Abstract

In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation on iterative multiuser detection physical layer network coding in two-way relay free-space optical links with turbulences and pointing errors

Zina Abu-Almaalie, Zabih Ghassemlooy, Manav R. Bhatnagar, Hoa Le-Minh, Nauman Aslam, Shien-Kuei Liaw, and It Ee Lee
Appl. Opt. 55(33) 9396-9406 (2016)

Coherent Wireless Optical Communications With Predetection and Postdetection EGC Over Gamma–Gamma Atmospheric Turbulence Channels

Mingbo Niu, Josh Schlenker, Julian Cheng, Jonathan F. Holzman, and Robert Schober
J. Opt. Commun. Netw. 3(11) 860-869 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Throughput performance evaluation of multiservice multirate OCDMA in flexible networks,” IEEE Photon. J. 8, 1–15 (2016).
    [Crossref]
  2. A. L. Sanches, T. R. Raddo, J. V. dos Reis, and B.-H. V. Borges, “Performance analysis of single and multirate FFHOCDMA networks based on PSK modulation formats,” J. Opt. Commun. Netw. 71084–1097 (2015).
    [Crossref]
  3. J. V. dosReis, T. R. Raddo, A. L. Sanches, and B.-H. V. Borges, “Fuzzy logic control for the mitigation of environmental temperature variations in OCDMA networks,” J. Opt. Commun. Netw. 7480–488 (2015).
    [Crossref]
  4. K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Comm. Mag. 48, 130–137 (2010).
    [Crossref]
  5. L. C. Andrews, R. L. Phillips, and C.Y. Hopen, Laser Beam Propagation through Random Media (SPIE, 2005).
    [Crossref]
  6. A. Jurado-Navas, A. Tatarczak, X. Lu, J. J. VegasOlmos, J. M. Garrido-Balsells, and I. Tafur Monroy, “850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes,” Opt. Express 23, 33721–33732 (2015)
    [Crossref]
  7. I. S. Ansari, F. Yilmaz, and M. Alouini, “Performance analysis of free-space optical links over Málaga (M) turbulence channels with pointing errors,” IEEE Wirel. Communications 15, 91–102 (2016).
    [Crossref]
  8. A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications,” Opt. Express 18, 17346–17363 (2010).
    [Crossref] [PubMed]
  9. J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
    [Crossref]
  10. F. Xu, A. Khalighi, P. Causse, and S. Bourennane, “Channel coding and time-diversity for optical wireless links,” Opt. Express 17, 872–887 (2009).
    [Crossref] [PubMed]
  11. H. Manor and S. Arnon, “Performance of an optical wireless communication system as a function of wavelength,” Appl. Opt. 42, 4285–4294 (2003).
    [Crossref] [PubMed]
  12. X. Zhu and J.M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002)
    [Crossref]
  13. A. Jurado-Navas and A. Puerta-Notario, “Generation of correlated scintillations on atmospheric optical communications,” J. Opt. Commun. Netw. 1(5), 452–462 (2009).
    [Crossref]
  14. I. E. Lee, Z. Ghassemlooy, W. P. Ng, and A. Khalighi, “Green-inspired hybrid FSO/RF wireless backhauling and basic access signalling for next generation metrozones,” Proc. 2nd Int. Symposium on Environment-Friendly Energies and Applications (EFEA), 230–236, Newcastle (England), June 2012.
  15. G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A.J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16 × 100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Engineering 52, 116102 (2013).
    [Crossref]
  16. E. Leitgeb, M. Loschnigg, U. Birnbacher, G. Schwarz, and A. Merdonig, “High reliable optical wireless links for the last mile access,” in Proc. of 10th Anniversary Int. Conf. Transparent Optical Networks (2008), pp. 178–183.
  17. W. S. Rabinovich, C. I. Moore, R. Mahon, P. G. Goetz, H. R. Burris, M. S. Ferraro, J. L. Murphy, L. M. Thomas, G. C. Gilbreath, M. Vilcheck, and M. R. Suite, “Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory,” Appl. Opt. 54, F189–F200 (2015)
    [Crossref] [PubMed]
  18. H. T.T. Pham, P. V. Trinh, N. T. Dang, and A. T. Pham, “Secured relay-assisted atmospheric optical code-division multiple-access systems over turbulence channels,” IET Optoelectronics 9, 241–248 (2015).
    [Crossref]
  19. T. Miyazawa and I. Sasase, “BER performance analysis of spectral phase-encoded optical atmospheric PPM-CDMA communication systems,” J. Lightwave Technol. 25, 2992–3000 (2007).
    [Crossref]
  20. N. T. Dang and A. T. Pham, “Performance improvement of FSO/CDMA systems over dispersive turbulence channel using multi-wavelength PPM signaling,” Opt. Express 20, 26786–26797 (2012).
    [Crossref] [PubMed]
  21. K. Sasaki, N. Minato, and T. Ushikubo, “First OCDMA experimental demonstration over free space and optical fiber link,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, Feb. 2008.
  22. K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
    [Crossref]
  23. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32 × 40 Gb/s) WDM transmission ver a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
    [Crossref]
  24. I. S. Hmud, F. N. Hasoon, and S. Shaari, “Optical CDMA system parameters limitations for AND subtraction detection scheme under enhanced double weight (EDW) code based on simulation experiment,” Optica Applicata 40, 669–676 (2010).
  25. R. Papannareddy and A. M. Weiner, “Performance comparison of coherent ultrashort light pulse and incoherent broad-band CDMA systems,” IEEE Photonics Tech. Lett. 11, 1683–1685 (1999).
    [Crossref]
  26. M. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders,” IEEE J. Light. Technol. 32, 1132–1143 (2014).
    [Crossref]
  27. H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” IEEE J. Lightwave Technol. 17, 397–405 (1999).
    [Crossref]
  28. T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Multirate IP traffic transmission in flexible access networks based on optical FFH-CDMA,” in Proc. Intern. Conf. on Commun. (ICC), Kuala Lumpur, Malaysia, 2016, to be published.
  29. T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Letters 16, 259–261 (2012).
    [Crossref]
  30. Z. Chen, S. Yu, T. Wang, G. Wu, S. Wang, and W. Gu, “Channel correlation in aperture receiver diversity systems for free-space optical communications,” J. Opt. 14, 125710 (2012)
    [Crossref]
  31. M.A. Al-Habash, L.C. Adrews, and R.L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
    [Crossref]
  32. A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, M. Castillo-Vázquez, and A. Puerta-Notario, “General analytical expressions for the bit error rate of atmospheric optical communication systems,” Opt. Lett. 36, 4095–4097 (2011).
    [Crossref] [PubMed]
  33. J. M. Garrido-Balsells, A. Jurado-Navas, J. F. Paris, M. Castillo-Vázquez, and A. Puerta-Notario, “Spatially correlated gamma-gamma scintillation in atmospheric optical channels,” Opt. Express 22, 21820–21833 (2014).
    [Crossref] [PubMed]
  34. P.G. Moschopoulos, “The distribution of the sum of independent gamma random variables,” Ann. Inst. Statist. Math. (Part A) 37, 541–544 (1985).
    [Crossref]
  35. M.S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels,” IEEE Trans. Vehic. Tech. 50, 1471–1480 (2001).
    [Crossref]
  36. A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “Analysis of high-speed optical wavelength/time CDMA networks using pulse-position modulation and forward error correction techniques,” J. Lightwave Technol. 27, 5134–5144 (2009).
    [Crossref]
  37. A. BrintonCooper, J. B. Khurgin, S. Xu, and J. U. Kang-Phase, “Phase and Polarization Diversity for Minimum MAI in OCDMA Networks,” IEEE J. Sel. Top. Quantum Electron. 13, 1386–1395 (2007).
    [Crossref]
  38. Wolfram, http://functions.wolfram.com/ .
  39. T. Ohtsuki, “Performance analysis of atmospheric optical PPM CDMA systems,” J. Lightwave Technol. 21, 406–411 (2003).
    [Crossref]
  40. A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “Closed-form expressions for the lower-bound performance of variable weight multiple pulse-position modulation optical links through turbulent atmospheric channels,” IET Commun. 6, 390–397 (2011).
    [Crossref]
  41. L.E. Nelson, Z. Guodong, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction [Invited],” J. Opt. Commun. Netw. 4, B131–B141 (2012).
    [Crossref]

