Abstract

A ferrule-based method of direct fs FBG inscription through protective plastic coating is demonstrated. Fluctuations of fiber core position relative to the writing fs beam are compensated by the developed auto-alignment system. As a result, high-quality FBGs with length from 0.1 to 50 mm are fabricated in polyimide-coated fibers, whose spectra are well described by the theory. The fabricated FBGs have great potential in sensor applications at high temperature and harsh environments both point-action and distributed ones.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond inscription of fiber Bragg gratings through the coating with a Low-NA lens

Aviran Halstuch, Avishay Shamir, and Amiel A. Ishaaya
Opt. Express 27(12) 16935-16944 (2019)

Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses

Alexey Wolf, Alexandr Dostovalov, Kirill Bronnikov, and Sergey Babin
Opt. Express 27(10) 13978-13990 (2019)

Through-the-coating femtosecond laser inscription of very short fiber Bragg gratings for acoustic and high temperature sensing applications

Cyril Hnatovsky, Dan Grobnic, and Stephen J. Mihailov
Opt. Express 25(21) 25435-25446 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
    [Crossref]
  2. R. Kashyap, Fiber Bragg Gratings, 2nd Edition (Academic, 2010).
  3. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995 (2003).
    [Crossref] [PubMed]
  4. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).
    [Crossref]
  5. S. J. Mihailov, D. Grobnic, R. B. Walker, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281, 5344–5348 (2008).
    [Crossref]
  6. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18, 19844–59 (2010).
    [Crossref] [PubMed]
  7. A. Martinez, I. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31, 1603–1605 (2006).
    [Crossref] [PubMed]
  8. C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25, 125105 (2014).
    [Crossref]
  9. M.-C. Wu and R. S. Rogowski, “Fabrication of self-apodized short-length fiber Bragg gratings,” Appl. Opt. 42, 5017–5023 (2003).
    [Crossref] [PubMed]
  10. R. J. Williams, R. G. Krämer, S. Nolte, and M. J. Withford, “Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique,” Opt. Lett. 38, 1918–1920 (2013).
    [Crossref] [PubMed]
  11. C. W. Smelser, S. J. Mihailov, D. Grobnic, R. B. Walker, P. Lu, and H. Ding, “Impact of hydrogen loading on the fabrication of fiber Bragggratings with ultrafast 800 nm laser radiation,” in “Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides,” (2003), p. PD3.
  12. T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
    [Crossref]
  13. Y. Liu, L. Dong, J. J. Pan, and C. Gu, “Strong phase-controlled fiber Br agg gratings for dispersion compensation,” Opt. Lett. 28, 786–788 (2003).
    [Crossref] [PubMed]
  14. A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26, 2039–2042 (2014).
    [Crossref]
  15. J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 811 (1994).
    [Crossref]
  16. M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22, 21550–21557 (2014).
    [Crossref]
  17. J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19, 325–341 (2011).
    [Crossref] [PubMed]
  18. A. V. Dostovalov, A. A. Wolf, V. K. Mezentsev, A. G. Okhrimchuk, and S. A. Babin, “Quantitative characterization of energy absorption in femtosecond laser micro-modification of fused silica,” Opt. Express 23, 32541 (2015).
    [Crossref] [PubMed]
  19. A. V. Nemykin and D. A. Shapiro, “Influence of statistical errors in refractive index on fibre Bragg grating reflection,” J. Opt. A. 11, 015703 (2009).
    [Crossref]
  20. C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14, 97–101 (2008).
    [Crossref]

2015 (1)

2014 (3)

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26, 2039–2042 (2014).
[Crossref]

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25, 125105 (2014).
[Crossref]

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22, 21550–21557 (2014).
[Crossref]

2013 (1)

2011 (1)

2010 (1)

2009 (1)

A. V. Nemykin and D. A. Shapiro, “Influence of statistical errors in refractive index on fibre Bragg grating reflection,” J. Opt. A. 11, 015703 (2009).
[Crossref]

2008 (2)

C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14, 97–101 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281, 5344–5348 (2008).
[Crossref]

2006 (1)

2004 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).
[Crossref]

2003 (3)

1997 (1)

T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
[Crossref]

1994 (1)

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 811 (1994).
[Crossref]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Babin, S. A.

