Abstract

We employ a self-assembly method to fabricate dielectric microsphere arrays that can be transferred to any desired positions. The arrays not only enable far-field, broad-band, high-speed, large-area, and wide-angle field of views but also achieve superresolution reaching λ/6.4. We also find that many proposed theories are insufficient to explain the imaging properties; including the achieved superresolution, effects of immersion, and unusual size-dependent magnification. The half-immersed microspheres certainly do not behave like any ordinary solid immersion lenses and new mechanisms must be incorporated to explain their unusual imaging properties.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolution imaging properties of cascaded microsphere lenses

Yun Deng, Songlin Yang, Yang Xia, Yurong Cao, Jianguo Wang, Fengge Wang, and Yong-Hong Ye
Appl. Opt. 57(20) 5578-5582 (2018)

Influence of the photonic nanojet of microspheres on microsphere imaging

Songlin Yang, Fengge Wang, Yong-hong Ye, Yang Xia, Yun Deng, Jianguo Wang, and Yurong Cao
Opt. Express 25(22) 27551-27558 (2017)

Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers

Kenneth W. Allen, Navid Farahi, Yangcheng Li, Nicholaos I. Limberopoulos, Dennis E. Walker, Augustine M. Urbas, and Vasily N. Astratov
Opt. Express 23(19) 24484-24496 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
    [Crossref]
  2. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
    [Crossref] [PubMed]
  3. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref] [PubMed]
  4. A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
    [Crossref] [PubMed]
  5. L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
    [Crossref] [PubMed]
  6. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
    [Crossref]
  7. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
    [Crossref] [PubMed]
  8. X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
    [Crossref]
  9. Z. Wang and L. Li, “White-light microscopy could exceed 50 nm resolution,” Laser Focus World 47(7), 61 (2011).
  10. S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
    [Crossref]
  11. H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1712–1718 (2014).
    [Crossref] [PubMed]
  12. L. Yao, Y. H. Ye, H. F. Ma, L. L. Cao, and J. L. Hou, “Role of the immersion medium in the microscale spherical lens imaging,” Opt. Commun. 335, 23–27 (2015).
    [Crossref]
  13. A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
    [Crossref]
  14. A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
    [Crossref]
  15. A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40(1), 5–8 (2015).
    [Crossref] [PubMed]
  16. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  17. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
    [Crossref]
  18. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
    [Crossref] [PubMed]
  19. A. Heifetz, J. J. Simpson, S. C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
    [Crossref] [PubMed]
  20. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” J. Opt. Soc. Am. B 29(4), 758 (2012).
    [Crossref]
  21. S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
    [Crossref]
  22. Y. D. Yin and Y. N. Xia, “Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures,” Adv. Mater. 13(4), 267–271 (2001).
    [Crossref]
  23. A. V. Itagi and W. A. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22(12), 2847–2858 (2005).
    [Crossref] [PubMed]
  24. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
    [Crossref] [PubMed]
  25. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
    [Crossref] [PubMed]
  26. C. J. Regan, D. Dominguez, L. G. de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113(18), 183105 (2013).
    [Crossref]

2015 (2)

L. Yao, Y. H. Ye, H. F. Ma, L. L. Cao, and J. L. Hou, “Role of the immersion medium in the microscale spherical lens imaging,” Opt. Commun. 335, 23–27 (2015).
[Crossref]

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40(1), 5–8 (2015).
[Crossref] [PubMed]

2014 (4)

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

2013 (5)

C. J. Regan, D. Dominguez, L. G. de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113(18), 183105 (2013).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

2012 (4)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[Crossref] [PubMed]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” J. Opt. Soc. Am. B 29(4), 758 (2012).
[Crossref]

2011 (3)

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Z. Wang and L. Li, “White-light microscopy could exceed 50 nm resolution,” Laser Focus World 47(7), 61 (2011).

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

2005 (2)

2004 (1)

2001 (1)

Y. D. Yin and Y. N. Xia, “Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures,” Adv. Mater. 13(4), 267–271 (2001).
[Crossref]

Astratov, V. N.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Auwerx, J.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Backman, V.

Ben-Aryeh, Y.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Bernussi, A. A.

C. J. Regan, D. Dominguez, L. G. de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113(18), 183105 (2013).
[Crossref]

Bonod, N.

Cao, L. L.

L. Yao, Y. H. Ye, H. F. Ma, L. L. Cao, and J. L. Hou, “Role of the immersion medium in the microscale spherical lens imaging,” Opt. Commun. 335, 23–27 (2015).
[Crossref]

Cárabe, A.

Challener, W. A.

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

Dal Negro, L.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Darafsheh, A.

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40(1), 5–8 (2015).
[Crossref] [PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

de Peralta, L. G.

C. J. Regan, D. Dominguez, L. G. de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113(18), 183105 (2013).
[Crossref]

Derov, J. S.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Devilez, A.

Dominguez, D.

C. J. Regan, D. Dominguez, L. G. de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113(18), 183105 (2013).
[Crossref]

Feng, C.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Ferrand, P.

Finlay, J. C.

Ge, J.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Geints, Y. E.

Gérard, D.

Gijs, M. A. M.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Gu, Z.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Guardiola, C.

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Hao, X.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Heifetz, A.

A. Heifetz, J. J. Simpson, S. C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15(25), 17334–17342 (2007).
[Crossref] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Hong, M.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Hou, J. L.

L. Yao, Y. H. Ye, H. F. Ma, L. L. Cao, and J. L. Hou, “Role of the immersion medium in the microscale spherical lens imaging,” Opt. Commun. 335, 23–27 (2015).
[Crossref]

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Huynen, I.

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[Crossref] [PubMed]

Itagi, A. V.

