Abstract

This article reviews the state of the art in optical design, modeling and characterization of solar central receiver systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical analysis of deviations in a concentrating photovoltaics central receiver system with a flux homogenizer

Henning Helmers, Wei Yi Thor, Thomas Schmidt, De Wet van Rooyen, and Andreas W. Bett
Appl. Opt. 52(13) 2974-2984 (2013)

Comparison-based optical study on a point-line-coupling-focus system with linear Fresnel heliostats

Yanjun Dai, Xian Li, Lingyu Zhou, Xuan Ma, and Ruzhu Wang
Opt. Express 24(10) A966-A973 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. A. Baum, R. R. Aparasi, and B. A. Garf, “High-power solar installations,” Sol. Energy 1(1), 6–12 (1957).
    [Crossref]
  2. G. Francia, “Pilot plants of solar steam generating stations,” Sol. Energy 12(1), 51–64 (1968).
    [Crossref]
  3. P. K. Falcone, “A handbook for solar central receiver design,” Technical Report, SAND86–8009 (Sandia National Laboratories, 1986).
  4. M. Romero, R. Buck, and J. E. Pacheco, “An update on solar central receiver systems, projects, and technologies,” J. Sol. Energy Eng. 124(2), 98–108 (2002).
    [Crossref]
  5. O. Behar, A. Khellaf, and K. Mohammedi, “A review of studies on central receiver solar thermal power plants,” Renew. Sustain. Energy Rev. 23, 12–39 (2013).
    [Crossref]
  6. T. M. Pavlović, I. S. Radonjíc, D. D. Milosavljevíc, and L. S. Pantíc, “A review of concentrating solar power plants in the world and their potential use in Serbia,” Renew. Sustain. Energy Rev. 16(6), 3891–3902 (2012).
    [Crossref]
  7. H. L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renew. Sustain. Energy Rev. 22, 466–481 (2013).
    [Crossref]
  8. R. Buck, “Heliostat field layout using non-restricted optimization,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical EnergyMarrakech, Morocco, 2012, pp. 11–24.
  9. A. Steinfeld and R. Palumbo, “Solar thermochemical process technology,” in Encyclopedia of Physical Science and Technology, Vol. 15 (Academic Press, 2001), pp. 237–256.
  10. G. Flamant, A. Ferriere, D. Laplaze, and C. Monty, “Solar processing of materials: Opportunities and new frontiers,” Sol. Energy 66(2), 117–132 (1999).
    [Crossref]
  11. K. Lovegrove and W. Stein, eds., Concentrating Solar Power Technology: Principles, Developments and Applications (Elsevier, 2012).
  12. M. F. Modest, Radiative Heat Transfer (Academic Press, 2013), 3rd edition.
  13. C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
    [Crossref]
  14. C. A. Gueymard, “The sun’s total and spectral irradiance for solar energy applications and solar radiation models,” Sol. Energy 76(4), 423–453 (2004).
    [Crossref]
  15. G. P. Kuiper, editior, The Photosphere, The Sun, The Solar System I (University of Chicago Press, 1953).
  16. C. N. Vittitoe and F. Biggs, “Six-gaussian representation of the angular-brightness distribution for solar radiation,” Sol. Energy 27(6), 469–490 (1981).
    [Crossref]
  17. A. Rabl and P. Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” J. Sol. Energy Eng. 104(3), 237–250 (1982).
    [Crossref]
  18. D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
    [Crossref]
  19. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4(7), 767–775 (1965).
    [Crossref]
  20. K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57(9), 1105–1114 (1967).
    [Crossref]
  21. R. M. Goody and Y. L. Yung, Atmospheric Radiation (Oxford University Press, 1989), 2nd edition.
  22. V. V. Rozanov, A. V. Rozanov, A. A. Kokhanovsky, and J. P. Burrows, “Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN,” J. Quant. Spectrosc. Ra. 133, 13–71 (2014).
    [Crossref]
  23. K. Lovegrove and J. Pye, “Fundamental principles of concentrating solar power (CSP) systems,” in Concentrating Solar Power Technology: Principles, Developments and Applications, K. Lovegrove and W. Stein, eds. (Elsevier, 2012).
  24. L. L. Vant-Hull, “Concentrator optics,” in Solar Thermal Power Plants: Fundamentals, Technology, Systems, Economics, C.-J. Winter, R. L. Sizmann, L. L. Vant-Hull, eds. (Springer-Verlag, 1991).
  25. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (Wiley, 1980).
  26. F. Rinaldi, M. Binotti, A. Giostri, and G. Manzolini, “Comparison of linear and point focus collectors in solar power plants,” Energy Procedia 49, 1491–1500 (2014).
    [Crossref]
  27. A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18(2), 93–111 (1976).
    [Crossref]
  28. S. A. Kalogirou, “Solar thermal collectors and applications,” Prog. Energ. Combust 30(3), 231–295 (2004).
    [Crossref]
  29. E. A. Fletcher and R. L. Moen, “Hydrogen- and oxygen from water,” Science 197(4308), 1050–1056 (1977).
    [Crossref] [PubMed]
  30. M. S. Mehos, “Part 3: Status report Task I: Solar thermal electric systems,” in IEA SolarPACES IA Annual Report 2006 (German Aerospace Center DLR, 2007).
  31. M. Schmitz, P. Schwarzbözl, R. Buck, and R. Pitz-Paal, “Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators,” Sol. Energy 80(1), 111–120 (2006).
    [Crossref]
  32. A. Segal and M. Epstein, “Comparative performances of ‘tower-top’ and ‘tower-reflector’ central solar receivers,” Sol. Energy 65(4), 207–226 (1999).
    [Crossref]
  33. P. Schramek and D. R. Mills, “Multi-tower solar array,” Sol. Energy 75(3), 249–260 (2003).
    [Crossref]
  34. A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar tower reflector systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
    [Crossref]
  35. R. N. Wilson, Reflecting Telescope Optics 1, 2nd edition (Springer, 2004).
  36. L. L. Vant-Hull, “Issues with beam-down concepts,” Energy Procedia 49, 257–264 (2014).
    [Crossref]
  37. A. L. Ávila-Marín, “Volumetric receivers in solar thermal power plants with central receiver system technology: A review,” Sol. Energy 85(5), 891–910 (2011).
    [Crossref]
  38. C. K. Ho and B. D. Iverson, “Review of high-temperature central receiver designs for concentrating solar power,” Renew. Sustain. Energy Rev. 29, 835–846 (2014).
    [Crossref]
  39. C. S. P. World, www.cspworld.org/cspworldmap . Last retrieved on 21 January 2016.
  40. NREL, “Concentrating Solar Power projects,” www.nrel.gov/csp/solarpaces /. Last retrieved on 21 January 2016.
  41. A. Segal and M. Epstein, “Modeling of solar receiver for cracking of liquid petroleum gas,” J. Sol. Energy Eng. 119(1), 48–51 (1997).
    [Crossref]
  42. W. T. Welford and R. Winston, High Collection Nonimaging Optics (Academic Press, 1989).
  43. A. Kribus, V. Krupkin, A. Yogev, and W. Spirkl, “Performance limits of heliostat fields,” J. Sol. Energy Eng. 120(4), 240–246 (1998).
    [Crossref]
  44. W. Lipiński and A. Steinfeld, “Annular compound parabolic concentrator,” J. Sol. Energy Eng. 128(1), 121–124 (2006).
    [Crossref]
  45. A. Kribus, M. Huleihil, A. Timinger, and R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69(2), 139–151 (2000).
    [Crossref]
  46. S. Schell, “Design and evaluation of eSolar’s heliostat fields,” Sol. Energy 85(4), 614–619 (2011).
    [Crossref]
  47. G. Weinrebe, M. Schmitz-Goeb, and W. Schiel, “On the performance of the ASM 150 stressed membrane heliostat,” in Proceedings of the ASME Int. Solar Energy Conference, San Antonio, USA, 1996.
  48. W. Bender, “Final technical progress report: Development of low-cost suspension heliostat,” Technical Report, NREL/SR-5200–57611 National Renewable Energy Laboratory (Colorado, USA 2013).
  49. Schlaich Bergermann und Partner, http://www.sbp.de/en/themes/stellio-heliostat-the-state-of-the-art-concentrating-solar-power-csp/ . Last retrieved on April 23, 2016.
