Abstract

Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-coherent detection of an optical dipole force by Doppler velocimetry

M. J. Biercuk, H. Uys, J. W. Britton, A. P. VanDevender, and J. J. Bollinger
Opt. Express 19(11) 10304-10316 (2011)

Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems

Joseph Thom, Guido Wilpers, Erling Riis, and Alastair G. Sinclair
Opt. Express 21(16) 18712-18723 (2013)

Quantum networking with photons and trapped atoms (Invited)

D. L. Moehring, M. J. Madsen, K. C. Younge, R. N. Kohn, Jr., P. Maunz, L.-M. Duan, C. Monroe, and B. B. Blinov
J. Opt. Soc. Am. B 24(2) 300-315 (2007)

References

  • View by:
  • |
  • |
  • |

  1. H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469(4), 155–203 (2008).
    [Crossref]
  2. T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
    [Crossref] [PubMed]
  3. D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417(6890), 709–711 (2002).
    [Crossref] [PubMed]
  4. J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, “Complete methods set for scalable ion trap quantum information processing,” Science 325(5945), 1227–1230 (2009).
    [Crossref] [PubMed]
  5. J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74(20), 4091 (1995).
    [Crossref] [PubMed]
  6. J. F. Poyatos, J. I. Cirac, and P. Zoller, “Quantum gates with “hot” trapped ions,” Phys. Rev. Lett. 81(6), 1322 (1998).
    [Crossref]
  7. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
    [Crossref] [PubMed]
  8. C. Ballance, T. Harty, N. Linke, and D. Lucas, “High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions,” arXiv preprint arXiv:1406.5473 (2014).
  9. J. J. Garcia-Ripoll, P. Zoller, and J. I. Cirac, “Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing,” Phys. Rev. Lett. 91(15), 157901 (2003).
    [Crossref] [PubMed]
  10. W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
    [Crossref] [PubMed]
  11. J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, and C. Monroe, “Ultrafast spin-motion entanglement and interferometry with a single atom,” Phys. Rev. Lett. 110(20), 203001 (2013).
    [Crossref] [PubMed]
  12. D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
    [Crossref]
  13. D. Kielpinski, M. Pullen, J. Canning, M. Stevenson, P. Westbrook, and K. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express 17(23), 20833–20839 (2009).
    [Crossref] [PubMed]
  14. M. Petrasiunas, M. I. Hussain, J. Canning, M. Stevenson, and D. Kielpinski, “Picosecond 554 nm yellow-green fiber laser source with average power over 1 W,” Opt. Express 22(15), 17716–17722 (2014).
    [Crossref] [PubMed]
  15. T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Materials Science and Engineering: R: Reports 30(1), 1–54 (2000).
    [Crossref]
  16. A. V. Smith, “SNLO nonlinear optics code,” Sandia National Laboratories, Albuquerque, NM87185, 1423 (2004).
  17. A. V. Smith, D. J. Armstrong, and W. J. Alford, “Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals,” J. Opt. Soc. Am. B 15(1), 122–141 (1998).
    [Crossref]
  18. A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29(2), 580–589 (1993).
    [Crossref]
  19. C. D. B. Bentley, A. R. R. Carvalho, D. Kielpinski, and J. J. Hope, “Fast gates for ion traps by splitting laser pulses,” New J. Phys. 15(4), 043006 (2013).
    [Crossref]
  20. C. D. B. Bentley, A. R. R. Carvalho, and J. J. Hope, “Trapped ion scaling with pulsed fast gates,” New J. Phys. 17(10), 103025 (2015).
    [Crossref]
  21. C. D. B. Bentley, R. L. Taylor, A. R. R. Carvalho, and J. J. Hope, “Stability thresholds and calculation techniques for fast entangling gates on trapped ions,” Phys. Rev. A 93(4), 042342 (2016).
    [Crossref]
  22. G. Kregar, N. Šantić, D. Aumiler, H. Buljan, and T. Ban, “Frequency-comb-induced radiative force on cold rubidium atoms,” Phys. Rev. A 89(5), 053421 (2014).
    [Crossref]
  23. S. S. Ivanov and N. V. Vitanov, “High-fidelity local addressing of trapped ions and atoms by composite sequences of laser pulses,” Opt. Lett. 36(7), 1275–1277 (2011).
    [Crossref] [PubMed]
  24. K. Li, L. Zhang, D. Xu, G. Zhang, H. Yu, Y. Wang, F. Shan, L. Wang, C. Yan, Y. Wu, X. Lin, and J. Yao, “High-power picosecond 355 nm laser based on La2CaB10O19 crystal,” Opt. Lett. 39(11), 3305–3307 (2014).
    [Crossref] [PubMed]
  25. S. C. Kumar, E.S. Bautista, and M. Ebrahim-Zadeh, “Stable, high-power, Yb-fiber-based, picosecond ultraviolet generation at 355 nm using BiB3O6,” Opt. Lett. 40(3), 403–406 (2015).
    [Crossref]
  26. N. A. Chaitanya, A. Aadhi, M. V. Jabir, and G. k. Samanta, “Highpower, high-repetition-rate, yb-fiber laser based femtosecond source at 355 nm,” Opt. Lett. 40(18), 4269–4272 (2015).
    [Crossref]
  27. S. R. Petersen, M. Chen, A. Shirakawa, C. B. Olausson, T. T. Alkeskjold, and J. Laegsgaard, “Large-mode-area hybrid photonic crystal fiber amplifier at 1178 nm,” Opt. Lett. 40(8), 1741–1744 (2015).
    [Crossref] [PubMed]