Barrera, D.

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26, 2039–2042 (2014).
[Crossref]

Becker, R. G.

Bennion, I.

A. Martinez, I. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31, 1603–1605 (2006).
[Crossref] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).
[Crossref]

Brooks, C.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25, 125105 (2014).
[Crossref]

Capmany, J.

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26, 2039–2042 (2014).
[Crossref]

Cuglietta, G.

S. J. Mihailov, D. Grobnic, R. B. Walker, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281, 5344–5348 (2008).
[Crossref]

Cui, J.

C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14, 97–101 (2008).
[Crossref]

Cui, Y.

C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14, 97–101 (2008).
[Crossref]

Davis, C.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25, 125105 (2014).
[Crossref]

Ding, H.

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995 (2003).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, R. B. Walker, P. Lu, and H. Ding, “Impact of hydrogen loading on the fabrication of fiber Bragggratings with ultrafast 800 nm laser radiation,” in “Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides,” (2003), p. PD3.

Dong, L.

Dostovalov, A. V.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).
[Crossref]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Gagné, M.

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22, 21550–21557 (2014).
[Crossref]

Graver, T.

S. J. Mihailov, D. Grobnic, R. B. Walker, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281, 5344–5348 (2008).
[Crossref]

Grobnic, D.

S. J. Mihailov, D. Grobnic, R. B. Walker, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281, 5344–5348 (2008).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995 (2003).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, R. B. Walker, P. Lu, and H. Ding, “Impact of hydrogen loading on the fabrication of fiber Bragggratings with ultrafast 800 nm laser radiation,” in “Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides,” (2003), p. PD3.

Gu, C.

Henderson, G.

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Jovanovic, N.

Kashyap, R.

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22, 21550–21557 (2014).
[Crossref]

R. Kashyap, Fiber Bragg Gratings, 2nd Edition (Academic, 2010).

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Khrushchev, I.

A. Martinez, I. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31, 1603–1605 (2006).
[Crossref] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).
[Crossref]

Komukai, T.

T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
[Crossref]

Krämer, R. G.

Lapointe, J.

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22, 21550–21557 (2014).
[Crossref]

Liu, Y.

Loranger, S.

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22, 21550–21557 (2014).
[Crossref]

Lu, C.

C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14, 97–101 (2008).
[Crossref]

Lu, P.

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995 (2003).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, R. B. Walker, P. Lu, and H. Ding, “Impact of hydrogen loading on the fabrication of fiber Bragggratings with ultrafast 800 nm laser radiation,” in “Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides,” (2003), p. PD3.

Marshall, G. D.

Martin, J.

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 811 (1994).
[Crossref]

Martinez, A.

A. Martinez, I. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31, 1603–1605 (2006).
[Crossref] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).
[Crossref]

Mendez, A.

S. J. Mihailov, D. Grobnic, R. B. Walker, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281, 5344–5348 (2008).
[Crossref]

Mezentsev, V. K.

Mihailov, S. J.

S. J. Mihailov, D. Grobnic, R. B. Walker, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281, 5344–5348 (2008).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995 (2003).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, R. B. Walker, P. Lu, and H. Ding, “Impact of hydrogen loading on the fabrication of fiber Bragggratings with ultrafast 800 nm laser radiation,” in “Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides,” (2003), p. PD3.

Nakazawa, M.

T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
[Crossref]

Nemykin, A. V.

A. V. Nemykin and D. A. Shapiro, “Influence of statistical errors in refractive index on fibre Bragg grating reflection,” J. Opt. A. 11, 015703 (2009).
[Crossref]

Nolte, S.