  50. J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.
  51. L. L. Vant-Hull, “Central tower concentrating solar power (CSP) systems,” in Concentrating Solar Power Technology: Principles, Developments and Applications, K. Lovegrove and W. Stein, eds. (Woodhead Publishing Limited, 2012).
  52. K. R. Bhargav, F. Gross, and P. Schramek, “Life cycle cost optimized heliostat size for power towers,” Energy Procedia 49, 40–49 (2014).
    [Crossref]
  53. J. Coventry and J. Pye, “Heliostat cost reduction–where to now?” Energy Procedia 49, 60–70 (2014).
    [Crossref]
  54. A. Pfahl, “Survey of heliostat concepts for cost reduction,” J. Sol. Energy Eng. 136(1), 014501 (2013).
    [Crossref]
  55. F. Biggs and C. N. Vittitoe, “HELIOS: A computational model for solar concentrators,” Technical Report, SAND77–1185C (Sandia National Laboratories, 1977).
  56. E. A. Igel and R. L. Hughes, “Optical analysis of solar facility heliostats,” Sol. Energy 22(3), 283–295 (1979).
    [Crossref]
  57. Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
    [Crossref]
  58. Y. T. Chen, C. S. Lim, T. H. Ho, B. H. Lim, and Y. N. Wang, “Off-axis aberration correction surface in solar energy application,” Sol. Energy 80(3), 268–271 (2006).
    [Crossref]
  59. K. K. Chong, “Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles,” Opt. Lett. 35(10), 1614–1616 (2010).
    [Crossref] [PubMed]
  60. K. K. Chong, “Optical analysis for simplified astigmatic correction of non-imaging focusing heliostat,” Sol. Energy 84(8), 1356–1365 (2010).
    [Crossref]
  61. A. Grobler and P. Gauché, “A review of aiming strategies for central receivers,” in Proceedings of the second Southern African Solar Energy Conference, Port Elizabeth, South Africa, 2014.
  62. A. Salomé, F. Chhel, G. Flamant, A. Ferrière, and F. Thiery, “Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower,” Sol. Energy 94, 352–366 (2013).
    [Crossref]
  63. R. Buck and E. Teufel, “Comparison and optimization of heliostat canting methods,” J. Sol. Energy Eng. 131(1), 011001 (2009).
    [Crossref]
  64. S. A. Jones, “A comparison of on-axis and off-axis heliostat alignment strategies,” Technical Report, SAND96–0566C (Sandia National Laboratories, 1996).
  65. J. Yellowhair and C. K. Ho, “Heliostat canting and focusing methods: an overview and comparison,” in Proceedings of ASME 2010 4th Int. Conference on Energy Sustainability, Phoenix, Arizona, USA, 2010, pp. 609–615.
    [Crossref]
  66. L. Ren, X. Wei, Z. Lu, W. Yu, W. Xu, and Z. Shen, “A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system,” Renew. Sustain. Energy Rev. 32, 76–83 (2014).
    [Crossref]
  67. J. Yellowhair, K. Chavez, and E. Sproul, “Canting of heliostat facets using a target in reflection,” Technical Report, SAND2010–5413C (Sandia National Laboratories, 2008).
  68. A. Segal and M. Epstein, “Method for canting tower reflector facets,” in Proceedings of the 14th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Las Vegas, USA2008.
  69. D. G. Brown and K. W. Stone, “High accuracy/low cost tracking system for solar concentrators using a neural network,” in Proceedings of the 28th Intersociety Energy Conversion Engineering Conference, Atlanta, USA, 1993.
  70. C. Y. Lee, P. C. Chou, C. M. Chiang, and C. F. Lin, “Sun tracking systems: a review,” Sensors (Basel) 9(5), 3875–3890 (2009).
    [Crossref] [PubMed]
  71. H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13(8), 1800–1818 (2009).
    [Crossref]
  72. H. Ries and M. Schubnell, “The optics of a two stage solar furnace,” Sol. Energy Mater. 21(2–3), 213–217 (1990).
    [Crossref]
  73. R. Zaibel, E. Dagan, J. Karni, and H. Ries, “An astigmatic corrected target aligned heliostat for high concentration,” Sol. Energy Mater. Sol. Cells 37(2), 191–202 (1995).
    [Crossref]
  74. Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
    [Crossref]
  75. K.-K. Chong and M. H. Tan, “Comparison study of two different sun-tracking methods in optical efficiency of heliostat field,” Int. J. Photoenergy 2012, 908364 (2012).
    [Crossref]
  76. S. Khalsa, C. K. Ho, and C. Andraka, “An automated method to correct heliostat tracking errors,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.
  77. E. Smith and C. K. Ho, “Field demonstration of an automated heliostat tracking correction method,” Energy Procedia 49, 2201–2210 (2014).
    [Crossref]
  78. R. Flesch, B. Belhomme, N. Ahlbrink, and R. Pitz-Paal, “Automatic determination of heliostat orientation using an auxiliary mirror,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Marrakech, Morocco, 2012.
  79. H. Sun, B. Gong, and Q. Yao, “A review of wind loads on heliostats and trough collectors,” Renew. Sustain. Energy Rev. 32, 206–221 (2014).
    [Crossref]
  80. C. C. Zang, J. M. Christian, J. K. Yuan, J. Sment, A. C. Moya, C. K. Ho, and Z. F. Wang, “Numerical simulation of wind loads and wind induced dynamic response of heliostats,” Energy Procedia 49, 1582–1591 (2014).
    [Crossref]
  81. J. W. Strachan and R. M. Houser, “Testing and evaluation of large-area heliostats for solar thermal applications,” Technical Report, SAND92–1381 (Sandia National Laboratories, 1993).
  82. F. Lipps and L. Vant-Hull, “A cellwise method for the optimization of large central receiver systems,” Sol. Energy 20(6), 505–516 (1978).
    [Crossref]
  83. C. J. Noone, M. Torrilhon, and A. Mitsos, “Heliostat field optimization: A new computationally efficient model and biomimetic layout,” Sol. Energy 86(2), 792–803 (2012).
    [Crossref]
  84. F. Siala and M. Elayeb, “Mathematical formulation of a graphical method for a no-blocking heliostat field layout,” Renew. Energy 23(1), 77–92 (2001).
    [Crossref]
  85. M. Sánchez and M. Romero, “Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces,” Sol. Energy 80(7), 861–874 (2006).
    [Crossref]
  86. F. J. Collado, “Preliminary design of surrounding heliostat fields,” Renew. Energy 34(5), 1359–1363 (2009).
    [Crossref]
  87. F. J. Collado and J. Guallar, “Campo: Generation of regular heliostat fields,” Renew. Energy 46, 49–59 (2012).
    [Crossref]
  88. X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, and Z. Yao, “A new method for the design of the heliostat field layout for solar tower power plant,” Renew. Energy 35(9), 1970–1975 (2010).
    [Crossref]
  89. R. Pitz-Paal, N. B. Botero, and A. Steinfeld, “Heliostat field layout optimization for high-temperature solar thermalchemical processing,” Sol. Energy 85(2), 334–343 (2011).
    [Crossref]
  90. S. M. Besarati and D. Y. Goswami, “A computationally efficient method for the design of the heliostat field for solar powr tower plant,” Renew. Energy 69, 226–232 (2014).
    [Crossref]
  91. X. Wei, Z. Lu, Z. Lin, H. Zhang, and Z. Ni, “Optimization procedure for design of heliostat field layout of a 1 MWe solar tower thermal power plant,” Proc. SPIE 6841, 684119 (2007).
    [Crossref]
  92. L. Pisani, M. Cogoni, B. D’Aguanno, and E. Leonardi, “Optimization of heliostat fields for solar tower systems,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Perpignan, Morocco, 2012.
  93. M. T. Dunham, R. Kasetty, A. Mathur, and W. Lipiński, “Optical analysis of a heliostat array with linked tracking,” J. Sol. Energy Eng. 135(3), 034501 (2013).
    [Crossref]
  94. M. Atif and F. A. Al-Sulaiman, “Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm,” Energy Convers. Manage. 95, 1–9 (2015).
    [Crossref]
  95. A. Mutuberria, J. Pascual, M. Guisado, and F. Mallor, “Comparison of heliostat field layout design methodologies and impact on power plant efficiency,” presented in the 20th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Beijing, China, 2014.
