Abstract

In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is −11.8 dB, indicating an excess coupling penalty of −5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms

K.S. Kaur, A.Z. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge
Opt. Express 23(22) 28264-28270 (2015)

Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling

Yisu Yang, Gligor Djogo, Moez Haque, Peter R. Herman, and Joyce K. S. Poon
Opt. Express 25(5) 5758-5771 (2017)

High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology

Shinsuke Tanaka, Seok-Hwan Jeong, Shigeaki Sekiguchi, Teruo Kurahashi, Yu Tanaka, and Ken Morito
Opt. Express 20(27) 28057-28069 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
    [Crossref]
  2. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
    [Crossref]
  3. Si-Photonics at EuroPractice - www.europractice-ic.com/SiPhotonics_technology.php
  4. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
    [Crossref]
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  6. B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
    [Crossref]
  7. B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
    [Crossref]
  8. J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
    [Crossref] [PubMed]
  9. P. De Dobbelaere, “External source approach for silicon photonics transceivers,” in ECOC 2014 (IEEE, 2014).
  10. B. Snyder, B. Corbett, and P. O’Brien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31(24), 3934–3942 (2013).
    [Crossref]
  11. K. S. Kaur, A. Z. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23(22), 28264–28270 (2015).
    [Crossref] [PubMed]
  12. J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23(3), 2512–2523 (2015).
    [Crossref] [PubMed]
  13. Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.
  14. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [Crossref] [PubMed]
  15. S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
    [Crossref]
  16. M. Ortsiefer, B. Kögel, J. Rosskopf, M. Gorblich, Y. Xu, C. Greus, and C. Neumeyr, “Long wavelength high speed VCSELs for long haul and data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (2014), paper W4C.2.

2015 (3)

2014 (2)

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

2013 (4)

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

B. Snyder, B. Corbett, and P. O’Brien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31(24), 3934–3942 (2013).
[Crossref]

2010 (1)

2009 (1)

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

2006 (1)

Absil, P.

Amann, M.-C.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Baehr-Jones, T.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Baets, R.

Bakir, B. B.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Bauwelinck, J.

Bickford, J.

Bogaerts, W.

Bojko, R.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Bordel, D.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Bower, C.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Bowers, J. E.

Brianceay, P.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Buca, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Cardile, P.

Carron, V.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Chang-Hasnain, C. J.

Cheung, K. C.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Chrostowski, L.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Cohen, O.

Corbett, B.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

B. Snyder, B. Corbett, and P. O’Brien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31(24), 3934–3942 (2013).
[Crossref]

Cunningham, J. E.

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Descos, A.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Ding, R.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Djordjecvic, S. S.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Djordjevic, S. S.

Donzella, V.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Duprez, H.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Fang, A. W.

Fard, S. T.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Fecioru, A.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Ferrara, J.

Flueckiger, J.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Galland, C.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Grist, S. M.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Grützmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Gubbins, M.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Guo-Qiang Lo, P.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Hartmann, J. M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Hassan, K.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Hochberg, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Ichikawa, M.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Jaeger, N. A. F.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Jany, C.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Jones, R.

Justice, J.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Kaur, K. S.

Krishnamoorthy, A. V.

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Lee, J. H.

Lepage, G.

Lim, A.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Lin, S.

Liu, Y.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Lockwood, D. J.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Luo, Y.

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Menezo, S.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Meyer, R.

Millspaugh, A.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Mooney, M.

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Muller, M.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Novack, A.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

O’Brien, P.

Paniccia, M. J.

Park, H.

Qiao, P.

Raj, K.

Ratner, D. M.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Roelkens, G.

Sanchez, L.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Schmidt, S. A.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Sciancalepore, C.

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

Selvaraja, S.

Shi, W.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Shubin, I.

Sigg, H.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Snyder, B.

Spiga, S.

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Streshinsky, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Subramanian, A. Z.

Thacker, H. D.

Tsybeskov, L.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Van Kerrebrouck, J.

Van Steenberge, G.

Van Thourhout, D.

Verheyen, P.

Vermeulen, D.

Verplancke, R.

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Wang, X.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Wang, Y.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Webb, M.

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Yang, W.

Yao, J.

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Zheng, X.

J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22(7), 7678–7685 (2014).
[Crossref] [PubMed]

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Zhu, L.

ECS Trans. (1)

B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, C. Jany, K. Hassan, P. Brianceay, V. Carron, and S. Menezo, “Heterogeneously integrated III-V on silicon lasers,” ECS Trans. 64(5), 211–223 (2014).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Opt. Express (5)

Opt. Photonics News (1)

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Proc. IEEE (1)

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Proc. SPIE (1)

S. T. Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE 8629, 862909 (2013).
[Crossref]

Semicond. Sci. Technol. (1)

B. Corbett, C. Bower, A. Fecioru, M. Mooney, M. Gubbins, and J. Justice, “Strategies for integration of lasers on silicon,” Semicond. Sci. Technol. 28(9), 1–6 (2013).
[Crossref]

Other (4)

P. De Dobbelaere, “External source approach for silicon photonics transceivers,” in ECOC 2014 (IEEE, 2014).

Si-Photonics at EuroPractice - www.europractice-ic.com/SiPhotonics_technology.php

M. Ortsiefer, B. Kögel, J. Rosskopf, M. Gorblich, Y. Xu, C. Greus, and C. Neumeyr, “Long wavelength high speed VCSELs for long haul and data centers,” in Optical Fiber Communication Conference, OSA Technical Digest Series (2014), paper W4C.2.