2016 (2)

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
[Crossref] [PubMed]

C. D. B. Bentley, R. L. Taylor, A. R. R. Carvalho, and J. J. Hope, “Stability thresholds and calculation techniques for fast entangling gates on trapped ions,” Phys. Rev. A 93(4), 042342 (2016).
[Crossref]

2015 (4)

2014 (3)

2013 (2)

J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, and C. Monroe, “Ultrafast spin-motion entanglement and interferometry with a single atom,” Phys. Rev. Lett. 110(20), 203001 (2013).
[Crossref] [PubMed]

C. D. B. Bentley, A. R. R. Carvalho, D. Kielpinski, and J. J. Hope, “Fast gates for ion traps by splitting laser pulses,” New J. Phys. 15(4), 043006 (2013).
[Crossref]

2011 (1)

2010 (1)

W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
[Crossref] [PubMed]

2009 (2)

J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, “Complete methods set for scalable ion trap quantum information processing,” Science 325(5945), 1227–1230 (2009).
[Crossref] [PubMed]

D. Kielpinski, M. Pullen, J. Canning, M. Stevenson, P. Westbrook, and K. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express 17(23), 20833–20839 (2009).
[Crossref] [PubMed]

2008 (1)

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469(4), 155–203 (2008).
[Crossref]

2006 (1)

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
[Crossref]

2003 (2)

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

J. J. Garcia-Ripoll, P. Zoller, and J. I. Cirac, “Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing,” Phys. Rev. Lett. 91(15), 157901 (2003).
[Crossref] [PubMed]

2002 (1)

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417(6890), 709–711 (2002).
[Crossref] [PubMed]

2000 (1)

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Materials Science and Engineering: R: Reports 30(1), 1–54 (2000).
[Crossref]

1998 (2)

1995 (1)

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74(20), 4091 (1995).
[Crossref] [PubMed]

1993 (1)

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29(2), 580–589 (1993).
[Crossref]

Aadhi, A.

Alford, W. J.

Alkeskjold, T. T.

Amini, J. M.

J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, “Complete methods set for scalable ion trap quantum information processing,” Science 325(5945), 1227–1230 (2009).
[Crossref] [PubMed]

Armstrong, D. J.

Aumiler, D.

G. Kregar, N. Šantić, D. Aumiler, H. Buljan, and T. Ban, “Frequency-comb-induced radiative force on cold rubidium atoms,” Phys. Rev. A 89(5), 053421 (2014).
[Crossref]

Ballance, C.

C. Ballance, T. Harty, N. Linke, and D. Lucas, “High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions,” arXiv preprint arXiv:1406.5473 (2014).

Ban, T.

G. Kregar, N. Šantić, D. Aumiler, H. Buljan, and T. Ban, “Frequency-comb-induced radiative force on cold rubidium atoms,” Phys. Rev. A 89(5), 053421 (2014).
[Crossref]

Baronavski, A. P.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29(2), 580–589 (1993).
[Crossref]

Barrett, M.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

Bautista, E.S.

Bentley, C. D. B.