  96. C.-A. Asselineau, J. Zapata, and J. Pye, “Integration of Monte-Carlo ray tracing with a stochastic optimisation method: application to the design of solar receiver geometry,” Opt. Express 23(11), A437–A443 (2015).
    [Crossref] [PubMed]
  97. J. R. Howell, “The Monte Carlo method in radiative heat transfer,” J. Heat Transfer 120(3), 547–560 (1998).
    [Crossref]
  98. J. T. Farmer and J. R. Howell, “Comparison of Monte Carlo strategies for radiative transfer in participating media,” Adv. Heat Transf. 31, 333–429 (1998).
    [Crossref]
  99. T. A. Dellin and M. J. Fish, “User’s manual for DELSOL: A computer code for calculating the optical performance, field layout and optimal system design for solar central receiver plants,” Technical Report, SAND79–8215 (Sandia National Laboratories, USA, 1979).
  100. B. L. Kistler, “A user’s manual for DELSOL3: a computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants,” Technical Report, SAND86–8018 (Sandia National Laboratories, USA 1986).
  101. P. Schwarzbözl, R. Pitz-Paal, and M. Schmitz, “Visual HFLCAL—A software tool for layout and optimisation of heliostat fields,” in Proceedings of the 15th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Berlin, Germany, 2009.
  102. P. L. Leary and J. D. Hankins, “Users guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants,” Technical Report, SAND77–8280 (Sandia National Laboratories, 1977).
  103. T. Wendelin, “SolTRACE: a new optical modeling tool for concentrating solar optics,” in Proceedings of the ISEC 2003: International Solar Energy Conference, New York, USA, 2003, pp. 253–260.
    [Crossref]
  104. P. Garcia, A. Ferriere, and J. J. Bezian, “Codes for solar flux calculation dedicated to central receiver system applications: A comparative review,” Sol. Energy 82(3), 189–197 (2008).
    [Crossref]
  105. C. K. Ho, “Software and codes for analysis of concentrating solar power technologies,” Technical Report, SAND2008–8053 (Sandia National Laboratories, 2008).
  106. J. Bode and P. Gauché, “Review of optical software for use in concentrating solar power systems,” in Proceedings of South African Solar Energy Conference, Stellenbosch, South Africa, 2012.
  107. J. Yellowhair, J. D. Ortega, J. M. Christian, and C. K. Ho, “Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries,” Proc. SPIE 9191, 91910M (2014).
    [Crossref]
  108. P. A. C. E. S. Solar, http://solarpaces.org/library . Last retrieved on 21 January 2016.
  109. Wikipedia, “List of solar thermal power stations,” https://en.wikipedia.org/wiki/List_of_solar_thermal_power_s tations. Last retrieved on 21 January 2016.
  110. F. Sun, Z. Wang, M. Guo, Q. Yu, and F. Bai, “Optical performance of a heliostat in the DAHAN solar power plant,” Energy Procedia 49, 239–248 (2014).
    [Crossref]
  111. H.-J. Lee, J.-K. Kim, S.-N. Lee, H.-K. Yoon, Y.-H. Kang, and M.-H. Park, “Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea,” Energy Procedia 69, 126–131 (2015).
    [Crossref]
  112. C. A. Arancibia-Bulnes, M. I. Peña-Cruz, D. Marroquín-García, R. E. Cabanillas, C. A. Pérez-Rábago, D. Riveros-Rosas, J. F. Hinojosa, and C. A. Estrada, “Heliostat testing at a new facility in Sonora, Mexico,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Granada, Spain,2011.
  113. F. García-Martín, M. Berenguel, A. Valverde, and E. Camacho, “Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver,” Sol. Energy 66(5), 355–369 (1999).
    [Crossref]
  114. M. M. Okhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
    [Crossref]
  115. A. Mutuberria, A. Monreal, A. Albert, and M. Blanco, “Results of the empirical validation of Tonatiuh at Mini-Pegase CNRS-PROMES facility,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.
  116. S. Kubisch, M. Randt, R. Buck, A. Pfahl, and S. Unterschütz, “Wireless heliostat and control system for large self-powered heliostat fields,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy ,Granada, Spain,2011.
  117. G. García, A. Egea, and M. Romero, “Performance evaluation of the first solar tower operating with autonomous heliostats: PCHA project,” in Poceedings of the 12th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Oaxaca, Mexico, 2004.
  118. E. Leonardi and B. D’Aguanno, “CRS4-2: A numerical code for the calculation of the solar power collected in a central receiver system,” Energy 36(8), 4828–4837 (2011).
    [Crossref]
  119. M. Blanco and D. Alarcon, “EnerTracer: A new computer tool for energy analysis of concentrating systems,” in Proceedings of the 10th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Sydney, Australia,2000.
  120. R. Monterreal, “A new computer code for solar concentrating optics simulation,” Le Journal de Physique IV 9, Pr3–77–Pr3–82 (1999).
    [Crossref]
  121. S. Koikari and K. Yoshida, “Development and preliminary evaluation of CUDA code for concentrating solar power system of tower reflector type,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Marrakech, Morocco,2012.
  122. F. Ramos and L. Crespo, “A new powerful tool for heliostat field layout and receiver geometry optimization: NSPOC,” in Proceedings of the 15th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Berlin, Germany,2009.
  123. R. Branke and A. Heimsath, “Raytrace3D power tower—A novel optical model for central receiver systems,” in Proceedings of the 16th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Perpignan, France,2010, pp. 21–24.
  124. S. Relloso and M. Domingo, “Solar projects analysis using SENSOL,” in Proceedings of the 13th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Seville, Spain, 2006.
  125. C. Gertig, A. Delgado, C. Hidalgo, and R. Ron, “SoFiA—A novel simulation tool for central receiver systems,” Energy Procedia 49, 1361–1370 (2014).
    [Crossref]
  126. J. P. Roccia, B. Piaud, C. Coustet, C. Caliot, E. Guillot, G. Flamant, and J. Delatorre, “SOLFAST, a ray-tracing Monte-Carlo software for solar concentrating facilities,” J. Phys. Conf. Ser. 369, 012029 (2012).
    [Crossref]
  127. R. Buck, Solar Power Raytracing Tool SPRAY User Manual (German Aerospace Center (DLR), 2011).
  128. B. Belhomme, R. Pitz-Paal, P. Schwarzbözl, and S. Ulmer, “A new fast ray tracing tool for high-precision simulation of heliostat fields,” J. Sol. Energy Eng. 131(3), 031002 (2009).
    [Crossref]
  129. I. Michel, A. Peter, N. Claus, and V. Ngoc, “TieSOL—A GPU-based suite of software for central receiver solar power plants,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.
  130. Y. Meller, “Tracer—a Pythonic ray-tracing package with solar energy focus,” https://github.com/yosefm/tracer 2013. Last retrieved on 23 April 2016.
  131. M. J. Blanco, “Tonatiuh: An object oriented, distributed computing, Monte-Carlo ray tracer for the design and simulation of solar concentrating systems,” http://www1.eere.energy.gov/solar/review_meeting/pdfs/p_34_blan co_univ_tx_brownsville.pdf . Last retrieved on 23 January 2016.
  132. J. Petrasch, “A free and open source Monte Carlo ray tracing program for concentrating solar energy research,” in Proceedings of the ASME 2010 4th Int. Conference on Energy Sustainability,Phoenix, USA 2010.
    [Crossref]
  133. S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, and E. Wahl, “Jülich solar power tower–Experimental evaluation of the storage subsystem and performance calcucation,” J. Sol. Energy Eng. 133(3), 031019 (2011).
    [Crossref]
  134. W. Grasse, H. P. Hertlein, C.-J. Winter, and G. W. Braun, “Thermal solar power plants experience,” in Solar Thermal Power Plants: Fundamentals, Technology, Systems, Economics, C.-J. Winter, R. L. Sizmann, L. L. Vant-Hull, eds. (Springer-Verlag, 1991).