2016 (2)

T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Throughput performance evaluation of multiservice multirate OCDMA in flexible networks,” IEEE Photon. J. 8, 1–15 (2016).
[Crossref]

I. S. Ansari, F. Yilmaz, and M. Alouini, “Performance analysis of free-space optical links over Málaga (M) turbulence channels with pointing errors,” IEEE Wirel. Communications 15, 91–102 (2016).
[Crossref]

2015 (5)

2014 (2)

J. M. Garrido-Balsells, A. Jurado-Navas, J. F. Paris, M. Castillo-Vázquez, and A. Puerta-Notario, “Spatially correlated gamma-gamma scintillation in atmospheric optical channels,” Opt. Express 22, 21820–21833 (2014).
[Crossref] [PubMed]

M. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders,” IEEE J. Light. Technol. 32, 1132–1143 (2014).
[Crossref]

2013 (1)

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A.J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16 × 100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Engineering 52, 116102 (2013).
[Crossref]

2012 (5)

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Letters 16, 259–261 (2012).
[Crossref]

Z. Chen, S. Yu, T. Wang, G. Wu, S. Wang, and W. Gu, “Channel correlation in aperture receiver diversity systems for free-space optical communications,” J. Opt. 14, 125710 (2012)
[Crossref]

L.E. Nelson, Z. Guodong, M. Birk, C. Skolnick, R. Isaac, Y. Pan, C. Rasmussen, G. Pendock, and B. Mikkelsen, “A robust real-time 100G transceiver with soft-decision forward error correction [Invited],” J. Opt. Commun. Netw. 4, B131–B141 (2012).
[Crossref]

N. T. Dang and A. T. Pham, “Performance improvement of FSO/CDMA systems over dispersive turbulence channel using multi-wavelength PPM signaling,” Opt. Express 20, 26786–26797 (2012).
[Crossref] [PubMed]

2011 (2)

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, M. Castillo-Vázquez, and A. Puerta-Notario, “General analytical expressions for the bit error rate of atmospheric optical communication systems,” Opt. Lett. 36, 4095–4097 (2011).
[Crossref] [PubMed]

A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “Closed-form expressions for the lower-bound performance of variable weight multiple pulse-position modulation optical links through turbulent atmospheric channels,” IET Commun. 6, 390–397 (2011).
[Crossref]

2010 (3)

A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications,” Opt. Express 18, 17346–17363 (2010).
[Crossref] [PubMed]

I. S. Hmud, F. N. Hasoon, and S. Shaari, “Optical CDMA system parameters limitations for AND subtraction detection scheme under enhanced double weight (EDW) code based on simulation experiment,” Optica Applicata 40, 669–676 (2010).