C. D. B. Bentley, R. L. Taylor, A. R. R. Carvalho, and J. J. Hope, “Stability thresholds and calculation techniques for fast entangling gates on trapped ions,” Phys. Rev. A 93(4), 042342 (2016).
[Crossref]

C. D. B. Bentley, A. R. R. Carvalho, and J. J. Hope, “Trapped ion scaling with pulsed fast gates,” New J. Phys. 17(10), 103025 (2015).
[Crossref]

C. D. B. Bentley, A. R. R. Carvalho, D. Kielpinski, and J. J. Hope, “Fast gates for ion traps by splitting laser pulses,” New J. Phys. 15(4), 043006 (2013).
[Crossref]

Blatt, R.

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
[Crossref] [PubMed]

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469(4), 155–203 (2008).
[Crossref]

Brandl, M. F.

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
[Crossref] [PubMed]

Britton, J.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

Buljan, H.

G. Kregar, N. Šantić, D. Aumiler, H. Buljan, and T. Ban, “Frequency-comb-induced radiative force on cold rubidium atoms,” Phys. Rev. A 89(5), 053421 (2014).
[Crossref]

Campbell, W.

J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, and C. Monroe, “Ultrafast spin-motion entanglement and interferometry with a single atom,” Phys. Rev. Lett. 110(20), 203001 (2013).
[Crossref] [PubMed]

W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
[Crossref] [PubMed]

Canning, J.

Carvalho, A. R. R.

C. D. B. Bentley, R. L. Taylor, A. R. R. Carvalho, and J. J. Hope, “Stability thresholds and calculation techniques for fast entangling gates on trapped ions,” Phys. Rev. A 93(4), 042342 (2016).
[Crossref]

C. D. B. Bentley, A. R. R. Carvalho, and J. J. Hope, “Trapped ion scaling with pulsed fast gates,” New J. Phys. 17(10), 103025 (2015).
[Crossref]

C. D. B. Bentley, A. R. R. Carvalho, D. Kielpinski, and J. J. Hope, “Fast gates for ion traps by splitting laser pulses,” New J. Phys. 15(4), 043006 (2013).
[Crossref]

Chaitanya, N. A.

Chen, M.

Chuang, I. L.

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
[Crossref] [PubMed]

Cirac, J. I.

J. J. Garcia-Ripoll, P. Zoller, and J. I. Cirac, “Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing,” Phys. Rev. Lett. 91(15), 157901 (2003).
[Crossref] [PubMed]

J. F. Poyatos, J. I. Cirac, and P. Zoller, “Quantum gates with “hot” trapped ions,” Phys. Rev. Lett. 81(6), 1322 (1998).
[Crossref]

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74(20), 4091 (1995).
[Crossref] [PubMed]

Conover, C.

J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, and C. Monroe, “Ultrafast spin-motion entanglement and interferometry with a single atom,” Phys. Rev. Lett. 110(20), 203001 (2013).
[Crossref] [PubMed]

DeMarco, B.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

Ebrahim-Zadeh, M.

Feder, K.

Garcia-Ripoll, J. J.

J. J. Garcia-Ripoll, P. Zoller, and J. I. Cirac, “Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing,” Phys. Rev. Lett. 91(15), 157901 (2003).
[Crossref] [PubMed]

Häffner, H.

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469(4), 155–203 (2008).
[Crossref]

Hanneke, D.

J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, “Complete methods set for scalable ion trap quantum information processing,” Science 325(5945), 1227–1230 (2009).
[Crossref] [PubMed]

Harty, T.

C. Ballance, T. Harty, N. Linke, and D. Lucas, “High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions,” arXiv preprint arXiv:1406.5473 (2014).

Hayes, D.

W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
[Crossref] [PubMed]

Home, J. P.

J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, “Complete methods set for scalable ion trap quantum information processing,” Science 325(5945), 1227–1230 (2009).
[Crossref] [PubMed]

Hope, J. J.

C. D. B. Bentley, R. L. Taylor, A. R. R. Carvalho, and J. J. Hope, “Stability thresholds and calculation techniques for fast entangling gates on trapped ions,” Phys. Rev. A 93(4), 042342 (2016).
[Crossref]

C. D. B. Bentley, A. R. R. Carvalho, and J. J. Hope, “Trapped ion scaling with pulsed fast gates,” New J. Phys. 17(10), 103025 (2015).
[Crossref]

C. D. B. Bentley, A. R. R. Carvalho, D. Kielpinski, and J. J. Hope, “Fast gates for ion traps by splitting laser pulses,” New J. Phys. 15(4), 043006 (2013).
[Crossref]

Hucul, D.

W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
[Crossref] [PubMed]

Hussain, M. I.

