Abstract

We present ultra-broadband room temperature monolithic terahertz quantum cascade laser (QCL) sources based on intra-cavity difference frequency generation, emitting continuously more than one octave in frequency between 1.6 and 3.8 THz, with a peak output power of ~200 μW. Broadband terahertz emission is realized by nonlinear mixing between single-mode and multi-mode spectra due to distributed feedback grating and Fabry-Perot cavity, respectively, in a mid-infrared QCL with dual-upper-state active region design. Besides, at low temperature of 150 K, the device produces a peak power of ~1.0 mW with a broadband THz emission centered at 2.5 THz, ranging from 1.5 to 3.7 THz.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz imaging with room-temperature terahertz difference-frequency quantum-cascade laser sources

Atsushi Nakanishi, Kazuue Fujita, Kazuki Horita, and Hironori Takahashi
Opt. Express 27(3) 1884-1893 (2019)

High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi
Opt. Express 21(1) 968-973 (2013)

Quantum cascade lasers: from tool to product

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken
Opt. Express 23(7) 8462-8475 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  3. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [Crossref]
  4. S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
    [Crossref] [PubMed]
  5. D. Turčinková, G. Scalari, F. Castellano, M. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
    [Crossref]
  6. D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
    [Crossref]
  7. M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
    [Crossref]
  8. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
    [Crossref]
  9. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
    [Crossref]
  10. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
    [Crossref]
  11. Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16(9), 094002 (2014).
    [Crossref]
  12. K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
    [Crossref]
  13. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
    [Crossref]
  14. K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
    [Crossref] [PubMed]
  15. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
    [Crossref]
  16. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
    [Crossref] [PubMed]
  17. K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
    [Crossref]
  18. K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
    [Crossref]
  19. K. Fujita, S. Furuta, T. Dougakiuchi, A. Sugiyama, T. Edamura, and M. Yamanishi, “Broad-gain (Δλ/λ0</~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers,” Opt. Express 19(3), 2694–2701 (2011).
    [Crossref] [PubMed]
  20. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, A. Ito, T. Dougakiuchi, T. Edamura, and M. Yamanishi, “High-performance quantum cascade lasers with wide electroluminescence (~600 cm−1), operating in continuous-wave above 100 °C,” Appl. Phys. Lett. 98(23), 231102 (2011).
    [Crossref]
  21. T. Dougakiuchi, K. Fujita, A. Sugiyama, A. Ito, N. Akikusa, and T. Edamura, “Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10 μm) range,” Opt. Express 22(17), 19930–19935 (2014).
    [Crossref] [PubMed]
  22. Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
    [Crossref] [PubMed]
  23. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ~8.6μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
    [Crossref]
  24. Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
    [Crossref] [PubMed]
  25. M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
    [Crossref]
  26. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  27. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
    [Crossref]
  28. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
    [Crossref] [PubMed]

2016 (2)

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref] [PubMed]

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref] [PubMed]

2015 (3)

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

2014 (6)

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16(9), 094002 (2014).
[Crossref]

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

T. Dougakiuchi, K. Fujita, A. Sugiyama, A. Ito, N. Akikusa, and T. Edamura, “Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10 μm) range,” Opt. Express 22(17), 19930–19935 (2014).
[Crossref] [PubMed]

2013 (1)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

2012 (3)

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

2011 (4)

K. Fujita, S. Furuta, T. Dougakiuchi, A. Sugiyama, T. Edamura, and M. Yamanishi, “Broad-gain (Δλ/λ0</~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers,” Opt. Express 19(3), 2694–2701 (2011).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

D. Turčinková, G. Scalari, F. Castellano, M. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, A. Ito, T. Dougakiuchi, T. Edamura, and M. Yamanishi, “High-performance quantum cascade lasers with wide electroluminescence (~600 cm−1), operating in continuous-wave above 100 °C,” Appl. Phys. Lett. 98(23), 231102 (2011).
[Crossref]

2010 (2)

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ~8.6μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[Crossref]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[Crossref]

2008 (2)

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[Crossref]

2007 (3)

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Adams, R. W.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Akikusa, N.