2015 (3)

M. Atif and F. A. Al-Sulaiman, “Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm,” Energy Convers. Manage. 95, 1–9 (2015).
[Crossref]

C.-A. Asselineau, J. Zapata, and J. Pye, “Integration of Monte-Carlo ray tracing with a stochastic optimisation method: application to the design of solar receiver geometry,” Opt. Express 23(11), A437–A443 (2015).
[Crossref] [PubMed]

H.-J. Lee, J.-K. Kim, S.-N. Lee, H.-K. Yoon, Y.-H. Kang, and M.-H. Park, “Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea,” Energy Procedia 69, 126–131 (2015).
[Crossref]

2014 (15)

M. M. Okhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

J. Yellowhair, J. D. Ortega, J. M. Christian, and C. K. Ho, “Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries,” Proc. SPIE 9191, 91910M (2014).
[Crossref]

F. Sun, Z. Wang, M. Guo, Q. Yu, and F. Bai, “Optical performance of a heliostat in the DAHAN solar power plant,” Energy Procedia 49, 239–248 (2014).
[Crossref]

C. Gertig, A. Delgado, C. Hidalgo, and R. Ron, “SoFiA—A novel simulation tool for central receiver systems,” Energy Procedia 49, 1361–1370 (2014).
[Crossref]

S. M. Besarati and D. Y. Goswami, “A computationally efficient method for the design of the heliostat field for solar powr tower plant,” Renew. Energy 69, 226–232 (2014).
[Crossref]

L. Ren, X. Wei, Z. Lu, W. Yu, W. Xu, and Z. Shen, “A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system,” Renew. Sustain. Energy Rev. 32, 76–83 (2014).
[Crossref]

E. Smith and C. K. Ho, “Field demonstration of an automated heliostat tracking correction method,” Energy Procedia 49, 2201–2210 (2014).
[Crossref]

H. Sun, B. Gong, and Q. Yao, “A review of wind loads on heliostats and trough collectors,” Renew. Sustain. Energy Rev. 32, 206–221 (2014).
[Crossref]

C. C. Zang, J. M. Christian, J. K. Yuan, J. Sment, A. C. Moya, C. K. Ho, and Z. F. Wang, “Numerical simulation of wind loads and wind induced dynamic response of heliostats,” Energy Procedia 49, 1582–1591 (2014).
[Crossref]

V. V. Rozanov, A. V. Rozanov, A. A. Kokhanovsky, and J. P. Burrows, “Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN,” J. Quant. Spectrosc. Ra. 133, 13–71 (2014).
[Crossref]

F. Rinaldi, M. Binotti, A. Giostri, and G. Manzolini, “Comparison of linear and point focus collectors in solar power plants,” Energy Procedia 49, 1491–1500 (2014).
[Crossref]