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Comm. Mag. 48, 130–137 (2010).
[Crossref]

2009 (4)

2007 (3)

T. Miyazawa and I. Sasase, “BER performance analysis of spectral phase-encoded optical atmospheric PPM-CDMA communication systems,” J. Lightwave Technol. 25, 2992–3000 (2007).
[Crossref]

A. BrintonCooper, J. B. Khurgin, S. Xu, and J. U. Kang-Phase, “Phase and Polarization Diversity for Minimum MAI in OCDMA Networks,” IEEE J. Sel. Top. Quantum Electron. 13, 1386–1395 (2007).
[Crossref]

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

2003 (2)

2002 (1)

X. Zhu and J.M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002)
[Crossref]

2001 (2)

M.A. Al-Habash, L.C. Adrews, and R.L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

M.S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels,” IEEE Trans. Vehic. Tech. 50, 1471–1480 (2001).
[Crossref]

1999 (2)

R. Papannareddy and A. M. Weiner, “Performance comparison of coherent ultrashort light pulse and incoherent broad-band CDMA systems,” IEEE Photonics Tech. Lett. 11, 1683–1685 (1999).
[Crossref]

H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” IEEE J. Lightwave Technol. 17, 397–405 (1999).
[Crossref]

1985 (1)

P.G. Moschopoulos, “The distribution of the sum of independent gamma random variables,” Ann. Inst. Statist. Math. (Part A) 37, 541–544 (1985).
[Crossref]

Abdi, A.

M.S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels,” IEEE Trans. Vehic. Tech. 50, 1471–1480 (2001).
[Crossref]

Adrews, L.C.

M.A. Al-Habash, L.C. Adrews, and R.L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

Ahmed, N.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Al-Habash, M.A.

M.A. Al-Habash, L.C. Adrews, and R.L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

Alouini, M.

I. S. Ansari, F. Yilmaz, and M. Alouini, “Performance analysis of free-space optical links over Málaga (M) turbulence channels with pointing errors,” IEEE Wirel. Communications 15, 91–102 (2016).
[Crossref]

Alouini, M.S.

M.S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels,” IEEE Trans. Vehic. Tech. 50, 1471–1480 (2001).
[Crossref]

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and C.Y. Hopen, Laser Beam Propagation through Random Media (SPIE, 2005).
[Crossref]

Ansari, I. S.

I. S. Ansari, F. Yilmaz, and M. Alouini, “Performance analysis of free-space optical links over Málaga (M) turbulence channels with pointing errors,” IEEE Wirel. Communications 15, 91–102 (2016).
[Crossref]

Arimoto, Y.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32 × 40 Gb/s) WDM transmission ver a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Arnon, S.

Birk, M.

Birnbacher, U.

E. Leitgeb, M. Loschnigg, U. Birnbacher, G. Schwarz, and A. Merdonig, “High reliable optical wireless links for the last mile access,” in Proc. of 10th Anniversary Int. Conf. Transparent Optical Networks (2008), pp. 178–183.

Borges, B.-H. V.

T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Throughput performance evaluation of multiservice multirate OCDMA in flexible networks,” IEEE Photon. J. 8, 1–15 (2016).
[Crossref]

J. V. dosReis, T. R. Raddo, A. L. Sanches, and B.-H. V. Borges, “Fuzzy logic control for the mitigation of environmental temperature variations in OCDMA networks,” J. Opt. Commun. Netw. 7480–488 (2015).
[Crossref]

A. L. Sanches, T. R. Raddo, J. V. dos Reis, and B.-H. V. Borges, “Performance analysis of single and multirate FFHOCDMA networks based on PSK modulation formats,” J. Opt. Commun. Netw. 71084–1097 (2015).
[Crossref]

T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Letters 16, 259–261 (2012).
[Crossref]

A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “Analysis of high-speed optical wavelength/time CDMA networks using pulse-position modulation and forward error correction techniques,” J. Lightwave Technol. 27, 5134–5144 (2009).
[Crossref]

T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Multirate IP traffic transmission in flexible access networks based on optical FFH-CDMA,” in Proc. Intern. Conf. on Commun. (ICC), Kuala Lumpur, Malaysia, 2016, to be published.

Bourennane, S.

BrintonCooper, A.

A. BrintonCooper, J. B. Khurgin, S. Xu, and J. U. Kang-Phase, “Phase and Polarization Diversity for Minimum MAI in OCDMA Networks,” IEEE J. Sel. Top. Quantum Electron. 13, 1386–1395 (2007).
[Crossref]

Burris, H. R.

Carrozzo, V.

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A.J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16 × 100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Engineering 52, 116102 (2013).
[Crossref]

Castillo-Vázquez, M.

Causse, P.

Chen, Z.

Z. Chen, S. Yu, T. Wang, G. Wu, S. Wang, and W. Gu, “Channel correlation in aperture receiver diversity systems for free-space optical communications,” J. Opt. 14, 125710 (2012)
[Crossref]

Ciaramella, E.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32 × 40 Gb/s) WDM transmission ver a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

Contestabile, G.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32 × 40 Gb/s) WDM transmission ver a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

D’Errico, A.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32 × 40 Gb/s) WDM transmission ver a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

Dang, N. T.