T. Dougakiuchi, K. Fujita, A. Sugiyama, A. Ito, N. Akikusa, and T. Edamura, “Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10 μm) range,” Opt. Express 22(17), 19930–19935 (2014).
[Crossref] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ~8.6μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[Crossref]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[Crossref]

Amann, M. C.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref] [PubMed]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16(9), 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Amanti, M.

D. Turčinková, G. Scalari, F. Castellano, M. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

Bai, Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

Ban, D.

Bandyopadhyay, N.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

Beck, M.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
[Crossref]

D. Turčinková, G. Scalari, F. Castellano, M. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Belkin, M. A.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref] [PubMed]

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16(9), 094002 (2014).
[Crossref]

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Belyanin, A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Blaser, S.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Boehm, G.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref] [PubMed]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16(9), 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Burghoff, D.

D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Cai, X.

D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Capasso, F.

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Castellano, F.

D. Turčinková, G. Scalari, F. Castellano, M. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

Chan, C. W.

Chan, C. W. I.

D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Cho, A. Y.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Choutagunta, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Demmerle, F.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref] [PubMed]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16(9), 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Dougakiuchi, T.

Dupont, E.

Edamura, T.

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

T. Dougakiuchi, K. Fujita, A. Sugiyama, A. Ito, N. Akikusa, and T. Edamura, “Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10 μm) range,” Opt. Express 22(17), 19930–19935 (2014).
[Crossref] [PubMed]

K. Fujita, S. Furuta, T. Dougakiuchi, A. Sugiyama, T. Edamura, and M. Yamanishi, “Broad-gain (Δλ/λ0</~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers,” Opt. Express 19(3), 2694–2701 (2011).
[Crossref] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, A. Ito, T. Dougakiuchi, T. Edamura, and M. Yamanishi, “High-performance quantum cascade lasers with wide electroluminescence (~600 cm−1), operating in continuous-wave above 100 °C,” Appl. Phys. Lett. 98(23), 231102 (2011).
[Crossref]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ~8.6μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[Crossref]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[Crossref]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[Crossref]

Faist, J.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

D. Turčinková, G. Scalari, F. Castellano, M. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Fathololoumi, S.

Fischer, M.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Fujita, K.

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

T. Dougakiuchi, K. Fujita, A. Sugiyama, A. Ito, N. Akikusa, and T. Edamura, “Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10 μm) range,” Opt. Express 22(17), 19930–19935 (2014).
[Crossref] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, A. Ito, T. Dougakiuchi, T. Edamura, and M. Yamanishi, “High-performance quantum cascade lasers with wide electroluminescence (~600 cm−1), operating in continuous-wave above 100 °C,” Appl. Phys. Lett. 98(23), 231102 (2011).
[Crossref]

K. Fujita, S. Furuta, T. Dougakiuchi, A. Sugiyama, T. Edamura, and M. Yamanishi, “Broad-gain (Δλ/λ0</~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers,” Opt. Express 19(3), 2694–2701 (2011).
[Crossref] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ~8.6μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[Crossref]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[Crossref]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[Crossref]

Furuta, S.

K. Fujita, S. Furuta, T. Dougakiuchi, A. Sugiyama, T. Edamura, and M. Yamanishi, “Broad-gain (Δλ/λ0</~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers,” Opt. Express 19(3), 2694–2701 (2011).
[Crossref] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, A. Ito, T. Dougakiuchi, T. Edamura, and M. Yamanishi, “High-performance quantum cascade lasers with wide electroluminescence (~600 cm−1), operating in continuous-wave above 100 °C,” Appl. Phys. Lett. 98(23), 231102 (2011).
[Crossref]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ~8.6μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[Crossref]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[Crossref]

Gao, J.

D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Grasse, C.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Han, N.

D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Hayton, D. J.

D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Heydari, D.

Hitaka, M.

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

Hu, Q.

Hugi, A.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Ito, A.

