Abstract

A hybrid III–V/SOI resonant-cavity-enhanced photodetector (RCE-PD) structure comprising a high-contrast grating (HCG) reflector, a hybrid grating (HG) reflector, and an air cavity between them, has been proposed and investigated. In the proposed structure, a light absorbing material is integrated as part of the HG reflector, enabling a very compact vertical cavity. Numerical investigations show that a quantum efficiency close to 100 % and a detection linewidth of about 1 nm can be achieved, which are desirable for wavelength division multiplexing applications. Based on these results, a hybrid RCE-PD sample has been fabricated by heterogeneously integrating an InP-based material onto a silicon-on-insulator wafer and has been characterized, which shows a clear enhancement in photo-current at the designed wavelength. This indicates that the HG reflector provides a field enhancement sufficient for RCE-PD operation. In addition, a capability of feasibly selecting the detection wavelength during fabrication as well as a possibility of realizing silicon-integrated bidirectional transceivers are discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vertical-coupled high-efficiency tunable III-V- CMOS SOI hybrid external-cavity laser

Shiyun Lin, Stevan S. Djordjevic, John E. Cunningham, Ivan Shubin, Ying Luo, Jin Yao, Guoliang Li, Hiren Thacker, Jin-Hyoung Lee, Kannan Raj, Xuezhe Zheng, and Ashok V. Krishnamoorthy
Opt. Express 21(26) 32425-32431 (2013)

Selecting detection wavelength of resonant cavity-enhanced photodetectors by guided-mode resonance reflectors

Kuo-Wei Lai, Yi-Shan Lee, Ying-Jhe Fu, and Sheng-Di Lin
Opt. Express 20(4) 3572-3579 (2012)

Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser

Shahram Keyvaninia, Gunther Roelkens, Dries Van Thourhout, Christophe Jany, Marco Lamponi, Alban Le Liepvre, Francois Lelarge, Dalila Make, Guang-Hua Duan, Damien Bordel, and Jean-Marc Fedeli
Opt. Express 21(3) 3784-3792 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
    [Crossref]
  2. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
    [Crossref]
  3. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
    [Crossref] [PubMed]
  4. L. Carletti, R. Malureanu, J. Mørk, and I.-S. Chung, “High-index-contrast grating reflector with beam steering ability for the transmitted beam,” Opt. Express 19, 23567–23572 (2011).
    [Crossref] [PubMed]
  5. C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
    [Crossref]
  6. M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
    [Crossref]
  7. I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20, 105–107 (2008).
    [Crossref]
  8. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
    [Crossref]
  9. I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS- tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
    [Crossref]
  10. T. Ansbæk, I.-S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19, 1702306–1702311 (2013).
    [Crossref]
  11. I.-S. Chung and J. Mørk, “Silicon-photonics light source realized by III–V/Si-grating-mirror laser,” Appl. Phys. Lett. 97, 151113 (2010).
    [Crossref]
  12. P. Viktorovitch, C. Sciancalepore, B. B. Bakir, X. Letartre, and C. Seassal, “Double photonic crystal vertical-cavity surface-emitting lasers,” Proc. SPIE 8633, 863302 (2013).
    [Crossref]
  13. G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11 (2015).
    [Crossref]
  14. G. C. Park, W. Xue, E. Semenova, Jesper Mørk, and I.-S. Chung, “III–V/SOI vertical cavity laser structure for 120 Gbit/s speed,” in Advanced Photonics, JT5A (post-deadline) (Optical Society of America, Boston, 2015), p. JT5A.2.
  15. B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light Sci. Appl. 3, e135 (2014).
    [Crossref]
  16. Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
    [Crossref] [PubMed]
  17. A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107, 181107 (2015).
    [Crossref]
  18. I.-S. Chung, A. M. V. Iakovlev, A. Caliman, A. Syrbu, E. Kapon, and J. Mørk, “Selectively-pumped graiting-mirror long wavelength VCSEL,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineerings, 2009). p. 403.
    [Crossref]
  19. I.-S. Chung, “Study on differences between high contrast grating reflectors for TM and TE polarizations and their impact on VCSEL designs,” Opt. Express 23, 16730–16739 (2015).
    [Crossref] [PubMed]
  20. J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
    [Crossref] [PubMed]
  21. A. Taghizadeh, G.C. Park, J. Mørk, and I.-S. Chung, “Hybrid grating reflector with high reflectivity and broad bandwidth,” Opt. Express 22, 21175–21184 (2014).
    [Crossref] [PubMed]
  22. G. C. Park, A. Taghizadeh, and I.-S. Chung, “Hybrid grating reflectors: Origin of ultrabroad stopband,” Appl. Phys. Lett. 108, 141108 (2016).
    [Crossref]
  23. A. Taghizadeh, J. Mørk, and I.-S. Chung, “Ultracompact resonator with high quality-factor based on a hybrid grating structure,” Opt. Express 23, 14913–14921 (2015).
    [Crossref] [PubMed]
  24. R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39, 4337–4340 (2014).
    [Crossref] [PubMed]
  25. V. Topić and I.-S. Chung, “Comparative study of heat dissipation capabilities of hybrid III–V/SOI vertical cavity lasers,” submitted to IEEE Photon. Technol. Lett.
  26. W. Yang, S. A. Gerke, L. Zhu, C. Chase, Y. Rao, and C. J. Chang-Hasnain, “Long-wavelength tunable detector using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 16, 3803208 (2014).
  27. M. S. Unlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev. 78, 607–639 (1995).
    [Crossref]
  28. M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [Crossref]
  29. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [Crossref]
  30. L. A. Coldren, S. W. Corzine, and M. L. Masanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).
    [Crossref]
  31. J. Piprek, Semiconductor Optoelectronic Devices (Academic Press, 2003).
  32. J. T. Verdeyen, Laser Electronics (PrenticeHall, 2000).
  33. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett. 20, 434–436 (2008).
    [Crossref]
  34. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
    [Crossref]
  35. I.-S. Chung, Y. T. Lee, J.-E. Kim, and H. Y. Park, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46–48 (2006).
    [Crossref]