Itano, W.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

Ivanov, S. S.

Jabir, M. V.

Jelenkovic, B.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

Johnson, K.

J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, and C. Monroe, “Ultrafast spin-motion entanglement and interferometry with a single atom,” Phys. Rev. Lett. 110(20), 203001 (2013).
[Crossref] [PubMed]

Jost, J. D.

J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, “Complete methods set for scalable ion trap quantum information processing,” Science 325(5945), 1227–1230 (2009).
[Crossref] [PubMed]

Kamimura, T.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Materials Science and Engineering: R: Reports 30(1), 1–54 (2000).
[Crossref]

Kielpinski, D.

M. Petrasiunas, M. I. Hussain, J. Canning, M. Stevenson, and D. Kielpinski, “Picosecond 554 nm yellow-green fiber laser source with average power over 1 W,” Opt. Express 22(15), 17716–17722 (2014).
[Crossref] [PubMed]

C. D. B. Bentley, A. R. R. Carvalho, D. Kielpinski, and J. J. Hope, “Fast gates for ion traps by splitting laser pulses,” New J. Phys. 15(4), 043006 (2013).
[Crossref]

D. Kielpinski, M. Pullen, J. Canning, M. Stevenson, P. Westbrook, and K. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express 17(23), 20833–20839 (2009).
[Crossref] [PubMed]

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
[Crossref]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417(6890), 709–711 (2002).
[Crossref] [PubMed]

Kregar, G.

G. Kregar, N. Šantić, D. Aumiler, H. Buljan, and T. Ban, “Frequency-comb-induced radiative force on cold rubidium atoms,” Phys. Rev. A 89(5), 053421 (2014).
[Crossref]

Kumar, S. C.

Ladouceur, H. D.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29(2), 580–589 (1993).
[Crossref]

Laegsgaard, J.

Langer, C.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

Leibfried, D.

J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, “Complete methods set for scalable ion trap quantum information processing,” Science 325(5945), 1227–1230 (2009).
[Crossref] [PubMed]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

Li, K.

Lin, X.

Linke, N.

C. Ballance, T. Harty, N. Linke, and D. Lucas, “High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions,” arXiv preprint arXiv:1406.5473 (2014).

Lucas, D.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

C. Ballance, T. Harty, N. Linke, and D. Lucas, “High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions,” arXiv preprint arXiv:1406.5473 (2014).

Martinez, E. A.

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
[Crossref] [PubMed]

Matsukevich, D.

W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
[Crossref] [PubMed]

Maunz, P.

W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
[Crossref] [PubMed]

Meyer, V.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

Mizrahi, J.

J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, and C. Monroe, “Ultrafast spin-motion entanglement and interferometry with a single atom,” Phys. Rev. Lett. 110(20), 203001 (2013).
[Crossref] [PubMed]

W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
[Crossref] [PubMed]

Monroe, C.

J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, and C. Monroe, “Ultrafast spin-motion entanglement and interferometry with a single atom,” Phys. Rev. Lett. 110(20), 203001 (2013).
[Crossref] [PubMed]

W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
[Crossref] [PubMed]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417(6890), 709–711 (2002).
[Crossref] [PubMed]

Monz, T.

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
[Crossref] [PubMed]

Mori, Y.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Materials Science and Engineering: R: Reports 30(1), 1–54 (2000).
[Crossref]

Neyenhuis, B.

J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, and C. Monroe, “Ultrafast spin-motion entanglement and interferometry with a single atom,” Phys. Rev. Lett. 110(20), 203001 (2013).
[Crossref] [PubMed]

Nigg, D.

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
[Crossref] [PubMed]

Olausson, C. B.

Petersen, S. R.

Petrasiunas, M.

Poyatos, J. F.

J. F. Poyatos, J. I. Cirac, and P. Zoller, “Quantum gates with “hot” trapped ions,” Phys. Rev. Lett. 81(6), 1322 (1998).
[Crossref]

Pullen, M.

Quraishi, Q.

W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
[Crossref] [PubMed]

Rines, R.

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
[Crossref] [PubMed]

Roos, C. F.

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469(4), 155–203 (2008).
[Crossref]

Rosenband, T.

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

Samanta, G. k.

Šantic, N.

G. Kregar, N. Šantić, D. Aumiler, H. Buljan, and T. Ban, “Frequency-comb-induced radiative force on cold rubidium atoms,” Phys. Rev. A 89(5), 053421 (2014).
[Crossref]

Sasaki, T.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Materials Science and Engineering: R: Reports 30(1), 1–54 (2000).
[Crossref]

Schindler, P.