Norman, P.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25, 125105 (2014).
[Crossref]

Okhrimchuk, A. G.

Ouellette, F.

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 811 (1994).
[Crossref]

Pan, J. J.

Rajic, N.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25, 125105 (2014).
[Crossref]

Ricchiuti, A. L.

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26, 2039–2042 (2014).
[Crossref]

Robertson, D.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25, 125105 (2014).
[Crossref]

Rogowski, R. S.

Rosalie, C.

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25, 125105 (2014).
[Crossref]

Sales, S.

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26, 2039–2042 (2014).
[Crossref]

Shapiro, D. A.

A. V. Nemykin and D. A. Shapiro, “Influence of statistical errors in refractive index on fibre Bragg grating reflection,” J. Opt. A. 11, 015703 (2009).
[Crossref]

Smelser, C. W.

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995 (2003).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, R. B. Walker, P. Lu, and H. Ding, “Impact of hydrogen loading on the fabrication of fiber Bragggratings with ultrafast 800 nm laser radiation,” in “Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides,” (2003), p. PD3.

Steel, M. J.

Tamura, K.

T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
[Crossref]

Thevenaz, L.

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26, 2039–2042 (2014).
[Crossref]

Thomas, J.

Tünnermann, A.

Unruh, J.

Walker, R. B.

S. J. Mihailov, D. Grobnic, R. B. Walker, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281, 5344–5348 (2008).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995 (2003).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, R. B. Walker, P. Lu, and H. Ding, “Impact of hydrogen loading on the fabrication of fiber Bragggratings with ultrafast 800 nm laser radiation,” in “Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides,” (2003), p. PD3.

Williams, R. J.

Withford, M. J.

Wolf, A. A.

Wu, M.-C.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Electron. Lett. (2)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).
[Crossref]

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 811 (1994).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
[Crossref]

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long weak FBG sensor interrogation using microwave photonics filtering technique,” IEEE Photonics Technol. Lett. 26, 2039–2042 (2014).
[Crossref]

J. Opt. A. (1)

A. V. Nemykin and D. A. Shapiro, “Influence of statistical errors in refractive index on fibre Bragg grating reflection,” J. Opt. A. 11, 015703 (2009).
[Crossref]

Meas. Sci. Technol. (1)

C. Davis, D. Robertson, C. Brooks, P. Norman, C. Rosalie, and N. Rajic, “Reduced length fibre Bragg gratings for high frequency acoustic sensing,” Meas. Sci. Technol. 25, 125105 (2014).
[Crossref]

Opt. Commun. (1)

S. J. Mihailov, D. Grobnic, R. B. Walker, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281, 5344–5348 (2008).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

C. Lu, J. Cui, and Y. Cui, “Reflection spectra of fiber Bragg gratings with random fluctuations,” Opt. Fiber Technol. 14, 97–101 (2008).
[Crossref]

Opt. Lett. (4)

Other (2)

R. Kashyap, Fiber Bragg Gratings, 2nd Edition (Academic, 2010).

C. W. Smelser, S. J. Mihailov, D. Grobnic, R. B. Walker, P. Lu, and H. Ding, “Impact of hydrogen loading on the fabrication of fiber Bragggratings with ultrafast 800 nm laser radiation,” in “Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides,” (2003), p. PD3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The experimental setup for PbP fs FBG inscription.
Fig. 2
Fig. 2 Image of fiber core from CCD camera (a), filtered image (b), intensity profile for boundary position recognition (c).
Fig. 3
Fig. 3 The scheme of narrow-band FBG interrogation.
Fig. 4
Fig. 4 Experimental and theoretical reflectance spectra of 100 and 200 μm long FBGs (a) and 2 mm long FBG (b).
Fig. 5
Fig. 5 Reflection spectra of 50 mm long FBGs inscribed in free drawing mode (a) and auto-alignment mode (b).

Metrics