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Kong, S. C.

Krivitsky, L. A.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

Ku, Y.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Kuang, C.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Lecler, S.

Lee, S.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Li, L.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Z. Wang and L. Li, “White-light microscopy could exceed 50 nm resolution,” Laser Focus World 47(7), 61 (2011).

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Li, S.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Li, X.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Li, Y.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Limberopoulos, N. I.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Liu, X.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

Liu, Z.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Ma, H. F.

L. Yao, Y. H. Ye, H. F. Ma, L. L. Cao, and J. L. Hou, “Role of the immersion medium in the microscale spherical lens imaging,” Opt. Commun. 335, 23–27 (2015).
[Crossref]

Melinte, S.

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[Crossref] [PubMed]

Meyrueis, P.

Moullan, N.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Palovcak, A.

Panina, E. K.

Pianta, M.

Popov, E.

Regan, C. J.

C. J. Regan, D. Dominguez, L. G. de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113(18), 183105 (2013).
[Crossref]

Rigneault, H.

Sahakian, A. V.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

Simpson, J. J.

Stout, B.

Taflove, A.

Takakura, Y.

Vlad, A.

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[Crossref] [PubMed]

Walker, D. E.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Wang, J. J.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

Wang, T.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Wang, Y.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Wang, Z.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Z. Wang and L. Li, “White-light microscopy could exceed 50 nm resolution,” Laser Focus World 47(7), 61 (2011).

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Wenger, J.

Xia, Y. N.

Y. D. Yin and Y. N. Xia, “Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures,” Adv. Mater. 13(4), 267–271 (2001).
[Crossref]

Yan, Y.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Yang, H.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Yao, L.

L. Yao, Y. H. Ye, H. F. Ma, L. L. Cao, and J. L. Hou, “Role of the immersion medium in the microscale spherical lens imaging,” Opt. Commun. 335, 23–27 (2015).
[Crossref]

Ye, Y. H.

L. Yao, Y. H. Ye, H. F. Ma, L. L. Cao, and J. L. Hou, “Role of the immersion medium in the microscale spherical lens imaging,” Opt. Commun. 335, 23–27 (2015).
[Crossref]

Yin, Y. D.

Y. D. Yin and Y. N. Xia, “Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures,” Adv. Mater. 13(4), 267–271 (2001).
[Crossref]

Zemlyanov, A. A.

Zhang, H.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

ACS Nano (1)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. D. Yin and Y. N. Xia, “Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures,” Adv. Mater. 13(4), 267–271 (2001).
[Crossref]

Appl. Phys. Lett. (4)

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[Crossref]

J. Appl. Phys. (1)

C. J. Regan, D. Dominguez, L. G. de Peralta, and A. A. Bernussi, “Far-field optical superlenses without metal,” J. Appl. Phys. 113(18), 183105 (2013).
[Crossref]

J. Opt. (2)

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

Z. Wang and L. Li, “White-light microscopy could exceed 50 nm resolution,” Laser Focus World 47(7), 61 (2011).

Light Sci. Appl. (2)

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Nanotechnology (1)

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Yao, Y. H. Ye, H. F. Ma, L. L. Cao, and J. L. Hou, “Role of the immersion medium in the microscale spherical lens imaging,” Opt. Commun. 335, 23–27 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Sci. Rep. (1)

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref] [PubMed]

Small (1)

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1712–1718 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematics of fabricating self-assembled microlens arrays on a copper grid. Here a copper grid consisting of square hole arrays is glued on a supporting washer and it is fixed on the wall of a chamber filled with water or alcohol containing dispersed microspheres. As the liquid is slowly pumped out by the syringe, the surface of the liquid drags the microspheres across the copper grid, which serves physical trap to self-assemble the microspheres into regular patterns. (b) SEM image of the microlens array. After assembling the microlens arrays, they are coated by PMMA, resulting in a half-immersed microsphere. (c) SEM image of a PMMA-coated sapphire microsphere. (d) SEM image of a grating consisting of 200nm-wide gold lines and separated by 100nm gaps. (e-f) Optical images of the grating respectively taken at a slant angle of (e) 20 and (f) 40 degrees.
Fig. 2
Fig. 2 (a-c) Optical images of blue-ray DVD samples and the corresponding intensity line profiles at λ = 632.8nm He-Ne laser illumination under SiO2/PMMA microlenses of diameters (a) 12μm, (b) 39μm, and (c) 89μm, respectively. The visibilities are respectively found to be 0.29, 0.18, and 0.15, considerably exceeding the diffraction-limited visibility 0.053 of an idealized solid immersion lens made of SiO2. (d) An SEM image of a tailored structure consisting of unparalleled two gold lines on a glass substrate. (e) An out-of-focus image taken by a confocal microscope with a microlens (denoted by the white-dotted circle) on top of two gold lines (denoted by the two red lines) separated by 90nm. (f) An optical image of the two gold lines (denoted by the white arrows) taken by a confocal microscope under incident λ = 634nm. The FWHM of the PSF is found to be 99nm, corresponding to λ/6.4.
Fig. 3
Fig. 3 FWHM of PSF (normalized to λ = 600nm) vs. n/nm for different microspheres in air (open symbols), half-immersed (half-filled symbols), or fully-immersed (solid symbols) in various media. The arrows at the symbols denote that the microlens cannot resolve a blue-ray DVD pattern and resolution is poor than 0.61λ. The simulation result from [11] is shown by the dashed curve.
Fig. 4
Fig. 4 Magnification vs. diameters of various microspheres that are either half-immersed (half-filled symbols) or fully-immersed (solid symbols) in different media. The lines are guides to the eyes.

Metrics