L. L. Vant-Hull, “Issues with beam-down concepts,” Energy Procedia 49, 257–264 (2014).
[Crossref]

C. K. Ho and B. D. Iverson, “Review of high-temperature central receiver designs for concentrating solar power,” Renew. Sustain. Energy Rev. 29, 835–846 (2014).
[Crossref]

K. R. Bhargav, F. Gross, and P. Schramek, “Life cycle cost optimized heliostat size for power towers,” Energy Procedia 49, 40–49 (2014).
[Crossref]

J. Coventry and J. Pye, “Heliostat cost reduction–where to now?” Energy Procedia 49, 60–70 (2014).
[Crossref]

2013 (5)

A. Pfahl, “Survey of heliostat concepts for cost reduction,” J. Sol. Energy Eng. 136(1), 014501 (2013).
[Crossref]

O. Behar, A. Khellaf, and K. Mohammedi, “A review of studies on central receiver solar thermal power plants,” Renew. Sustain. Energy Rev. 23, 12–39 (2013).
[Crossref]

H. L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renew. Sustain. Energy Rev. 22, 466–481 (2013).
[Crossref]

A. Salomé, F. Chhel, G. Flamant, A. Ferrière, and F. Thiery, “Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower,” Sol. Energy 94, 352–366 (2013).
[Crossref]

M. T. Dunham, R. Kasetty, A. Mathur, and W. Lipiński, “Optical analysis of a heliostat array with linked tracking,” J. Sol. Energy Eng. 135(3), 034501 (2013).
[Crossref]

2012 (5)

J. P. Roccia, B. Piaud, C. Coustet, C. Caliot, E. Guillot, G. Flamant, and J. Delatorre, “SOLFAST, a ray-tracing Monte-Carlo software for solar concentrating facilities,” J. Phys. Conf. Ser. 369, 012029 (2012).
[Crossref]

C. J. Noone, M. Torrilhon, and A. Mitsos, “Heliostat field optimization: A new computationally efficient model and biomimetic layout,” Sol. Energy 86(2), 792–803 (2012).
[Crossref]

K.-K. Chong and M. H. Tan, “Comparison study of two different sun-tracking methods in optical efficiency of heliostat field,” Int. J. Photoenergy 2012, 908364 (2012).
[Crossref]

F. J. Collado and J. Guallar, “Campo: Generation of regular heliostat fields,” Renew. Energy 46, 49–59 (2012).
[Crossref]

T. M. Pavlović, I. S. Radonjíc, D. D. Milosavljevíc, and L. S. Pantíc, “A review of concentrating solar power plants in the world and their potential use in Serbia,” Renew. Sustain. Energy Rev. 16(6), 3891–3902 (2012).
[Crossref]

2011 (5)

A. L. Ávila-Marín, “Volumetric receivers in solar thermal power plants with central receiver system technology: A review,” Sol. Energy 85(5), 891–910 (2011).
[Crossref]

R. Pitz-Paal, N. B. Botero, and A. Steinfeld, “Heliostat field layout optimization for high-temperature solar thermalchemical processing,” Sol. Energy 85(2), 334–343 (2011).
[Crossref]

S. Schell, “Design and evaluation of eSolar’s heliostat fields,” Sol. Energy 85(4), 614–619 (2011).
[Crossref]

S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, and E. Wahl, “Jülich solar power tower–Experimental evaluation of the storage subsystem and performance calcucation,” J. Sol. Energy Eng. 133(3), 031019 (2011).
[Crossref]

E. Leonardi and B. D’Aguanno, “CRS4-2: A numerical code for the calculation of the solar power collected in a central receiver system,” Energy 36(8), 4828–4837 (2011).
[Crossref]

2010 (3)

K. K. Chong, “Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles,” Opt. Lett. 35(10), 1614–1616 (2010).
[Crossref] [PubMed]

K. K. Chong, “Optical analysis for simplified astigmatic correction of non-imaging focusing heliostat,” Sol. Energy 84(8), 1356–1365 (2010).
[Crossref]

X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, and Z. Yao, “A new method for the design of the heliostat field layout for solar tower power plant,” Renew. Energy 35(9), 1970–1975 (2010).
[Crossref]

2009 (5)

F. J. Collado, “Preliminary design of surrounding heliostat fields,” Renew. Energy 34(5), 1359–1363 (2009).
[Crossref]

R. Buck and E. Teufel, “Comparison and optimization of heliostat canting methods,” J. Sol. Energy Eng. 131(1), 011001 (2009).
[Crossref]

C. Y. Lee, P. C. Chou, C. M. Chiang, and C. F. Lin, “Sun tracking systems: a review,” Sensors (Basel) 9(5), 3875–3890 (2009).
[Crossref] [PubMed]

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13(8), 1800–1818 (2009).
[Crossref]

B. Belhomme, R. Pitz-Paal, P. Schwarzbözl, and S. Ulmer, “A new fast ray tracing tool for high-precision simulation of heliostat fields,” J. Sol. Energy Eng. 131(3), 031002 (2009).
[Crossref]

2008 (1)

P. Garcia, A. Ferriere, and J. J. Bezian, “Codes for solar flux calculation dedicated to central receiver system applications: A comparative review,” Sol. Energy 82(3), 189–197 (2008).
[Crossref]

2007 (1)

X. Wei, Z. Lu, Z. Lin, H. Zhang, and Z. Ni, “Optimization procedure for design of heliostat field layout of a 1 MWe solar tower thermal power plant,” Proc. SPIE 6841, 684119 (2007).
[Crossref]

2006 (4)

M. Sánchez and M. Romero, “Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces,” Sol. Energy 80(7), 861–874 (2006).
[Crossref]

Y. T. Chen, C. S. Lim, T. H. Ho, B. H. Lim, and Y. N. Wang, “Off-axis aberration correction surface in solar energy application,” Sol. Energy 80(3), 268–271 (2006).
[Crossref]

M. Schmitz, P. Schwarzbözl, R. Buck, and R. Pitz-Paal, “Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators,” Sol. Energy 80(1), 111–120 (2006).
[Crossref]

W. Lipiński and A. Steinfeld, “Annular compound parabolic concentrator,” J. Sol. Energy Eng. 128(1), 121–124 (2006).
[Crossref]

2004 (3)

S. A. Kalogirou, “Solar thermal collectors and applications,” Prog. Energ. Combust 30(3), 231–295 (2004).
[Crossref]

C. A. Gueymard, “The sun’s total and spectral irradiance for solar energy applications and solar radiation models,” Sol. Energy 76(4), 423–453 (2004).
[Crossref]

Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
[Crossref]

2003 (2)

D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

P. Schramek and D. R. Mills, “Multi-tower solar array,” Sol. Energy 75(3), 249–260 (2003).
[Crossref]

2002 (2)

M. Romero, R. Buck, and J. E. Pacheco, “An update on solar central receiver systems, projects, and technologies,” J. Sol. Energy Eng. 124(2), 98–108 (2002).
[Crossref]

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

2001 (2)