2016 (1)

G. C. Park, A. Taghizadeh, and I.-S. Chung, “Hybrid grating reflectors: Origin of ultrabroad stopband,” Appl. Phys. Lett. 108, 141108 (2016).
[Crossref]

2015 (6)

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Ultracompact resonator with high quality-factor based on a hybrid grating structure,” Opt. Express 23, 14913–14921 (2015).
[Crossref] [PubMed]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11 (2015).
[Crossref]

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
[Crossref] [PubMed]

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107, 181107 (2015).
[Crossref]

I.-S. Chung, “Study on differences between high contrast grating reflectors for TM and TE polarizations and their impact on VCSEL designs,” Opt. Express 23, 16730–16739 (2015).
[Crossref] [PubMed]

J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
[Crossref] [PubMed]

2014 (4)

A. Taghizadeh, G.C. Park, J. Mørk, and I.-S. Chung, “Hybrid grating reflector with high reflectivity and broad bandwidth,” Opt. Express 22, 21175–21184 (2014).
[Crossref] [PubMed]

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39, 4337–4340 (2014).
[Crossref] [PubMed]

W. Yang, S. A. Gerke, L. Zhu, C. Chase, Y. Rao, and C. J. Chang-Hasnain, “Long-wavelength tunable detector using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 16, 3803208 (2014).

2013 (2)

P. Viktorovitch, C. Sciancalepore, B. B. Bakir, X. Letartre, and C. Seassal, “Double photonic crystal vertical-cavity surface-emitting lasers,” Proc. SPIE 8633, 863302 (2013).
[Crossref]

T. Ansbæk, I.-S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19, 1702306–1702311 (2013).
[Crossref]

2011 (2)

2010 (4)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
[Crossref] [PubMed]

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS- tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[Crossref]

I.-S. Chung and J. Mørk, “Silicon-photonics light source realized by III–V/Si-grating-mirror laser,” Appl. Phys. Lett. 97, 151113 (2010).
[Crossref]

2008 (3)

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20, 105–107 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett. 20, 434–436 (2008).
[Crossref]

2007 (1)

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

2006 (1)

I.-S. Chung, Y. T. Lee, J.-E. Kim, and H. Y. Park, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46–48 (2006).
[Crossref]

2004 (1)

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

1996 (1)

1995 (2)

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
[Crossref]

Ansbæk, T.