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
[Crossref] [PubMed]

Senko, C.

J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, and C. Monroe, “Ultrafast spin-motion entanglement and interferometry with a single atom,” Phys. Rev. Lett. 110(20), 203001 (2013).
[Crossref] [PubMed]

W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
[Crossref] [PubMed]

Shan, F.

Shaw, J. K.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29(2), 580–589 (1993).
[Crossref]

Shirakawa, A.

Smith, A. V.

Stevenson, M.

Taylor, R. L.

C. D. B. Bentley, R. L. Taylor, A. R. R. Carvalho, and J. J. Hope, “Stability thresholds and calculation techniques for fast entangling gates on trapped ions,” Phys. Rev. A 93(4), 042342 (2016).
[Crossref]

Vitanov, N. V.

Wang, L.

Wang, S. X.

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
[Crossref] [PubMed]

Wang, Y.

Westbrook, P.

Wineland, D. J.

J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, “Complete methods set for scalable ion trap quantum information processing,” Science 325(5945), 1227–1230 (2009).
[Crossref] [PubMed]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417(6890), 709–711 (2002).
[Crossref] [PubMed]

Wu, Y.

Xu, D.

Yan, C.

Yao, J.

Yap, Y. K.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Materials Science and Engineering: R: Reports 30(1), 1–54 (2000).
[Crossref]

Yoshimura, M.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Materials Science and Engineering: R: Reports 30(1), 1–54 (2000).
[Crossref]

Yu, H.

Zhang, G.

Zhang, L.

Zoller, P.

J. J. Garcia-Ripoll, P. Zoller, and J. I. Cirac, “Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing,” Phys. Rev. Lett. 91(15), 157901 (2003).
[Crossref] [PubMed]

J. F. Poyatos, J. I. Cirac, and P. Zoller, “Quantum gates with “hot” trapped ions,” Phys. Rev. Lett. 81(6), 1322 (1998).
[Crossref]

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74(20), 4091 (1995).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Analysis of cross correlation, phase velocity mismatch and group velocity mismatches in sum-frequency generation,” IEEE J. Quantum Electron. 29(2), 580–589 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Materials Science and Engineering: R: Reports (1)

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Materials Science and Engineering: R: Reports 30(1), 1–54 (2000).
[Crossref]

Nature (2)

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417(6890), 709–711 (2002).
[Crossref] [PubMed]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature 422(6930), 412–415 (2003).
[Crossref] [PubMed]

New J. Phys. (2)

C. D. B. Bentley, A. R. R. Carvalho, D. Kielpinski, and J. J. Hope, “Fast gates for ion traps by splitting laser pulses,” New J. Phys. 15(4), 043006 (2013).
[Crossref]

C. D. B. Bentley, A. R. R. Carvalho, and J. J. Hope, “Trapped ion scaling with pulsed fast gates,” New J. Phys. 17(10), 103025 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rep. (1)

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469(4), 155–203 (2008).
[Crossref]

Phys. Rev. A (3)

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
[Crossref]

C. D. B. Bentley, R. L. Taylor, A. R. R. Carvalho, and J. J. Hope, “Stability thresholds and calculation techniques for fast entangling gates on trapped ions,” Phys. Rev. A 93(4), 042342 (2016).
[Crossref]

G. Kregar, N. Šantić, D. Aumiler, H. Buljan, and T. Ban, “Frequency-comb-induced radiative force on cold rubidium atoms,” Phys. Rev. A 89(5), 053421 (2014).
[Crossref]

Phys. Rev. Lett. (5)

J. J. Garcia-Ripoll, P. Zoller, and J. I. Cirac, “Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing,” Phys. Rev. Lett. 91(15), 157901 (2003).
[Crossref] [PubMed]

W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, and C. Monroe, “Ultrafast gates for single atomic qubits,” Phys. Rev. Lett. 105(9), 090502 (2010).
[Crossref] [PubMed]

J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, and C. Monroe, “Ultrafast spin-motion entanglement and interferometry with a single atom,” Phys. Rev. Lett. 110(20), 203001 (2013).
[Crossref] [PubMed]

J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74(20), 4091 (1995).
[Crossref] [PubMed]

J. F. Poyatos, J. I. Cirac, and P. Zoller, “Quantum gates with “hot” trapped ions,” Phys. Rev. Lett. 81(6), 1322 (1998).
[Crossref]

Science (2)

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, “Realization of a scalable Shor algorithm,” Science 351(6277), 1068–1070 (2016).
[Crossref] [PubMed]

J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, “Complete methods set for scalable ion trap quantum information processing,” Science 325(5945), 1227–1230 (2009).
[Crossref] [PubMed]

Other (2)

C. Ballance, T. Harty, N. Linke, and D. Lucas, “High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions,” arXiv preprint arXiv:1406.5473 (2014).