F. Siala and M. Elayeb, “Mathematical formulation of a graphical method for a no-blocking heliostat field layout,” Renew. Energy 23(1), 77–92 (2001).
[Crossref]

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

2000 (1)

A. Kribus, M. Huleihil, A. Timinger, and R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69(2), 139–151 (2000).
[Crossref]

1999 (3)

A. Segal and M. Epstein, “Comparative performances of ‘tower-top’ and ‘tower-reflector’ central solar receivers,” Sol. Energy 65(4), 207–226 (1999).
[Crossref]

G. Flamant, A. Ferriere, D. Laplaze, and C. Monty, “Solar processing of materials: Opportunities and new frontiers,” Sol. Energy 66(2), 117–132 (1999).
[Crossref]

F. García-Martín, M. Berenguel, A. Valverde, and E. Camacho, “Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver,” Sol. Energy 66(5), 355–369 (1999).
[Crossref]

1998 (4)

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar tower reflector systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

A. Kribus, V. Krupkin, A. Yogev, and W. Spirkl, “Performance limits of heliostat fields,” J. Sol. Energy Eng. 120(4), 240–246 (1998).
[Crossref]

J. R. Howell, “The Monte Carlo method in radiative heat transfer,” J. Heat Transfer 120(3), 547–560 (1998).
[Crossref]

J. T. Farmer and J. R. Howell, “Comparison of Monte Carlo strategies for radiative transfer in participating media,” Adv. Heat Transf. 31, 333–429 (1998).
[Crossref]

1997 (1)

A. Segal and M. Epstein, “Modeling of solar receiver for cracking of liquid petroleum gas,” J. Sol. Energy Eng. 119(1), 48–51 (1997).
[Crossref]

1995 (1)

R. Zaibel, E. Dagan, J. Karni, and H. Ries, “An astigmatic corrected target aligned heliostat for high concentration,” Sol. Energy Mater. Sol. Cells 37(2), 191–202 (1995).
[Crossref]

1990 (1)

H. Ries and M. Schubnell, “The optics of a two stage solar furnace,” Sol. Energy Mater. 21(2–3), 213–217 (1990).
[Crossref]

1982 (1)

A. Rabl and P. Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” J. Sol. Energy Eng. 104(3), 237–250 (1982).
[Crossref]

1981 (1)

C. N. Vittitoe and F. Biggs, “Six-gaussian representation of the angular-brightness distribution for solar radiation,” Sol. Energy 27(6), 469–490 (1981).
[Crossref]

1979 (1)

E. A. Igel and R. L. Hughes, “Optical analysis of solar facility heliostats,” Sol. Energy 22(3), 283–295 (1979).
[Crossref]

1978 (1)

F. Lipps and L. Vant-Hull, “A cellwise method for the optimization of large central receiver systems,” Sol. Energy 20(6), 505–516 (1978).
[Crossref]

1977 (1)

E. A. Fletcher and R. L. Moen, “Hydrogen- and oxygen from water,” Science 197(4308), 1050–1056 (1977).
[Crossref] [PubMed]

1976 (1)

A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18(2), 93–111 (1976).
[Crossref]

1968 (1)

G. Francia, “Pilot plants of solar steam generating stations,” Sol. Energy 12(1), 51–64 (1968).
[Crossref]

1967 (1)

1965 (1)

1957 (1)

V. A. Baum, R. R. Aparasi, and B. A. Garf, “High-power solar installations,” Sol. Energy 1(1), 6–12 (1957).
[Crossref]

Abrinia, K.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13(8), 1800–1818 (2009).
[Crossref]

Ahlbrink, N.

R. Flesch, B. Belhomme, N. Ahlbrink, and R. Pitz-Paal, “Automatic determination of heliostat orientation using an auxiliary mirror,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Marrakech, Morocco, 2012.

Alarcon, D.

M. Blanco and D. Alarcon, “EnerTracer: A new computer tool for energy analysis of concentrating systems,” in Proceedings of the 10th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Sydney, Australia,2000.

Albert, A.

A. Mutuberria, A. Monreal, A. Albert, and M. Blanco, “Results of the empirical validation of Tonatiuh at Mini-Pegase CNRS-PROMES facility,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

Alias, M. A.

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Aliman, O.

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Al-Sulaiman, F. A.

M. Atif and F. A. Al-Sulaiman, “Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm,” Energy Convers. Manage. 95, 1–9 (2015).
[Crossref]

Andraka, C.

S. Khalsa, C. K. Ho, and C. Andraka, “An automated method to correct heliostat tracking errors,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

Aparasi, R. R.

V. A. Baum, R. R. Aparasi, and B. A. Garf, “High-power solar installations,” Sol. Energy 1(1), 6–12 (1957).
[Crossref]

Arancibia-Bulnes, C. A.

C. A. Arancibia-Bulnes, M. I. Peña-Cruz, D. Marroquín-García, R. E. Cabanillas, C. A. Pérez-Rábago, D. Riveros-Rosas, J. F. Hinojosa, and C. A. Estrada, “Heliostat testing at a new facility in Sonora, Mexico,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Granada, Spain,2011.

Arjomandi, M.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Armstrong, P. R.

M. M. Okhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

Asselineau, C.-A.

Atif, M.

M. Atif and F. A. Al-Sulaiman, “Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm,” Energy Convers. Manage. 95, 1–9 (2015).
[Crossref]

Ávila-Marín, A. L.

A. L. Ávila-Marín, “Volumetric receivers in solar thermal power plants with central receiver system technology: A review,” Sol. Energy 85(5), 891–910 (2011).
[Crossref]

Baeyens, J.

H. L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renew. Sustain. Energy Rev. 22, 466–481 (2013).
[Crossref]

Bai, F.

F. Sun, Z. Wang, M. Guo, Q. Yu, and F. Bai, “Optical performance of a heliostat in the DAHAN solar power plant,” Energy Procedia 49, 239–248 (2014).
[Crossref]

Barry, J.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Baum, V. A.

V. A. Baum, R. R. Aparasi, and B. A. Garf, “High-power solar installations,” Sol. Energy 1(1), 6–12 (1957).
[Crossref]

Bdi, N.

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Behar, O.

O. Behar, A. Khellaf, and K. Mohammedi, “A review of studies on central receiver solar thermal power plants,” Renew. Sustain. Energy Rev. 23, 12–39 (2013).
[Crossref]

Belhomme, B.

B. Belhomme, R. Pitz-Paal, P. Schwarzbözl, and S. Ulmer, “A new fast ray tracing tool for high-precision simulation of heliostat fields,” J. Sol. Energy Eng. 131(3), 031002 (2009).
[Crossref]

R. Flesch, B. Belhomme, N. Ahlbrink, and R. Pitz-Paal, “Automatic determination of heliostat orientation using an auxiliary mirror,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Marrakech, Morocco, 2012.

Bendt, P.