T. Ansbæk, I.-S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19, 1702306–1702311 (2013).
[Crossref]

Bakir, B. B.

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Bordel, D.

Brodbeck, S.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

Caliman, A.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS- tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[Crossref]

I.-S. Chung, A. M. V. Iakovlev, A. Caliman, A. Syrbu, E. Kapon, and J. Mørk, “Selectively-pumped graiting-mirror long wavelength VCSEL,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineerings, 2009). p. 403.
[Crossref]

Carletti, L.

Chang-Hasnain, C.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

Chang-Hasnain, C. J.

J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
[Crossref] [PubMed]

W. Yang, S. A. Gerke, L. Zhu, C. Chase, Y. Rao, and C. J. Chang-Hasnain, “Long-wavelength tunable detector using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 16, 3803208 (2014).

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
[Crossref] [PubMed]

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett. 20, 434–436 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

Chase, C.

W. Yang, S. A. Gerke, L. Zhu, C. Chase, Y. Rao, and C. J. Chang-Hasnain, “Long-wavelength tunable detector using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 16, 3803208 (2014).

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
[Crossref] [PubMed]

Chelnokov, A.

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20, 105–107 (2008).
[Crossref]

Chen, L.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

Chung, I.-S.

G. C. Park, A. Taghizadeh, and I.-S. Chung, “Hybrid grating reflectors: Origin of ultrabroad stopband,” Appl. Phys. Lett. 108, 141108 (2016).
[Crossref]

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Ultracompact resonator with high quality-factor based on a hybrid grating structure,” Opt. Express 23, 14913–14921 (2015).
[Crossref] [PubMed]

I.-S. Chung, “Study on differences between high contrast grating reflectors for TM and TE polarizations and their impact on VCSEL designs,” Opt. Express 23, 16730–16739 (2015).
[Crossref] [PubMed]

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107, 181107 (2015).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11 (2015).
[Crossref]

A. Taghizadeh, G.C. Park, J. Mørk, and I.-S. Chung, “Hybrid grating reflector with high reflectivity and broad bandwidth,” Opt. Express 22, 21175–21184 (2014).
[Crossref] [PubMed]

T. Ansbæk, I.-S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19, 1702306–1702311 (2013).
[Crossref]

L. Carletti, R. Malureanu, J. Mørk, and I.-S. Chung, “High-index-contrast grating reflector with beam steering ability for the transmitted beam,” Opt. Express 19, 23567–23572 (2011).
[Crossref] [PubMed]

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS- tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[Crossref]

I.-S. Chung and J. Mørk, “Silicon-photonics light source realized by III–V/Si-grating-mirror laser,” Appl. Phys. Lett. 97, 151113 (2010).
[Crossref]

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20, 105–107 (2008).
[Crossref]

I.-S. Chung, Y. T. Lee, J.-E. Kim, and H. Y. Park, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46–48 (2006).
[Crossref]

I.-S. Chung, A. M. V. Iakovlev, A. Caliman, A. Syrbu, E. Kapon, and J. Mørk, “Selectively-pumped graiting-mirror long wavelength VCSEL,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineerings, 2009). p. 403.
[Crossref]

G. C. Park, W. Xue, E. Semenova, Jesper Mørk, and I.-S. Chung, “III–V/SOI vertical cavity laser structure for 120 Gbit/s speed,” in Advanced Photonics, JT5A (post-deadline) (Optical Society of America, Boston, 2015), p. JT5A.2.

V. Topić and I.-S. Chung, “Comparative study of heat dissipation capabilities of hybrid III–V/SOI vertical cavity lasers,” submitted to IEEE Photon. Technol. Lett.

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Masanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).
[Crossref]

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Masanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).
[Crossref]

Deng, H.

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
[Crossref] [PubMed]

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Fedeli, J.-M.

Ferrara, J.

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Gaylord, T. K.

Gerke, S. A.

