXiv:1511.09380 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Comparison of different gratings. (b) Schematic of a supercell of a binary grating comprising a Au grating of different widths and a 2880 nm period on a substrate of ITO glass surrounded by air. (c) The simulated transmission spectra for a 45 nm thick binary grating in TM polarization, where m = 0, m = + 1, and m = –1 are the diffraction orders.
Fig. 2
Fig. 2 (a) SEM image of a Au binary grating (t = 45 nm) with grating widths of 50, 50, 70, 70, 90, 90, 110, 110, 130, 130, 150, and 150 nm. (b) 3D AFM topographical image. (c) Cross-sectional topographical chart showing that the binary grating is about 45 nm thick. (d) Schematic of a reconfigurable binary grating metasurface as part of a LC cell.
Fig. 3
Fig. 3 Diffraction ratio (m = + 1/m = –1) vs. wavelength in (a) TM and (b) TE polarization.
Fig. 4
Fig. 4 (a) Schematic of the diffraction measurement system. (b) Schematic of binary gratings combined with nematic LC when the voltage is on and off.
Fig. 5
Fig. 5 (a) Transmittance spectra with nematic liquid crystals as increase of voltage in TM polarization of incident light. (b) Transmission spectrum with nematic liquid crystals as increase of voltage in TE polarization of incident light. The little fringes in spectra are due to two substrate-LC boundaries caused light interference.
Fig. 6
Fig. 6 (a) Diffraction efficiency of the binary grating metasurface combined with nematic LC in TM polarization. Diffraction intensity in m = + 1 and m = –1. (b) Diffraction ratio as a function of voltage. (c) Images of 653 nm laser spots for m = + 1 and m = –1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n t sin θ t - n i sin θ i = λϕ 2π ,
sin θ r - sin θ i = λϕ 2π n i ,

Metrics