A. Rabl and P. Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” J. Sol. Energy Eng. 104(3), 237–250 (1982).
[Crossref]

Ben-Mair, R.

A. Kribus, M. Huleihil, A. Timinger, and R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69(2), 139–151 (2000).
[Crossref]

Berenguel, M.

F. García-Martín, M. Berenguel, A. Valverde, and E. Camacho, “Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver,” Sol. Energy 66(5), 355–369 (1999).
[Crossref]

Besarati, S. M.

S. M. Besarati and D. Y. Goswami, “A computationally efficient method for the design of the heliostat field for solar powr tower plant,” Renew. Energy 69, 226–232 (2014).
[Crossref]

Bezian, J. J.

P. Garcia, A. Ferriere, and J. J. Bezian, “Codes for solar flux calculation dedicated to central receiver system applications: A comparative review,” Sol. Energy 82(3), 189–197 (2008).
[Crossref]

Bhargav, K. R.

K. R. Bhargav, F. Gross, and P. Schramek, “Life cycle cost optimized heliostat size for power towers,” Energy Procedia 49, 40–49 (2014).
[Crossref]

Biggs, F.

C. N. Vittitoe and F. Biggs, “Six-gaussian representation of the angular-brightness distribution for solar radiation,” Sol. Energy 27(6), 469–490 (1981).
[Crossref]

Binotti, M.

F. Rinaldi, M. Binotti, A. Giostri, and G. Manzolini, “Comparison of linear and point focus collectors in solar power plants,” Energy Procedia 49, 1491–1500 (2014).
[Crossref]

Blanco, M.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

A. Mutuberria, A. Monreal, A. Albert, and M. Blanco, “Results of the empirical validation of Tonatiuh at Mini-Pegase CNRS-PROMES facility,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

M. Blanco and D. Alarcon, “EnerTracer: A new computer tool for energy analysis of concentrating systems,” in Proceedings of the 10th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Sydney, Australia,2000.

Bligh, T.

Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
[Crossref]

Bligh, T. P.

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Bode, J.

J. Bode and P. Gauché, “Review of optical software for use in concentrating solar power systems,” in Proceedings of South African Solar Energy Conference, Stellenbosch, South Africa, 2012.

Botero, N. B.

R. Pitz-Paal, N. B. Botero, and A. Steinfeld, “Heliostat field layout optimization for high-temperature solar thermalchemical processing,” Sol. Energy 85(2), 334–343 (2011).
[Crossref]

Branke, R.

R. Branke and A. Heimsath, “Raytrace3D power tower—A novel optical model for central receiver systems,” in Proceedings of the 16th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Perpignan, France,2010, pp. 21–24.

Brown, D. G.

D. G. Brown and K. W. Stone, “High accuracy/low cost tracking system for solar concentrators using a neural network,” in Proceedings of the 28th Intersociety Energy Conversion Engineering Conference, Atlanta, USA, 1993.

Buck, R.

R. Buck and E. Teufel, “Comparison and optimization of heliostat canting methods,” J. Sol. Energy Eng. 131(1), 011001 (2009).
[Crossref]

M. Schmitz, P. Schwarzbözl, R. Buck, and R. Pitz-Paal, “Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators,” Sol. Energy 80(1), 111–120 (2006).
[Crossref]

Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
[Crossref]

M. Romero, R. Buck, and J. E. Pacheco, “An update on solar central receiver systems, projects, and technologies,” J. Sol. Energy Eng. 124(2), 98–108 (2002).
[Crossref]

R. Buck, “Heliostat field layout using non-restricted optimization,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical EnergyMarrakech, Morocco, 2012, pp. 11–24.

S. Kubisch, M. Randt, R. Buck, A. Pfahl, and S. Unterschütz, “Wireless heliostat and control system for large self-powered heliostat fields,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy ,Granada, Spain,2011.

Buie, D.

D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

Burgess, G.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Burrows, J. P.

V. V. Rozanov, A. V. Rozanov, A. A. Kokhanovsky, and J. P. Burrows, “Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN,” J. Quant. Spectrosc. Ra. 133, 13–71 (2014).
[Crossref]

Cabanillas, R. E.

C. A. Arancibia-Bulnes, M. I. Peña-Cruz, D. Marroquín-García, R. E. Cabanillas, C. A. Pérez-Rábago, D. Riveros-Rosas, J. F. Hinojosa, and C. A. Estrada, “Heliostat testing at a new facility in Sonora, Mexico,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Granada, Spain,2011.

Cacères, G.

H. L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renew. Sustain. Energy Rev. 22, 466–481 (2013).
[Crossref]

Caliot, C.

J. P. Roccia, B. Piaud, C. Coustet, C. Caliot, E. Guillot, G. Flamant, and J. Delatorre, “SOLFAST, a ray-tracing Monte-Carlo software for solar concentrating facilities,” J. Phys. Conf. Ser. 369, 012029 (2012).
[Crossref]

Camacho, E.

F. García-Martín, M. Berenguel, A. Valverde, and E. Camacho, “Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver,” Sol. Energy 66(5), 355–369 (1999).
[Crossref]

Campbell, J.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Chen, L. C.

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Chen, Y.

Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
[Crossref]

Chen, Y. T.

Y. T. Chen, C. S. Lim, T. H. Ho, B. H. Lim, and Y. N. Wang, “Off-axis aberration correction surface in solar energy application,” Sol. Energy 80(3), 268–271 (2006).
[Crossref]

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Chhel, F.

A. Salomé, F. Chhel, G. Flamant, A. Ferrière, and F. Thiery, “Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower,” Sol. Energy 94, 352–366 (2013).
[Crossref]

Chiang, C. M.

C. Y. Lee, P. C. Chou, C. M. Chiang, and C. F. Lin, “Sun tracking systems: a review,” Sensors (Basel) 9(5), 3875–3890 (2009).
[Crossref] [PubMed]

Chiesa, M.

M. M. Okhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

Chong, K.

Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
[Crossref]

Chong, K. K.

K. K. Chong, “Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles,” Opt. Lett. 35(10), 1614–1616 (2010).
[Crossref] [PubMed]

K. K. Chong, “Optical analysis for simplified astigmatic correction of non-imaging focusing heliostat,” Sol. Energy 84(8), 1356–1365 (2010).
[Crossref]

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Chong, K.-K.

K.-K. Chong and M. H. Tan, “Comparison study of two different sun-tracking methods in optical efficiency of heliostat field,” Int. J. Photoenergy 2012, 908364 (2012).
[Crossref]

Chou, P. C.

C. Y. Lee, P. C. Chou, C. M. Chiang, and C. F. Lin, “Sun tracking systems: a review,” Sensors (Basel) 9(5), 3875–3890 (2009).
[Crossref] [PubMed]

Christian, J. M.