W. Yang, S. A. Gerke, L. Zhu, C. Chase, Y. Rao, and C. J. Chang-Hasnain, “Long-wavelength tunable detector using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 16, 3803208 (2014).

Gilet, P.

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20, 105–107 (2008).
[Crossref]

Grann, E. B.

Hansen, O.

T. Ansbæk, I.-S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19, 1702306–1702311 (2013).
[Crossref]

Höfling, S.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

Huang, M.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

Huang, M. C.

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett. 20, 434–436 (2008).
[Crossref]

Iakovlev, A. M. V.

I.-S. Chung, A. M. V. Iakovlev, A. Caliman, A. Syrbu, E. Kapon, and J. Mørk, “Selectively-pumped graiting-mirror long wavelength VCSEL,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineerings, 2009). p. 403.
[Crossref]

Iakovlev, V.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS- tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[Crossref]

Kamp, M.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

Kapon, E.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS- tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[Crossref]

I.-S. Chung, A. M. V. Iakovlev, A. Caliman, A. Syrbu, E. Kapon, and J. Mørk, “Selectively-pumped graiting-mirror long wavelength VCSEL,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineerings, 2009). p. 403.
[Crossref]

Karagodsky, V.

Kim, J.-E.

I.-S. Chung, Y. T. Lee, J.-E. Kim, and H. Y. Park, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46–48 (2006).
[Crossref]

Lee, Y. T.

I.-S. Chung, Y. T. Lee, J.-E. Kim, and H. Y. Park, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46–48 (2006).
[Crossref]

Letartre, X.

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Li, L.

Lu, F.

Magnusson, R.

Malureanu, R.

Masanovic, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Masanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).
[Crossref]

Mateus, C.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

Mereuta, A.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS- tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[Crossref]

Moharam, M. G.

Mørk, J.

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Ultracompact resonator with high quality-factor based on a hybrid grating structure,” Opt. Express 23, 14913–14921 (2015).
[Crossref] [PubMed]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11 (2015).
[Crossref]

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107, 181107 (2015).
[Crossref]

A. Taghizadeh, G.C. Park, J. Mørk, and I.-S. Chung, “Hybrid grating reflector with high reflectivity and broad bandwidth,” Opt. Express 22, 21175–21184 (2014).
[Crossref] [PubMed]

L. Carletti, R. Malureanu, J. Mørk, and I.-S. Chung, “High-index-contrast grating reflector with beam steering ability for the transmitted beam,” Opt. Express 19, 23567–23572 (2011).
[Crossref] [PubMed]

I.-S. Chung and J. Mørk, “Silicon-photonics light source realized by III–V/Si-grating-mirror laser,” Appl. Phys. Lett. 97, 151113 (2010).
[Crossref]

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS- tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[Crossref]

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20, 105–107 (2008).
[Crossref]

I.-S. Chung, A. M. V. Iakovlev, A. Caliman, A. Syrbu, E. Kapon, and J. Mørk, “Selectively-pumped graiting-mirror long wavelength VCSEL,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineerings, 2009). p. 403.
[Crossref]

Mørk, Jesper

G. C. Park, W. Xue, E. Semenova, Jesper Mørk, and I.-S. Chung, “III–V/SOI vertical cavity laser structure for 120 Gbit/s speed,” in Advanced Photonics, JT5A (post-deadline) (Optical Society of America, Boston, 2015), p. JT5A.2.

Olivier, N.

Park, G. C.

G. C. Park, A. Taghizadeh, and I.-S. Chung, “Hybrid grating reflectors: Origin of ultrabroad stopband,” Appl. Phys. Lett. 108, 141108 (2016).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11 (2015).
[Crossref]

G. C. Park, W. Xue, E. Semenova, Jesper Mørk, and I.-S. Chung, “III–V/SOI vertical cavity laser structure for 120 Gbit/s speed,” in Advanced Photonics, JT5A (post-deadline) (Optical Society of America, Boston, 2015), p. JT5A.2.

Park, G.C.

Park, H. Y.

I.-S. Chung, Y. T. Lee, J.-E. Kim, and H. Y. Park, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46–48 (2006).
[Crossref]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Piprek, J.