H. T.T. Pham, P. V. Trinh, N. T. Dang, and A. T. Pham, “Secured relay-assisted atmospheric optical code-division multiple-access systems over turbulence channels,” IET Optoelectronics 9, 241–248 (2015).
[Crossref]

N. T. Dang and A. T. Pham, “Performance improvement of FSO/CDMA systems over dispersive turbulence channel using multi-wavelength PPM signaling,” Opt. Express 20, 26786–26797 (2012).
[Crossref] [PubMed]

Dolinar, S.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

dos Reis, J. V.

dosReis, J. V.

Fathallah, H.

H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” IEEE J. Lightwave Technol. 17, 397–405 (1999).
[Crossref]

Fazal, I. M.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Ferraro, M. S.

Garrido-Balsells, J. M.

Garrido-Balsells, J.M.

A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “Closed-form expressions for the lower-bound performance of variable weight multiple pulse-position modulation optical links through turbulent atmospheric channels,” IET Commun. 6, 390–397 (2011).
[Crossref]

A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications,” Opt. Express 18, 17346–17363 (2010).
[Crossref] [PubMed]

Ghassemlooy, Z.

I. E. Lee, Z. Ghassemlooy, W. P. Ng, and A. Khalighi, “Green-inspired hybrid FSO/RF wireless backhauling and basic access signalling for next generation metrozones,” Proc. 2nd Int. Symposium on Environment-Friendly Energies and Applications (EFEA), 230–236, Newcastle (England), June 2012.

Gilbreath, G. C.

Goetz, P. G.

Gu, W.

Z. Chen, S. Yu, T. Wang, G. Wu, S. Wang, and W. Gu, “Channel correlation in aperture receiver diversity systems for free-space optical communications,” J. Opt. 14, 125710 (2012)
[Crossref]

Guarino, V.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32 × 40 Gb/s) WDM transmission ver a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

Guodong, Z.

Hasoon, F. N.

I. S. Hmud, F. N. Hasoon, and S. Shaari, “Optical CDMA system parameters limitations for AND subtraction detection scheme under enhanced double weight (EDW) code based on simulation experiment,” Optica Applicata 40, 669–676 (2010).

Higashino, T.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Comm. Mag. 48, 130–137 (2010).
[Crossref]

Hmud, I. S.

I. S. Hmud, F. N. Hasoon, and S. Shaari, “Optical CDMA system parameters limitations for AND subtraction detection scheme under enhanced double weight (EDW) code based on simulation experiment,” Optica Applicata 40, 669–676 (2010).

Hopen, C.Y.

L. C. Andrews, R. L. Phillips, and C.Y. Hopen, Laser Beam Propagation through Random Media (SPIE, 2005).
[Crossref]

Huang, H.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Isaac, R.

Jurado-Navas, A.

A. Jurado-Navas, A. Tatarczak, X. Lu, J. J. VegasOlmos, J. M. Garrido-Balsells, and I. Tafur Monroy, “850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes,” Opt. Express 23, 33721–33732 (2015)
[Crossref]

J. M. Garrido-Balsells, A. Jurado-Navas, J. F. Paris, M. Castillo-Vázquez, and A. Puerta-Notario, “Spatially correlated gamma-gamma scintillation in atmospheric optical channels,” Opt. Express 22, 21820–21833 (2014).
[Crossref] [PubMed]

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, M. Castillo-Vázquez, and A. Puerta-Notario, “General analytical expressions for the bit error rate of atmospheric optical communication systems,” Opt. Lett. 36, 4095–4097 (2011).
[Crossref] [PubMed]

A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “Closed-form expressions for the lower-bound performance of variable weight multiple pulse-position modulation optical links through turbulent atmospheric channels,” IET Commun. 6, 390–397 (2011).
[Crossref]

A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications,” Opt. Express 18, 17346–17363 (2010).
[Crossref] [PubMed]

A. Jurado-Navas and A. Puerta-Notario, “Generation of correlated scintillations on atmospheric optical communications,” J. Opt. Commun. Netw. 1(5), 452–462 (2009).
[Crossref]

Kahn, J.M.

X. Zhu and J.M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002)
[Crossref]

Kang-Phase, J. U.

A. BrintonCooper, J. B. Khurgin, S. Xu, and J. U. Kang-Phase, “Phase and Polarization Diversity for Minimum MAI in OCDMA Networks,” IEEE J. Sel. Top. Quantum Electron. 13, 1386–1395 (2007).
[Crossref]

Kaveh, M.

M.S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels,” IEEE Trans. Vehic. Tech. 50, 1471–1480 (2001).
[Crossref]

Kazaura, K.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Comm. Mag. 48, 130–137 (2010).
[Crossref]

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Khalighi, A.

F. Xu, A. Khalighi, P. Causse, and S. Bourennane, “Channel coding and time-diversity for optical wireless links,” Opt. Express 17, 872–887 (2009).
[Crossref] [PubMed]

I. E. Lee, Z. Ghassemlooy, W. P. Ng, and A. Khalighi, “Green-inspired hybrid FSO/RF wireless backhauling and basic access signalling for next generation metrozones,” Proc. 2nd Int. Symposium on Environment-Friendly Energies and Applications (EFEA), 230–236, Newcastle (England), June 2012.

Khurgin, J. B.

A. BrintonCooper, J. B. Khurgin, S. Xu, and J. U. Kang-Phase, “Phase and Polarization Diversity for Minimum MAI in OCDMA Networks,” IEEE J. Sel. Top. Quantum Electron. 13, 1386–1395 (2007).
[Crossref]

Kitayama, K.

M. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders,” IEEE J. Light. Technol. 32, 1132–1143 (2014).
[Crossref]

Kodama, T.

M. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders,” IEEE J. Light. Technol. 32, 1132–1143 (2014).
[Crossref]

Komaki, S.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Comm. Mag. 48, 130–137 (2010).
[Crossref]

LaRochelle, S.

H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” IEEE J. Lightwave Technol. 17, 397–405 (1999).
[Crossref]

Lee, I. E.

I. E. Lee, Z. Ghassemlooy, W. P. Ng, and A. Khalighi, “Green-inspired hybrid FSO/RF wireless backhauling and basic access signalling for next generation metrozones,” Proc. 2nd Int. Symposium on Environment-Friendly Energies and Applications (EFEA), 230–236, Newcastle (England), June 2012.

Leitgeb, E.

E. Leitgeb, M. Loschnigg, U. Birnbacher, G. Schwarz, and A. Merdonig, “High reliable optical wireless links for the last mile access,” in Proc. of 10th Anniversary Int. Conf. Transparent Optical Networks (2008), pp. 178–183.

Loschnigg, M.

E. Leitgeb, M. Loschnigg, U. Birnbacher, G. Schwarz, and A. Merdonig, “High reliable optical wireless links for the last mile access,” in Proc. of 10th Anniversary Int. Conf. Transparent Optical Networks (2008), pp. 178–183.

Lu, X.

Mahon, R.

Manor, H.

Matsumoto, H.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Matsumoto, M.

M. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders,” IEEE J. Light. Technol. 32, 1132–1143 (2014).
[Crossref]

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Comm. Mag. 48, 130–137 (2010).
[Crossref]

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32 × 40 Gb/s) WDM transmission ver a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Merdonig, A.

E. Leitgeb, M. Loschnigg, U. Birnbacher, G. Schwarz, and A. Merdonig, “High reliable optical wireless links for the last mile access,” in Proc. of 10th Anniversary Int. Conf. Transparent Optical Networks (2008), pp. 178–183.

Mikkelsen, B.

Minato, N.

K. Sasaki, N. Minato, and T. Ushikubo, “First OCDMA experimental demonstration over free space and optical fiber link,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, Feb. 2008.

Miyazawa, T.

Monroy, I. T.

T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Throughput performance evaluation of multiservice multirate OCDMA in flexible networks,” IEEE Photon. J. 8, 1–15 (2016).
[Crossref]

T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Multirate IP traffic transmission in flexible access networks based on optical FFH-CDMA,” in Proc. Intern. Conf. on Commun. (ICC), Kuala Lumpur, Malaysia, 2016, to be published.

Moore, C. I.

Moschopoulos, P.G.

P.G. Moschopoulos, “The distribution of the sum of independent gamma random variables,” Ann. Inst. Statist. Math. (Part A) 37, 541–544 (1985).
[Crossref]

Murakami, T.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Murphy, J. L.

Mutafungwa, E.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Nelson, L.E.

Ng, W. P.

I. E. Lee, Z. Ghassemlooy, W. P. Ng, and A. Khalighi, “Green-inspired hybrid FSO/RF wireless backhauling and basic access signalling for next generation metrozones,” Proc. 2nd Int. Symposium on Environment-Friendly Energies and Applications (EFEA), 230–236, Newcastle (England), June 2012.

Nomura, R.

M. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders,” IEEE J. Light. Technol. 32, 1132–1143 (2014).
[Crossref]

Ohtsuki, T.

Omae, K.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Omichi, K.

M. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders,” IEEE J. Light. Technol. 32, 1132–1143 (2014).
[Crossref]

Pan, Y.

Papannareddy, R.

R. Papannareddy and A. M. Weiner, “Performance comparison of coherent ultrashort light pulse and incoherent broad-band CDMA systems,” IEEE Photonics Tech. Lett. 11, 1683–1685 (1999).
[Crossref]

Parca, G.

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A.J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16 × 100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Engineering 52, 116102 (2013).
[Crossref]

Paris, J. F.

Pendock, G.

Pham, A. T.

H. T.T. Pham, P. V. Trinh, N. T. Dang, and A. T. Pham, “Secured relay-assisted atmospheric optical code-division multiple-access systems over turbulence channels,” IET Optoelectronics 9, 241–248 (2015).
[Crossref]

N. T. Dang and A. T. Pham, “Performance improvement of FSO/CDMA systems over dispersive turbulence channel using multi-wavelength PPM signaling,” Opt. Express 20, 26786–26797 (2012).
[Crossref] [PubMed]

Pham, H. T.T.

H. T.T. Pham, P. V. Trinh, N. T. Dang, and A. T. Pham, “Secured relay-assisted atmospheric optical code-division multiple-access systems over turbulence channels,” IET Optoelectronics 9, 241–248 (2015).
[Crossref]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and C.Y. Hopen, Laser Beam Propagation through Random Media (SPIE, 2005).
[Crossref]

Phillips, R.L.

M.A. Al-Habash, L.C. Adrews, and R.L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

Presi, M.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32 × 40 Gb/s) WDM transmission ver a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

Puerta-Notario, A.

Rabinovich, W. S.

Raddo, T. R.

