Abstract

There has long existed a debate over whether analog or digital optical link is more suitable for wireless convergence applications. Digital link achieves the highest fidelity, with the sacrifice of huge bandwidth due to the high resolution of digitization, and large power consumption due to the exhaustive digital data recovery. Analog link avoids these drawbacks, but it inevitably suffers from the SNR degradation. In this paper, we propose the angle modulation for analog optical link, which successfully breaks the SNR ceiling of amplitude modulation, and achieves ultrahigh link fidelity. Using the digital link (CPRI) equivalent bandwidth, angle modulation exhibits around 30-dB SNR advantage over the conventional amplitude modulation. Combined with its high tolerance on link nonlinearity, angle modulation has great potential in the future SNR-hungry analog optical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital Mobile Fronthaul Based on Delta–Sigma Modulation for 32 LTE Carrier Aggregation and FBMC Signals

Jing Wang, Zhenhua Yu, Kai Ying, Junwen Zhang, Feng Lu, Mu Xu, Lin Cheng, Xiaoli Ma, and Gee-Kung Chang
J. Opt. Commun. Netw. 9(2) A233-A244 (2017)

Linearization of phase-modulated analog optical links using a four-wave mixing comb source

Amit Bhatia, Hong-Fu Ting, and Mark A. Foster
Opt. Express 22(25) 30899-30909 (2014)

Transmission of wireless signals using space division multiplexing in few mode fibers

Xiaojun Liang, Wei-Ling Li, William A. Wood, John D. Downie, Jason E. Hurley, and Anthony Ng’oma
Opt. Express 26(16) 20507-20518 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Trans. Wirel. Commun. 17(3), 10–22 (2010).
    [Crossref]
  2. Y. Kishiyama, A. Benjebbour, T. Nakamura, and H. Ishii, “Future steps of LTE-A: evolution toward integration of local area and wide area systems,” IEEE Trans. Wirel. Commun. 20(1), 12–18 (2013).
    [Crossref]
  3. China Mobile Research Institute, “C-RAN: The road towards green RAN,” whitepaper v. 2.6, 2013.
  4. A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightwave Technol. 33(5), 1077–1083 (2015).
    [Crossref]
  5. D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
    [Crossref]
  6. A. Nirmalathas, P. A. Gamage, C. Lim, D. Novak, and R. Waterhouse, “Digitized Radio-Over-Fiber Technologies for Converged Optical Wireless Access Network,” J. Lightwave Technol. 28(16), 2366–2375 (2010).
    [Crossref]
  7. C. P. R. I. Specification, v. 7.0, 2015. [Online] Available: http://www.cpri.info
  8. OBSAI specification, v. 2.0, 2006. [Online] Available: http://www.obsai.com
  9. A. Caballero, S.-W. Wong, D. Zibar, L. G. Kazovsky, and I. Tafur Monroy, “Distributed MIMO Antenna Architecture for Wireless-over-Fiber Backhaul with Multicarrier Optical Phase Modulation,” Proc. OFC, Los Angeles, CA, OWT8 (2011).
    [Crossref]
  10. D. Zibar, X. Yu, C. Peucheret, P. Jeppesen, and I. T. Monroy, “Digital coherent receiver for phase-modulated radio-over-fiber optical links,” IEEE Photonics Technol. Lett. 21(3), 155–157 (2009).
    [Crossref]
  11. W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
    [Crossref]
  12. S. Cho, H. Park, H. S. Chung, K. Doo, S. S. Lee, and J. H. Lee, “Cost-effective Next Generation Mobile Fronthaul Architecture with Multi-IF Carrier Transmission Scheme,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Tu2B.6.
    [Crossref]
  13. X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of Bandwidth-Efficient Mobile Fronthaul Enabling Seamless Aggregation of 36 E-UTRA-Like Wireless Signals in a Single 1.1-GHz Wavelength Channel,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2J.2.
    [Crossref]
  14. A. P. Lathi and Z. Ding, Modern Digital and Analog Communication Systems (Oxford University Press, 2009).
  15. F. Mogensen, B. Pedersen, and B. Nielsen, “New polarisation-insensitive and robust all-fibre-optic interferometer for FM to AM conversion in optical communication,” Electron. Lett. 29(16), 1469–1471 (1993).
    [Crossref]
  16. J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett. 38(5), 246–247 (2002).
    [Crossref]
  17. NSN, Nokia Corporation, “BS EVM for DL 256QAM,” R4–134065, 3GPP meeting R4–68, Barcelona, Spain, (2013).