J. Piprek, Semiconductor Optoelectronic Devices (Academic Press, 2003).

Pommet, D. A.

Qiao, P.

Rao, Y.

W. Yang, S. A. Gerke, L. Zhu, C. Chase, Y. Rao, and C. J. Chang-Hasnain, “Long-wavelength tunable detector using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 16, 3803208 (2014).

Regreny, P.

Rojo-Romeo, P.

Schneider, C.

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

Sciancalepore, C.

Seassal, C.

Sedgwick, F. G.

Semenova, E.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11 (2015).
[Crossref]

G. C. Park, W. Xue, E. Semenova, Jesper Mørk, and I.-S. Chung, “III–V/SOI vertical cavity laser structure for 120 Gbit/s speed,” in Advanced Photonics, JT5A (post-deadline) (Optical Society of America, Boston, 2015), p. JT5A.2.

Semenova, E. S.

T. Ansbæk, I.-S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19, 1702306–1702311 (2013).
[Crossref]

Sirbu, A.

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS- tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[Crossref]

Strite, S.

M. S. Unlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev. 78, 607–639 (1995).
[Crossref]

Suzuki, Y.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

Syrbu, A.

I.-S. Chung, A. M. V. Iakovlev, A. Caliman, A. Syrbu, E. Kapon, and J. Mørk, “Selectively-pumped graiting-mirror long wavelength VCSEL,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineerings, 2009). p. 403.
[Crossref]

Taghizadeh, A.

G. C. Park, A. Taghizadeh, and I.-S. Chung, “Hybrid grating reflectors: Origin of ultrabroad stopband,” Appl. Phys. Lett. 108, 141108 (2016).
[Crossref]

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Ultracompact resonator with high quality-factor based on a hybrid grating structure,” Opt. Express 23, 14913–14921 (2015).
[Crossref] [PubMed]

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107, 181107 (2015).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11 (2015).
[Crossref]

A. Taghizadeh, G.C. Park, J. Mørk, and I.-S. Chung, “Hybrid grating reflector with high reflectivity and broad bandwidth,” Opt. Express 22, 21175–21184 (2014).
[Crossref] [PubMed]

Topic, V.

V. Topić and I.-S. Chung, “Comparative study of heat dissipation capabilities of hybrid III–V/SOI vertical cavity lasers,” submitted to IEEE Photon. Technol. Lett.

Unlü, M. S.

M. S. Unlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev. 78, 607–639 (1995).
[Crossref]

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics (PrenticeHall, 2000).

Viktorovitch, P.

Wang, Z.

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
[Crossref] [PubMed]

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

Xue, W.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11 (2015).
[Crossref]

G. C. Park, W. Xue, E. Semenova, Jesper Mørk, and I.-S. Chung, “III–V/SOI vertical cavity laser structure for 120 Gbit/s speed,” in Advanced Photonics, JT5A (post-deadline) (Optical Society of America, Boston, 2015), p. JT5A.2.

Yang, W.

J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
[Crossref] [PubMed]

W. Yang, S. A. Gerke, L. Zhu, C. Chase, Y. Rao, and C. J. Chang-Hasnain, “Long-wavelength tunable detector using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 16, 3803208 (2014).

Yvind, K.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11 (2015).
[Crossref]

T. Ansbæk, I.-S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19, 1702306–1702311 (2013).
[Crossref]

Zhang, B.

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
[Crossref] [PubMed]

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett. 20, 434–436 (2008).
[Crossref]

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

Zhu, L.

J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
[Crossref] [PubMed]

W. Yang, S. A. Gerke, L. Zhu, C. Chase, Y. Rao, and C. J. Chang-Hasnain, “Long-wavelength tunable detector using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 16, 3803208 (2014).