T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Throughput performance evaluation of multiservice multirate OCDMA in flexible networks,” IEEE Photon. J. 8, 1–15 (2016).
[Crossref]

J. V. dosReis, T. R. Raddo, A. L. Sanches, and B.-H. V. Borges, “Fuzzy logic control for the mitigation of environmental temperature variations in OCDMA networks,” J. Opt. Commun. Netw. 7480–488 (2015).
[Crossref]

A. L. Sanches, T. R. Raddo, J. V. dos Reis, and B.-H. V. Borges, “Performance analysis of single and multirate FFHOCDMA networks based on PSK modulation formats,” J. Opt. Commun. Netw. 71084–1097 (2015).
[Crossref]

T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Letters 16, 259–261 (2012).
[Crossref]

T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Multirate IP traffic transmission in flexible access networks based on optical FFH-CDMA,” in Proc. Intern. Conf. on Commun. (ICC), Kuala Lumpur, Malaysia, 2016, to be published.

Rasmussen, C.

Ren, Y.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Rusch, L. A.

H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” IEEE J. Lightwave Technol. 17, 397–405 (1999).
[Crossref]

Sanches, A. L.

T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Throughput performance evaluation of multiservice multirate OCDMA in flexible networks,” IEEE Photon. J. 8, 1–15 (2016).
[Crossref]

A. L. Sanches, T. R. Raddo, J. V. dos Reis, and B.-H. V. Borges, “Performance analysis of single and multirate FFHOCDMA networks based on PSK modulation formats,” J. Opt. Commun. Netw. 71084–1097 (2015).
[Crossref]

J. V. dosReis, T. R. Raddo, A. L. Sanches, and B.-H. V. Borges, “Fuzzy logic control for the mitigation of environmental temperature variations in OCDMA networks,” J. Opt. Commun. Netw. 7480–488 (2015).
[Crossref]

T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Letters 16, 259–261 (2012).
[Crossref]

A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “Analysis of high-speed optical wavelength/time CDMA networks using pulse-position modulation and forward error correction techniques,” J. Lightwave Technol. 27, 5134–5144 (2009).
[Crossref]

T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Multirate IP traffic transmission in flexible access networks based on optical FFH-CDMA,” in Proc. Intern. Conf. on Commun. (ICC), Kuala Lumpur, Malaysia, 2016, to be published.

Sasaki, K.

K. Sasaki, N. Minato, and T. Ushikubo, “First OCDMA experimental demonstration over free space and optical fiber link,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, Feb. 2008.

Sasase, I.

Schwarz, G.

E. Leitgeb, M. Loschnigg, U. Birnbacher, G. Schwarz, and A. Merdonig, “High reliable optical wireless links for the last mile access,” in Proc. of 10th Anniversary Int. Conf. Transparent Optical Networks (2008), pp. 178–183.

Shaari, S.

I. S. Hmud, F. N. Hasoon, and S. Shaari, “Optical CDMA system parameters limitations for AND subtraction detection scheme under enhanced double weight (EDW) code based on simulation experiment,” Optica Applicata 40, 669–676 (2010).

Shahpari, A.

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A.J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16 × 100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Engineering 52, 116102 (2013).
[Crossref]

Shimizu, S.

M. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders,” IEEE J. Light. Technol. 32, 1132–1143 (2014).
[Crossref]

Skolnick, C.

Suite, M. R.

Suzuki, T.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Tafur Monroy, I.

Takahashi, K.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Tatarczak, A.

Teixeira, A.J.

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A.J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16 × 100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Engineering 52, 116102 (2013).
[Crossref]

Thomas, L. M.

Tosi Beleffi, G.

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A.J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16 × 100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Engineering 52, 116102 (2013).
[Crossref]

Trinh, P. V.

H. T.T. Pham, P. V. Trinh, N. T. Dang, and A. T. Pham, “Secured relay-assisted atmospheric optical code-division multiple-access systems over turbulence channels,” IET Optoelectronics 9, 241–248 (2015).
[Crossref]

Tsukamoto, K.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Comm. Mag. 48, 130–137 (2010).
[Crossref]

Tur, M.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Ushikubo, T.

K. Sasaki, N. Minato, and T. Ushikubo, “First OCDMA experimental demonstration over free space and optical fiber link,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, Feb. 2008.

VegasOlmos, J. J.

Vilcheck, M.

Wada, N.

M. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders,” IEEE J. Light. Technol. 32, 1132–1143 (2014).
[Crossref]

Wakamori, K.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Comm. Mag. 48, 130–137 (2010).
[Crossref]

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Wang, J

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Wang, S.

Z. Chen, S. Yu, T. Wang, G. Wu, S. Wang, and W. Gu, “Channel correlation in aperture receiver diversity systems for free-space optical communications,” J. Opt. 14, 125710 (2012)
[Crossref]

Wang, T.

Z. Chen, S. Yu, T. Wang, G. Wu, S. Wang, and W. Gu, “Channel correlation in aperture receiver diversity systems for free-space optical communications,” J. Opt. 14, 125710 (2012)
[Crossref]

Weiner, A. M.

R. Papannareddy and A. M. Weiner, “Performance comparison of coherent ultrashort light pulse and incoherent broad-band CDMA systems,” IEEE Photonics Tech. Lett. 11, 1683–1685 (1999).
[Crossref]

Willner, A. E.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Wu, G.

Z. Chen, S. Yu, T. Wang, G. Wu, S. Wang, and W. Gu, “Channel correlation in aperture receiver diversity systems for free-space optical communications,” J. Opt. 14, 125710 (2012)
[Crossref]

Xu, F.

Xu, S.

A. BrintonCooper, J. B. Khurgin, S. Xu, and J. U. Kang-Phase, “Phase and Polarization Diversity for Minimum MAI in OCDMA Networks,” IEEE J. Sel. Top. Quantum Electron. 13, 1386–1395 (2007).
[Crossref]

Yan, Y.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Yang, J. Y.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Yilmaz, F.