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

T. Dougakiuchi, K. Fujita, A. Sugiyama, A. Ito, N. Akikusa, and T. Edamura, “Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10 μm) range,” Opt. Express 22(17), 19930–19935 (2014).
[Crossref] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, A. Ito, T. Dougakiuchi, T. Edamura, and M. Yamanishi, “High-performance quantum cascade lasers with wide electroluminescence (~600 cm−1), operating in continuous-wave above 100 °C,” Appl. Phys. Lett. 98(23), 231102 (2011).
[Crossref]

Jang, M.

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Jiang, A.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref] [PubMed]

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jiang, Y.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref] [PubMed]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16(9), 094002 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jirauschek, C.

Jung, S.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref] [PubMed]

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16(9), 094002 (2014).
[Crossref]

Kan, H.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ~8.6μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[Crossref]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[Crossref]

Kao, T.

D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Kim, J. H.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref] [PubMed]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Laframboise, S. R.

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Liu, H. C.

Lu, Q.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref] [PubMed]

Lu, Q. Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

Mátyás, A.

Oakley, D. C.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Ochiai, T.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, A. Ito, T. Dougakiuchi, T. Edamura, and M. Yamanishi, “High-performance quantum cascade lasers with wide electroluminescence (~600 cm−1), operating in continuous-wave above 100 °C,” Appl. Phys. Lett. 98(23), 231102 (2011).
[Crossref]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ~8.6μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[Crossref]

Razeghi, M.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref] [PubMed]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

Reno, J. L.

D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rösch, M.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
[Crossref]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Scalari, G.

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
[Crossref]

D. Turčinková, G. Scalari, F. Castellano, M. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

Sengupta, S.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref] [PubMed]

Sivco, D. L.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Slivken, S.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref] [PubMed]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

Sugiyama, A.

T. Dougakiuchi, K. Fujita, A. Sugiyama, A. Ito, N. Akikusa, and T. Edamura, “Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10 μm) range,” Opt. Express 22(17), 19930–19935 (2014).
[Crossref] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, A. Ito, T. Dougakiuchi, T. Edamura, and M. Yamanishi, “High-performance quantum cascade lasers with wide electroluminescence (~600 cm−1), operating in continuous-wave above 100 °C,” Appl. Phys. Lett. 98(23), 231102 (2011).
[Crossref]

K. Fujita, S. Furuta, T. Dougakiuchi, A. Sugiyama, T. Edamura, and M. Yamanishi, “Broad-gain (Δλ/λ0</~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers,” Opt. Express 19(3), 2694–2701 (2011).
[Crossref] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ~8.6μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Troccoli, M.

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

Turcinková, D.

D. Turčinková, G. Scalari, F. Castellano, M. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

Turner, G. W.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Vijayraghavan, K.

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref] [PubMed]

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16(9), 094002 (2014).
[Crossref]

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Villares, G.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Vineis, C. J.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

Vizbaras, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Wang, X.

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

Wasilewski, Z. R.

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Wittmann, A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Wu, D.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref] [PubMed]

Xie, F.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Yamanishi, M.

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

K. Fujita, S. Furuta, T. Dougakiuchi, A. Sugiyama, T. Edamura, and M. Yamanishi, “Broad-gain (Δλ/λ0</~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers,” Opt. Express 19(3), 2694–2701 (2011).
[Crossref] [PubMed]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, A. Ito, T. Dougakiuchi, T. Edamura, and M. Yamanishi, “High-performance quantum cascade lasers with wide electroluminescence (~600 cm−1), operating in continuous-wave above 100 °C,” Appl. Phys. Lett. 98(23), 231102 (2011).
[Crossref]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ~8.6μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[Crossref]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[Crossref]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[Crossref]

Yang, Y.

D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

Zhou, W.