2015 (1)

2013 (1)

Y. Kishiyama, A. Benjebbour, T. Nakamura, and H. Ishii, “Future steps of LTE-A: evolution toward integration of local area and wide area systems,” IEEE Trans. Wirel. Commun. 20(1), 12–18 (2013).
[Crossref]

2010 (3)

2009 (1)

D. Zibar, X. Yu, C. Peucheret, P. Jeppesen, and I. T. Monroy, “Digital coherent receiver for phase-modulated radio-over-fiber optical links,” IEEE Photonics Technol. Lett. 21(3), 155–157 (2009).
[Crossref]

2002 (1)

J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett. 38(5), 246–247 (2002).
[Crossref]

1995 (1)

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

1993 (1)

F. Mogensen, B. Pedersen, and B. Nielsen, “New polarisation-insensitive and robust all-fibre-optic interferometer for FM to AM conversion in optical communication,” Electron. Lett. 29(16), 1469–1471 (1993).
[Crossref]

Armstrong, J.

J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett. 38(5), 246–247 (2002).
[Crossref]

Benjebbour, A.

Y. Kishiyama, A. Benjebbour, T. Nakamura, and H. Ishii, “Future steps of LTE-A: evolution toward integration of local area and wide area systems,” IEEE Trans. Wirel. Commun. 20(1), 12–18 (2013).
[Crossref]

Bridges, W. B.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

Chanclou, P.

Diallo, T.

Gamage, P. A.

Ghosh, A.

A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Trans. Wirel. Commun. 17(3), 10–22 (2010).
[Crossref]

Gomes, N. J.

Ishii, H.

Y. Kishiyama, A. Benjebbour, T. Nakamura, and H. Ishii, “Future steps of LTE-A: evolution toward integration of local area and wide area systems,” IEEE Trans. Wirel. Commun. 20(1), 12–18 (2013).
[Crossref]

Jeppesen, P.

D. Zibar, X. Yu, C. Peucheret, P. Jeppesen, and I. T. Monroy, “Digital coherent receiver for phase-modulated radio-over-fiber optical links,” IEEE Photonics Technol. Lett. 21(3), 155–157 (2009).
[Crossref]

Kishiyama, Y.

Y. Kishiyama, A. Benjebbour, T. Nakamura, and H. Ishii, “Future steps of LTE-A: evolution toward integration of local area and wide area systems,” IEEE Trans. Wirel. Commun. 20(1), 12–18 (2013).
[Crossref]

Lim, C.

Mangalvedhe, N.

A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Trans. Wirel. Commun. 17(3), 10–22 (2010).
[Crossref]

Mogensen, F.

F. Mogensen, B. Pedersen, and B. Nielsen, “New polarisation-insensitive and robust all-fibre-optic interferometer for FM to AM conversion in optical communication,” Electron. Lett. 29(16), 1469–1471 (1993).
[Crossref]

Mondal, B.

A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Trans. Wirel. Commun. 17(3), 10–22 (2010).
[Crossref]

Monroy, I. T.

D. Zibar, X. Yu, C. Peucheret, P. Jeppesen, and I. T. Monroy, “Digital coherent receiver for phase-modulated radio-over-fiber optical links,” IEEE Photonics Technol. Lett. 21(3), 155–157 (2009).
[Crossref]

Nakamura, T.

Y. Kishiyama, A. Benjebbour, T. Nakamura, and H. Ishii, “Future steps of LTE-A: evolution toward integration of local area and wide area systems,” IEEE Trans. Wirel. Commun. 20(1), 12–18 (2013).
[Crossref]

Nielsen, B.

F. Mogensen, B. Pedersen, and B. Nielsen, “New polarisation-insensitive and robust all-fibre-optic interferometer for FM to AM conversion in optical communication,” Electron. Lett. 29(16), 1469–1471 (1993).
[Crossref]

Nirmalathas, A.

Nkansah, A.

Novak, D.

Pedersen, B.

F. Mogensen, B. Pedersen, and B. Nielsen, “New polarisation-insensitive and robust all-fibre-optic interferometer for FM to AM conversion in optical communication,” Electron. Lett. 29(16), 1469–1471 (1993).
[Crossref]

Peucheret, C.

D. Zibar, X. Yu, C. Peucheret, P. Jeppesen, and I. T. Monroy, “Digital coherent receiver for phase-modulated radio-over-fiber optical links,” IEEE Photonics Technol. Lett. 21(3), 155–157 (2009).
[Crossref]

Pizzinat, A.

Ratasuk, R.

A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Trans. Wirel. Commun. 17(3), 10–22 (2010).
[Crossref]

Saliou, F.

Schaffner, J. H.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

Thomas, T.

A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Trans. Wirel. Commun. 17(3), 10–22 (2010).
[Crossref]

Wake, D.

Waterhouse, R.

Yu, X.

D. Zibar, X. Yu, C. Peucheret, P. Jeppesen, and I. T. Monroy, “Digital coherent receiver for phase-modulated radio-over-fiber optical links,” IEEE Photonics Technol. Lett. 21(3), 155–157 (2009).
[Crossref]

Zibar, D.