I. S. Ansari, F. Yilmaz, and M. Alouini, “Performance analysis of free-space optical links over Málaga (M) turbulence channels with pointing errors,” IEEE Wirel. Communications 15, 91–102 (2016).
[Crossref]

Yu, S.

Z. Chen, S. Yu, T. Wang, G. Wu, S. Wang, and W. Gu, “Channel correlation in aperture receiver diversity systems for free-space optical communications,” J. Opt. 14, 125710 (2012)
[Crossref]

Yue, Y.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Zhu, X.

X. Zhu and J.M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002)
[Crossref]

Ann. Inst. Statist. Math. (Part A) (1)

P.G. Moschopoulos, “The distribution of the sum of independent gamma random variables,” Ann. Inst. Statist. Math. (Part A) 37, 541–544 (1985).
[Crossref]

Appl. Opt. (2)

IEEE Comm. Mag. (1)

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Comm. Mag. 48, 130–137 (2010).
[Crossref]

IEEE Commun. Letters (1)

T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Letters 16, 259–261 (2012).
[Crossref]

IEEE J. Light. Technol. (1)

M. Matsumoto, T. Kodama, S. Shimizu, R. Nomura, K. Omichi, N. Wada, and K. Kitayama, “40G OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders,” IEEE J. Light. Technol. 32, 1132–1143 (2014).
[Crossref]

IEEE J. Lightwave Technol. (1)

H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” IEEE J. Lightwave Technol. 17, 397–405 (1999).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32 × 40 Gb/s) WDM transmission ver a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. BrintonCooper, J. B. Khurgin, S. Xu, and J. U. Kang-Phase, “Phase and Polarization Diversity for Minimum MAI in OCDMA Networks,” IEEE J. Sel. Top. Quantum Electron. 13, 1386–1395 (2007).
[Crossref]

IEEE Photon. J. (1)

T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Throughput performance evaluation of multiservice multirate OCDMA in flexible networks,” IEEE Photon. J. 8, 1–15 (2016).
[Crossref]

IEEE Photonics Tech. Lett. (1)

R. Papannareddy and A. M. Weiner, “Performance comparison of coherent ultrashort light pulse and incoherent broad-band CDMA systems,” IEEE Photonics Tech. Lett. 11, 1683–1685 (1999).
[Crossref]

IEEE Trans. Commun. (1)

X. Zhu and J.M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002)
[Crossref]

IEEE Trans. Vehic. Tech. (1)

M.S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels,” IEEE Trans. Vehic. Tech. 50, 1471–1480 (2001).
[Crossref]

IEEE Wirel. Communications (1)

I. S. Ansari, F. Yilmaz, and M. Alouini, “Performance analysis of free-space optical links over Málaga (M) turbulence channels with pointing errors,” IEEE Wirel. Communications 15, 91–102 (2016).
[Crossref]

IEICE Trans. Electron. (1)

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

IET Commun. (1)

A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “Closed-form expressions for the lower-bound performance of variable weight multiple pulse-position modulation optical links through turbulent atmospheric channels,” IET Commun. 6, 390–397 (2011).
[Crossref]

IET Optoelectronics (1)

H. T.T. Pham, P. V. Trinh, N. T. Dang, and A. T. Pham, “Secured relay-assisted atmospheric optical code-division multiple-access systems over turbulence channels,” IET Optoelectronics 9, 241–248 (2015).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

Z. Chen, S. Yu, T. Wang, G. Wu, S. Wang, and W. Gu, “Channel correlation in aperture receiver diversity systems for free-space optical communications,” J. Opt. 14, 125710 (2012)
[Crossref]

J. Opt. Commun. Netw. (4)

Nat. Photon. (1)

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Opt. Eng. (1)

M.A. Al-Habash, L.C. Adrews, and R.L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

Opt. Engineering (1)

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A.J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16 × 100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Engineering 52, 116102 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica Applicata (1)

I. S. Hmud, F. N. Hasoon, and S. Shaari, “Optical CDMA system parameters limitations for AND subtraction detection scheme under enhanced double weight (EDW) code based on simulation experiment,” Optica Applicata 40, 669–676 (2010).

Other (6)

T. R. Raddo, A. L. Sanches, I. T. Monroy, and B.-H. V. Borges, “Multirate IP traffic transmission in flexible access networks based on optical FFH-CDMA,” in Proc. Intern. Conf. on Commun. (ICC), Kuala Lumpur, Malaysia, 2016, to be published.

E. Leitgeb, M. Loschnigg, U. Birnbacher, G. Schwarz, and A. Merdonig, “High reliable optical wireless links for the last mile access,” in Proc. of 10th Anniversary Int. Conf. Transparent Optical Networks (2008), pp. 178–183.

K. Sasaki, N. Minato, and T. Ushikubo, “First OCDMA experimental demonstration over free space and optical fiber link,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, Feb. 2008.

I. E. Lee, Z. Ghassemlooy, W. P. Ng, and A. Khalighi, “Green-inspired hybrid FSO/RF wireless backhauling and basic access signalling for next generation metrozones,” Proc. 2nd Int. Symposium on Environment-Friendly Energies and Applications (EFEA), 230–236, Newcastle (England), June 2012.