Appl. Phys. Lett. (3)

I.-S. Chung and J. Mørk, “Silicon-photonics light source realized by III–V/Si-grating-mirror laser,” Appl. Phys. Lett. 97, 151113 (2010).
[Crossref]

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical-cavity in-plane heterostructures: Physics and applications,” Appl. Phys. Lett. 107, 181107 (2015).
[Crossref]

G. C. Park, A. Taghizadeh, and I.-S. Chung, “Hybrid grating reflectors: Origin of ultrabroad stopband,” Appl. Phys. Lett. 108, 141108 (2016).
[Crossref]

Appl. Phys. Rev. (1)

M. S. Unlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev. 78, 607–639 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS- tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Ansbæk, I.-S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19, 1702306–1702311 (2013).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

W. Yang, S. A. Gerke, L. Zhu, C. Chase, Y. Rao, and C. J. Chang-Hasnain, “Long-wavelength tunable detector using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 16, 3803208 (2014).

IEEE Photon. Technol. Lett. (4)

I.-S. Chung, Y. T. Lee, J.-E. Kim, and H. Y. Park, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46–48 (2006).
[Crossref]

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett. 20, 434–436 (2008).
[Crossref]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

I.-S. Chung, J. Mørk, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photon. Technol. Lett. 20, 105–107 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Laser Photon. Rev. (1)

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11 (2015).
[Crossref]

Light Sci. Appl. (1)

B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höfling, and H. Deng, “Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity,” Light Sci. Appl. 3, e135 (2014).
[Crossref]

Nat. Photonics (3)

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114, 073601 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

P. Viktorovitch, C. Sciancalepore, B. B. Bakir, X. Letartre, and C. Seassal, “Double photonic crystal vertical-cavity surface-emitting lasers,” Proc. SPIE 8633, 863302 (2013).
[Crossref]

Other (7)

G. C. Park, W. Xue, E. Semenova, Jesper Mørk, and I.-S. Chung, “III–V/SOI vertical cavity laser structure for 120 Gbit/s speed,” in Advanced Photonics, JT5A (post-deadline) (Optical Society of America, Boston, 2015), p. JT5A.2.

V. Topić and I.-S. Chung, “Comparative study of heat dissipation capabilities of hybrid III–V/SOI vertical cavity lasers,” submitted to IEEE Photon. Technol. Lett.

I.-S. Chung, A. M. V. Iakovlev, A. Caliman, A. Syrbu, E. Kapon, and J. Mørk, “Selectively-pumped graiting-mirror long wavelength VCSEL,” in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineerings, 2009). p. 403.
[Crossref]

L. A. Coldren, S. W. Corzine, and M. L. Masanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).
[Crossref]

J. Piprek, Semiconductor Optoelectronic Devices (Academic Press, 2003).

J. T. Verdeyen, Laser Electronics (PrenticeHall, 2000).

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic cross-section of a III–V/SOI RCE-PD based on an HCG and an HG reflector. (b) Schematic cross-section of an HG reflector with an absorbing layer included in the III–V cap layer.
Fig. 2
Fig. 2 (a) Calculated reflectance spectra of a HG with and without considering the absorption in the cap layer for TM polarized light. (b) Calculated reflection delay-time spectrum of the HG in (a). (c) Calculated reflectance spectra of HCGs with sidewall angles of 0° and 4.5°, for TM polarized light. (d) Calculated absorption spectra of a RCE-PD for incident fields with different polarizations. (e) Electric field intensity profile, |Ex| at the absorption peak wavelength in (d). (f) Calculated absorption peak linewidth as a function of the product of mirror reflectances.
Fig. 3
Fig. 3 (a) Optical microscope image of the fabricated sample, seen from the top. (b) Characterization set-up. Red lines represent free-space propagation. (c) Diode characteristic with no incident light.
Fig. 4
Fig. 4 (a) Measured photo-current spectra with TE and TM polarized incident lights. (b) Measured photo-current as a function of voltage at various incident light powers (TM polarization). The laser powers in the inset are readings from the tunable laser.

Tables (1)

Tables Icon

Table 1 Device structure. The III–V cap layer in Fig. 1 is composed of the p-cladding layer to n-cladding layer in this table. The InP HCG has a grating period of 735 nm and a grating bar width of 365 nm, while the Si grating has a period of 735 nm and a bar width of 315 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R HCG ( λ 0 ) = R HG ( λ 0 , α a ( λ 0 ) , d a ) .

Metrics