D. Zibar, X. Yu, C. Peucheret, P. Jeppesen, and I. T. Monroy, “Digital coherent receiver for phase-modulated radio-over-fiber optical links,” IEEE Photonics Technol. Lett. 21(3), 155–157 (2009).
[Crossref]

Electron. Lett. (2)

F. Mogensen, B. Pedersen, and B. Nielsen, “New polarisation-insensitive and robust all-fibre-optic interferometer for FM to AM conversion in optical communication,” Electron. Lett. 29(16), 1469–1471 (1993).
[Crossref]

J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett. 38(5), 246–247 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Zibar, X. Yu, C. Peucheret, P. Jeppesen, and I. T. Monroy, “Digital coherent receiver for phase-modulated radio-over-fiber optical links,” IEEE Photonics Technol. Lett. 21(3), 155–157 (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

IEEE Trans. Wirel. Commun. (2)

A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Trans. Wirel. Commun. 17(3), 10–22 (2010).
[Crossref]

Y. Kishiyama, A. Benjebbour, T. Nakamura, and H. Ishii, “Future steps of LTE-A: evolution toward integration of local area and wide area systems,” IEEE Trans. Wirel. Commun. 20(1), 12–18 (2013).
[Crossref]

J. Lightwave Technol. (3)

Other (8)

China Mobile Research Institute, “C-RAN: The road towards green RAN,” whitepaper v. 2.6, 2013.

S. Cho, H. Park, H. S. Chung, K. Doo, S. S. Lee, and J. H. Lee, “Cost-effective Next Generation Mobile Fronthaul Architecture with Multi-IF Carrier Transmission Scheme,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Tu2B.6.
[Crossref]

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of Bandwidth-Efficient Mobile Fronthaul Enabling Seamless Aggregation of 36 E-UTRA-Like Wireless Signals in a Single 1.1-GHz Wavelength Channel,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2J.2.
[Crossref]

A. P. Lathi and Z. Ding, Modern Digital and Analog Communication Systems (Oxford University Press, 2009).

NSN, Nokia Corporation, “BS EVM for DL 256QAM,” R4–134065, 3GPP meeting R4–68, Barcelona, Spain, (2013).

C. P. R. I. Specification, v. 7.0, 2015. [Online] Available: http://www.cpri.info

OBSAI specification, v. 2.0, 2006. [Online] Available: http://www.obsai.com

A. Caballero, S.-W. Wong, D. Zibar, L. G. Kazovsky, and I. Tafur Monroy, “Distributed MIMO Antenna Architecture for Wireless-over-Fiber Backhaul with Multicarrier Optical Phase Modulation,” Proc. OFC, Los Angeles, CA, OWT8 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Analog optical link using channel aggregation and angle modulation.
Fig. 2
Fig. 2 Angle (de)modulation schemes. RF-domain (a) modulation; (b) demodulation. Optical domain: (c) modulation; (d) demodulation with direct detection; (e) demodulation with coherent detection. IF: intermediate frequency; IM: intensity modulation; (B-)PD: (balanced) photodiode; LO: local oscillator; I/Q: in-phase/quadrature part of signal.
Fig. 3
Fig. 3 Impact of RMS(φ(t)) on the NBM system. (a) signal bandwidth; (b) system SNR. The SNR values in the legend are referred to the AMP-M system with the same receiver noise.
Fig. 4
Fig. 4 The derivative of PM drive signal d[φ(t)]/dt when RMS = 1: (a) time-domain stream; (b) distribution; (c) PM signal bandwidth as the function of RMS(φ(t)).
Fig. 5
Fig. 5 Experiment setup. (De-)Mod.: (De-)modulation; DAC: digital-to-analog converter; ADC: analog-to-digital converter; DFB: distributed feedback laser; SSMF: standard single mode fiber; PIN: PIN diode. The shaded blocks are realized by offline DSP. Inset: (i) Transmitter DSP; (ii) Receiver DSP; (iii) optical spectra comparsion between PM and AMP-M.
Fig. 6
Fig. 6 100-MHz channel ANG-M system performance. (a) SNR as the function of ANG-M bandwidth; (b) SNR as the function of signal frequency; (c-d) constellations.
Fig. 7
Fig. 7 Received electrical spectra of 24 20-MHz LTE CH-A channels. (a) AMP-M; (b) PM.
Fig. 8
Fig. 8 24 20-MHz LTE bands ANG-M system performance. (a) SNR as the function of PM bandwidth; constellations: (b) AMP-M; (c) PM with 5.28-GHz bandwidth. BTB: back-to-back.
Fig. 9
Fig. 9 Nonlinearity tolerance comparison between AMP-M and PM (24 20-MHz LTE bands). Received signal when Vpp = 4V: (a) AMP-M; (b) PM. (c) SNR as the function of signal Vpp.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S(t)=Acos[ ω c t+φ( t ) ],φ(t)= t a(τ)h(tτ)dτ
φ PM ( t )= k p a(t) φ FM ( t )= k f t a(τ)dτ
SN R PM = k p 2 A 2 a 2 ¯ 2 N 0 B
SN R FM = 3 k f 2 A 2 a 2 ¯ 8 π 2 N 0 B 3
S N (f)={ N 0 (2πf) 2 | f |B 0 | f |>B
B angle = m pp 2π +2B

Metrics