Y. Wang, S. S. Djordjecvic, J. Yao, J. E. Cunningham, X. Zheng, A. V. Krishnamoorthy, M. Muller, M.-C. Amann, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip,” in IEEE Optical Interconnects Conference (2015), pp. 122–123.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of a single-mode fibre (SMF) grating-coupled to the test Si-PIC, showing the near-normal angle-of-incidence of approximately 10°, The top-oxide (TOX) layer, the SOI layer, the bottom-oxide layer (BOX) and the substrate (SUB) of the sample. (b) Schematic of the sample used for active-alignment measurements, where the VCSEl is bounted on an AlN sub-mount, bonded to an electrical FLEX connector that provides power to the VCSEL and offers a means of translating and tilting the sample above the grating-coupler. (c) Schematic of the tilted-VCSEL flip-chip bonded above a grating-coupler on a Si-PIC, showing the solder ball deposition (SBD) and wire-bond used to make the n- and p-type electrical-connections to the on-PIC contact-pads and tracks.
Fig. 2
Fig. 2 The Fibre-PIC-Fibre transmission (TFPF) spectrum at AOI = 10°, and VCSEL power (PV) spectrum, with a drive-current of ID = 10 mA and a tilt-angle of 10°. The threshold wavelength, FWHM line-width, and suppression of the VCSEL are 1546.15 nm, <0.05 nm, and and 37 dB, respectively. The value of TFPF at the emission wavelength is −11.7 dB.
Fig. 3
Fig. 3 Schematics of the (a) Fibre-PIC-Fibre transmission measurement, and (b) VCSEL-PIC-Fibre transmission measurement, used to determine the Fibre-PIC insertion loss (LFP), the VCSEL-PIC insertion loss (LVP), and so the excess coupling penalty for VCSEL coupling (LEX).
Fig. 4
Fig. 4 (a) The VCSEL power (PV), VCSEL-PIC-Fibre (PVPF), VCSEL-PIC-Fibre transmission (TVPF), and Fibre-PIC-Fibre transmission (TFPF) as a function of drive-current (ID). As expected, for drive-currents higher than approximately twice the threshold, the VCSEL-PIC-Fibre transmission is independent of ID. Given that the average value of TVPF is −16.2 dB and that TFPF = −11.7 dB at the emission wavelength, the VCSEL-PIC insertion-loss (LVP) is −10.4 dB. This corresponds to an excess coupling-penalty of (LEX) of −4.5 dB, compared to the Fibre-PIC insertion-loss of the same grating-coupler. (b) and (c) Schematic of the mode-field diameter (MFD) of the fibre- and VCSEL-mode reaching the grating-coupler on the PIC surface
Fig. 5
Fig. 5 3D-FDTD simulations of the Fibre-PIC and VCSEL-PIC insertion losses to the standard grating-coupler used in the experimental measurements, and the reduced VCSEL-PIC insertion-loss for coupling to an optimized large-footprint grating-coupler.
Fig. 6
Fig. 6 Alignment tolerance of the VCSEL across (X) and along (Y) the symmetrical axis of the grating-coupler, made using active-alignment VCSEL-PIC-Fibre (PVPF) measurements at ID = 10 mA. The 1dB alignment tolerance is ± 1.6 µm in both directions. The inset shows a plan-view of the corresponding grating-coupler structure studied in the 3D-FDTD simulations.
Fig. 7
Fig. 7 (a) A series of SEM images showing solder ball deposition (SBD) deposited on test-structures, to calibrate the height of the SBD-reflow as a function of the contact-pad area. (b) Plot showing the SBD-reflow height as a function of square contact-pad width, and the corresponding tilt-angle of the VCSEL on the PIC.
Fig. 8
Fig. 8 (a) Schematic of the relevant area of the Si-PIC, showing the grating-coupler, and waveguide, the solder ball deposition (SBD), and the Au-tracks and bond-pads for contacting the VCSEL. (b) Schematic of the VCSEL, mounted on the flip-chip pick-up tool, showing the bond-pads for electrical-connection and the aperture for laser emission. (c) Combined image of the Si-PIC and VCSEL from the flip-chip bonder, which uses a beam-splitting mirror to simultaneously image both components, to allow for precision alignment.
Fig. 9
Fig. 9 (a) Power spectrum (PVP) and (b) LI-curve of a flip-chip bonded and packaged tilted-VCSEL on the Si-PIC. The emission is centered at 1547.15 nm, and has a polarization/side-band suppression of 35 dB. At roll-over, the maximum optical-power injected into the PIC is 138 µW = −8.6 dBm. The slope-efficiency of the injected power is 1.6%.The inset of (a) shows a microscope image of the VCSEL bonded onto the PIC, before the top-side wire-bond was added, and the inset of (b) shows an SEM image of a 10° tilted-VCSEL on a PIC, with false colors to more easily identify the VCSEL (purple), electrical contacts (gold), SBD (blue), and waveguide structures (green).

Metrics