L. C. Andrews, R. L. Phillips, and C.Y. Hopen, Laser Beam Propagation through Random Media (SPIE, 2005).
[Crossref]

Wolfram, http://functions.wolfram.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Architecture of the hybrid OCDMA-FSO network connecting all U users in a star topology via optical fibers and a passive star coupler/splitter. In this Figure, Tx and Rx stand for transmitter and receiver, respectively.
Fig. 2
Fig. 2 (a) Block diagram associated to the OCDMA transmitter, showing its more important stages: the data source from each user, the OOK modulator, the broadband source and the OCDMA encoder. (b) OCDMA encoding process based on a MBG encoder.
Fig. 3
Fig. 3 (a) Block diagram of the OCDMA receiver employed for each user, showing its more important stages: the OCDMA decoder, the photodetector (PD), the integrator and decision threshold devices and, finally, the recovered data. (b) OCDMA decoding process based on a MBG (multiple Brag grating) decoder.
Fig. 4
Fig. 4 Single-input multiple-output (SIMO) system model with a LED transmitter and N receiver apertures. All the irradiance contributions are added following an EQG technique.
Fig. 5
Fig. 5 Average BER performance associated to an OCDMA-FSO communication system for different number of active users as well as turbulence regimes. Two limiting cases are shown: a receiver with only one single receiving aperture lens (dotted line), and a receiver implementing EGC with 4 aperture collecting lenses and no correlation among the small-scale scintillation sequences (solid line). Furthermore, an example of partial correlation with ρ12 = ρ14 = 0.7 and ρ13 = 0.5 is also shown. Numerical results obtained by applying Monte Carlo simulation are also displayed (asterisk).
Fig. 6
Fig. 6 Average BER performance associated to an OCDMA-FSO communication system with an EGC technique in the receiver side (4 aperture collecting lenses) for different number of active users in the system and a turbulence regime characterized by αx = α = 10. Three cases are displayed depending on the degree of correlation among the received small-scale scintillation sequences: (a) total correlation (solid line), (b) no correlation (dashed line), and (c) partially correlated sequences (dashed-dotted line) with ρ12 = 0.7, ρ13 = 0.5, and ρ14 = 0.7.

Tables (1)

Tables Icon

Table 1 Atmospheric channel features.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I r x = i = 1 N I r x , i
I r x = I = X i = 1 N Y i = X V ,
C y = ( 1 ρ 12 ρ 1 N ρ 21 1 ρ 2 N ρ N 1 ρ N 2 1 ) ,
f I ( I ) = 2 [ det ( A ) ] α Γ ( α x ) i = 1 N m = 1 α i c m i Γ ( m ) λ i m α x 2 α x m + α x 2 I N α 1 m α x 2 K m α x ( 2 α x I λ i ) ,
c m i = 1 ( α i m ) ! d α i m d w α i m [ j = 1 j i N 1 ( w d j ) α j ] w = d i = = 1 ( α i m ) ! k 1 + i ^ + k N = α i m ( ( α i m ) k 1 i ^ k N ) × j = i j i N [ ( 1 ) k j ( α j ) k j ( d i d j ) α j k j ] ,
d n d x n ( j = 1 N u j ) = ( u 1 + + u N ) ( n ) = k 1 + i ^ + k N = n ( n k 1 , k N ) j = 1 N u j ( k j ) ,
Z = 0 T c r ( t ) C 1 ( t ) d t = b W + I I + ξ ,
P b ( e ) = P ( Z μ | b = 0 ) P ( b = 0 ) + P ( Z < μ | b = 1 ) P ( b = 1 ) = 1 2 [ P ( Z μ | b = 0 ) + P ( Z < μ | b = 1 ) ] = Q ( ζ ) ,
ζ = W 2 ( U 1 ) σ 2 + σ N 2 ,
f I ( I ) = 2 ( α x N α ) ( N α + α x 2 ) Γ ( N α ) Γ ( α x ) I N α + α x 2 1 K N α α x ( 2 α x N α I ) .
P b ( e ) = 0 P b ( e | I ) f I ( I ) d I .
G 2 , 0 1 , 2 ( z | a a 1 , a 1 / 2 ) = π z a 1 erfc ( z ) .
G 2 , 0 0 , 2 ( z | a , b ) = 2 z a + b 2 K a b ( 2 z ) .
P b n c ( e ) = 2 N α + α x 1 2 π π Γ ( N α ) Γ ( α x ) G 5 , 2 2 , 4 ( 8 ζ ( α x N α ) 2 | 1 N α 2 , 2 N α 2 , 1 α x 2 , 2 α x 2 , 1 0 , 1 2 ) ,
P b t c ( e ) = 2 α + α x 1 2 π π Γ ( α ) Γ ( α x ) G 5 , 2 2 , 4 ( 8 ζ ( α x α ) 2 | 1 α 2 , 2 α 2 , 1 α x 2 , 2 α x 2 , 1 0 , 1 2 ) .
P b p c ( e ) = 2 [ det ( A ) ] α Γ ( α x ) i = 1 N m = 1 α i 1 Γ ( m ) λ m α x 2 α x m + α x 2 ( α i m ) ! k 1 + i ^ + k N = α i m ( α i m k 1 i ^ k N ) × j = i j i N [ ( 1 ) k j ( α j ) k j ( λ j λ i λ i λ j ) α j k j ] 2 2 α i 2 k j + 2 N α m + α x 1 4 π 3 / 2 ( α x λ i ) ( N α α i k j m α x 2 ) 2 × G 5 , 2 2 , 4 ( 8 ζ λ i 2 α x 2 | 1 + α i + k j N α 2 , 2 + α i + k j N α 2 , 1 + α i + k j N α + m α x 2 , 2 + α i + k j N α + m α x 2 , 1 0 , 1 2 ) .

Metrics