A. V. Smith, “SNLO nonlinear optics code,” Sandia National Laboratories, Albuquerque, NM87185, 1423 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the laser system. (a) Top yellow panel shows the in fiber portion. Laser pulses generated at 1564nm in the seed oscillator (blue box) are amplified with Erbium doped fiber amplifier (EDFA) and pass through large effective area - highly non linear fibers (LEAF-HNLF) to create an octave-spanning supercontinuum spectrum. Spectral slicing of this spectrum to extract the 1108.6 nm wavelength components takes place in three similar pre-amplification stages (Y1,Y2 and Y3). Ytterbium doped gain fiber (YDF), spliced with a chirped fiber Bragg grating (CFBG). Light first enters the circulator which directs it through the gain fiber and then through to the CFBG. Since the gain fiber is before the CFBG, light is amplified twice when passing through each stage. A 2 km long single mode fiber (SMF) spool between Y1 and Y2 chirps the pulse before high power amplification. A fast switching electro-optic-modulator (EOM) connected at the output of Y3 is driven by pulse pattern generator (PPG) RF voltage signals. Optical isolators, polarization controllers, fiber polarizer, and EDFA-pre-amplification stage including dispersion compensation fiber are omitted for clarity. WDM, wavelength division multiplexer; EDF, erbium doped fiber; SESAM, semiconductor saturable absorber mirror; PMM, piezo mounted mirror. (b) The free space up-conversion portion. Chirped pulses from the Ytterbium doped fiber amplifier (YDFA) are compressed with a diffraction grating pair, then the compressed pulses are frequency up-converted to 369.53 nm via periodically-poled-stoichiometric LiTaO3 (PPSLT) and LiB3O5 (LBO) crystals. D1, D2, and D3 are dichroic mirrors. (c) Control electronics for pulse pattern generation. Includes a feedback loop to synchronize and stabilize the pulse repetition rate, fast EOM, and slow acousto-optic-modulator (AOM) drivers for pulse switching signals. DDS, direct digital synthesizer; PID, proportional-integral-differential controller.
Fig. 2
Fig. 2 (a) Pulse widths of fundamental 1108.6 nm pulses, after grating compressor (dashed line) and after SFG (solid line) used as a reference pulse for cross-correlation measurement. (b) Optical spectrum of supercontinuum after spectral slicing.
Fig. 3
Fig. 3 (a) SFG power and IR to UV conversion efficiency (inset) versus input fundamental 1108.6 nm pump beam power. (b) UV spectrum of the SFG output centered at 369.53 nm (solid line) and the spectrometer instrument response (dashed line) as measure by a single frequency (Δλ < 10−6 nm) UV ECDL locked to an Yb+ atomic reference.
Fig. 4
Fig. 4 (a) Schematic of the setup for cross-correlation measurement, (b) Shows the cross-correlation trace, formed by the sech2 fit to data points, where each data point represents the DFG output power variation against the time delay in the IR pulse.
Fig. 5
Fig. 5 (a) Many-pulse pattern: the red (top) pulse train represents the EOM-switched 1250 IR pulses and the bottom (blue) represents the UV pulse pattern formed after synchronizing the EOM and AOM switching. (b) Shows the enlarged image of the many-pulse switching pattern. (c) the UV pulse train (top) shows AOM switching of UV pulses without EOM switching and the bottom shows EOM switching to balance the rise time of the AOM to ensure a clean pulse switching pattern. (d) Few-pulse pattern: the EOM- and AOM-switched UV pulse patterns, showing the ability to individually switch UV pulses to write patterns within the main pattern. Black dashed lines indicate OFF pulses. The ringing of the photodiode response shown above is an artifact due to the limited bandwidth of the detector with respect to the pulse duration.

Tables (1)

Tables Icon

Table 1 Expected mean fidelity and standard deviation in fidelity for two examples of fast gates that can be performed with this laser, incorporating laser intensity fluctuations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| ψ 0 m = | n c . m . | n st . ,

Metrics