Appl. Phys. Lett. (8)

D. Turčinková, G. Scalari, F. Castellano, M. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 99(13), 131106 (2011).
[Crossref]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100(25), 251104 (2012).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, A. Ito, T. Dougakiuchi, T. Edamura, and M. Yamanishi, “High-performance quantum cascade lasers with wide electroluminescence (~600 cm−1), operating in continuous-wave above 100 °C,” Appl. Phys. Lett. 98(23), 231102 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-performance λ~8.6μm quantum cascade lasers with single phonon-continuum depopulation structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010).
[Crossref]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, “THz difference-frequency generation in MOVPE-grown quantum cascade lasers,” IEEE Photonics Technol. Lett. 26, 391–394 (2014).
[Crossref]

J. Opt. (1)

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range,” J. Opt. 16(9), 094002 (2014).
[Crossref]

Nat. Commun. (1)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Nat. Photonics (5)

D. Burghoff, T. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8(6), 462–467 (2014).
[Crossref]

M. Rösch, G. Scalari, M. Beck, and J. Faist, “Octave-spanning semiconductor laser,” Nat. Photonics 9(1), 42–47 (2014).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Nature (2)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Scr. (1)

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

Sci. Rep. (2)

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6, 23595 (2016).
[Crossref] [PubMed]

Y. Jiang, K. Vijayraghavan, S. Jung, A. Jiang, J. H. Kim, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Spectroscopic study of terahertz generation in mid-infrared quantum cascade lasers,” Sci. Rep. 6, 21169 (2016).
[Crossref] [PubMed]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the DFG process for dual-upper-state active region and schematic conduction band diagram and moduli squared of the relevant wave functions of active/injector parts in the active region. An electric field of 34 kV/cm was applied to align the structure. The In0.53Ga0.47As/In0.52Al0.48As layer sequence of one period of the active layers, in angstroms, starting from the injection barrier (toward the right side) is as follows: 38/38/23/85/10/69/11/56/12/48/13/45/14/42/16/41/18/40/23/40/26/40 where the InAlAs barrier layers are in bold, the InGaAs quantum well layers are in roman, and the doped layers (Si, 1.0 × 1017 cm−3) are underlined. (b) Vertical refractive index profile in our devices for mid-IR (~11 μm, black line). The computed mid-IR waveguide mode is also shown.
Fig. 2
Fig. 2 Room-temperature current-light (I-L) output characteristics of the mid-IR (dashed lines, bottom and left axis) and THz emission (solid line, bottom and right axis) of a 3 mm-long, 14 μm-wide DFG-QCL measured in pulsed mode (width of 200 ns and repetition rate of 50 kHz). The I-L curve for FP DFG-QCL taken from same wafer is also shown. The inset shows average power as a function of duty cycle.
Fig. 3
Fig. 3 Room temperature mid-IR (a) and THz (b) spectra at different currents of a 3 mm-long, 14 μm-wide DFG-QCL in Fig. 2. (b) bottom: THz DFG spectra simulated from mid-IR spectra. For mid-IR spectra in (a), insets show enlarged spectra of FP emissions.
Fig. 4
Fig. 4 (a) Current- THz light output characteristics of the 14 μm-wide and 3 mm-long DFG-QCL at different heat-sink temperatures measured in pulsed mode (width of 200 ns and repetition rate of 50 kHz). The voltage-current characteristics at 150 K and 295 K are also shown. (b) Temperature dependence of the mid-IR-to-THz conversion efficiency (left axis) and product of mid-IR pump powers for the device in (a).
Fig. 5
Fig. 5 Mid-IR (a) and THz (b) spectra at different temperatures of a 3 mm-long, 14 μm-wide DFG-QCL in Fig. 4. For mid-IR spectra in (a), insets show enlarged spectra of FP emissions.
Fig. 6
Fig. 6 Performance of a 3 mm-long x 14 μm-wide DFG-QCL with narrower FP spectra, operated at room temperature. (a) THz peak power (red solid line, bottom and inner right axis), the mid-IR pump power (dashed lines, bottom and left axes), and voltage (black solid line, bottom and outer right axis) vs. current density. The inset shows the mid-IR spectrum. (b) Peak THz output powers versus the products of mid-IR pump powers for the device in (a) and the broadband device in Fig. 2. The inset shows THz spectrum for the device in (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d dz ( I THz ω THz )= d dz ( I 2 ω 2 )= d dz ( I 1 ω 1 )( I 1 ω 1 )( I 2 ω 2 )

Metrics