C. C. Zang, J. M. Christian, J. K. Yuan, J. Sment, A. C. Moya, C. K. Ho, and Z. F. Wang, “Numerical simulation of wind loads and wind induced dynamic response of heliostats,” Energy Procedia 49, 1582–1591 (2014).
[Crossref]

J. Yellowhair, J. D. Ortega, J. M. Christian, and C. K. Ho, “Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries,” Proc. SPIE 9191, 91910M (2014).
[Crossref]

Claus, N.

I. Michel, A. Peter, N. Claus, and V. Ngoc, “TieSOL—A GPU-based suite of software for central receiver solar power plants,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

Cogoni, M.

L. Pisani, M. Cogoni, B. D’Aguanno, and E. Leonardi, “Optimization of heliostat fields for solar tower systems,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Perpignan, Morocco, 2012.

Collado, F. J.

F. J. Collado and J. Guallar, “Campo: Generation of regular heliostat fields,” Renew. Energy 46, 49–59 (2012).
[Crossref]

F. J. Collado, “Preliminary design of surrounding heliostat fields,” Renew. Energy 34(5), 1359–1363 (2009).
[Crossref]

Connor, P.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Coustet, C.

J. P. Roccia, B. Piaud, C. Coustet, C. Caliot, E. Guillot, G. Flamant, and J. Delatorre, “SOLFAST, a ray-tracing Monte-Carlo software for solar concentrating facilities,” J. Phys. Conf. Ser. 369, 012029 (2012).
[Crossref]

Coventry, J.

J. Coventry and J. Pye, “Heliostat cost reduction–where to now?” Energy Procedia 49, 60–70 (2014).
[Crossref]

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Crespo, L.

F. Ramos and L. Crespo, “A new powerful tool for heliostat field layout and receiver geometry optimization: NSPOC,” in Proceedings of the 15th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Berlin, Germany,2009.

D’Aguanno, B.

E. Leonardi and B. D’Aguanno, “CRS4-2: A numerical code for the calculation of the solar power collected in a central receiver system,” Energy 36(8), 4828–4837 (2011).
[Crossref]

L. Pisani, M. Cogoni, B. D’Aguanno, and E. Leonardi, “Optimization of heliostat fields for solar tower systems,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Perpignan, Morocco, 2012.

Dagan, E.

R. Zaibel, E. Dagan, J. Karni, and H. Ries, “An astigmatic corrected target aligned heliostat for high concentration,” Sol. Energy Mater. Sol. Cells 37(2), 191–202 (1995).
[Crossref]

Degrève, J.

H. L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renew. Sustain. Energy Rev. 22, 466–481 (2013).
[Crossref]

Delatorre, J.

J. P. Roccia, B. Piaud, C. Coustet, C. Caliot, E. Guillot, G. Flamant, and J. Delatorre, “SOLFAST, a ray-tracing Monte-Carlo software for solar concentrating facilities,” J. Phys. Conf. Ser. 369, 012029 (2012).
[Crossref]

Delgado, A.

C. Gertig, A. Delgado, C. Hidalgo, and R. Ron, “SoFiA—A novel simulation tool for central receiver systems,” Energy Procedia 49, 1361–1370 (2014).
[Crossref]

Dey, C.

D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

Domingo, M.

S. Relloso and M. Domingo, “Solar projects analysis using SENSOL,” in Proceedings of the 13th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Seville, Spain, 2006.

Dreißigacker, V.

S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, and E. Wahl, “Jülich solar power tower–Experimental evaluation of the storage subsystem and performance calcucation,” J. Sol. Energy Eng. 133(3), 031019 (2011).
[Crossref]

Dunham, M. T.

M. T. Dunham, R. Kasetty, A. Mathur, and W. Lipiński, “Optical analysis of a heliostat array with linked tracking,” J. Sol. Energy Eng. 135(3), 034501 (2013).
[Crossref]

Elayeb, M.

F. Siala and M. Elayeb, “Mathematical formulation of a graphical method for a no-blocking heliostat field layout,” Renew. Energy 23(1), 77–92 (2001).
[Crossref]

Emery, K.

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Emes, M.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Epstein, M.

A. Segal and M. Epstein, “Comparative performances of ‘tower-top’ and ‘tower-reflector’ central solar receivers,” Sol. Energy 65(4), 207–226 (1999).
[Crossref]

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar tower reflector systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

A. Segal and M. Epstein, “Modeling of solar receiver for cracking of liquid petroleum gas,” J. Sol. Energy Eng. 119(1), 48–51 (1997).
[Crossref]

A. Segal and M. Epstein, “Method for canting tower reflector facets,” in Proceedings of the 14th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Las Vegas, USA2008.

Estrada, C. A.

C. A. Arancibia-Bulnes, M. I. Peña-Cruz, D. Marroquín-García, R. E. Cabanillas, C. A. Pérez-Rábago, D. Riveros-Rosas, J. F. Hinojosa, and C. A. Estrada, “Heliostat testing at a new facility in Sonora, Mexico,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Granada, Spain,2011.

Fairman, P.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Farmer, J. T.

J. T. Farmer and J. R. Howell, “Comparison of Monte Carlo strategies for radiative transfer in participating media,” Adv. Heat Transf. 31, 333–429 (1998).
[Crossref]

Farrant, D.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Ferriere, A.

P. Garcia, A. Ferriere, and J. J. Bezian, “Codes for solar flux calculation dedicated to central receiver system applications: A comparative review,” Sol. Energy 82(3), 189–197 (2008).
[Crossref]

G. Flamant, A. Ferriere, D. Laplaze, and C. Monty, “Solar processing of materials: Opportunities and new frontiers,” Sol. Energy 66(2), 117–132 (1999).
[Crossref]

Ferrière, A.

A. Salomé, F. Chhel, G. Flamant, A. Ferrière, and F. Thiery, “Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower,” Sol. Energy 94, 352–366 (2013).
[Crossref]

Flamant, G.

A. Salomé, F. Chhel, G. Flamant, A. Ferrière, and F. Thiery, “Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower,” Sol. Energy 94, 352–366 (2013).
[Crossref]

J. P. Roccia, B. Piaud, C. Coustet, C. Caliot, E. Guillot, G. Flamant, and J. Delatorre, “SOLFAST, a ray-tracing Monte-Carlo software for solar concentrating facilities,” J. Phys. Conf. Ser. 369, 012029 (2012).
[Crossref]

G. Flamant, A. Ferriere, D. Laplaze, and C. Monty, “Solar processing of materials: Opportunities and new frontiers,” Sol. Energy 66(2), 117–132 (1999).
[Crossref]

Flesch, R.

R. Flesch, B. Belhomme, N. Ahlbrink, and R. Pitz-Paal, “Automatic determination of heliostat orientation using an auxiliary mirror,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Marrakech, Morocco, 2012.

Fletcher, E. A.

E. A. Fletcher and R. L. Moen, “Hydrogen- and oxygen from water,” Science 197(4308), 1050–1056 (1977).
[Crossref] [PubMed]

Francia, G.

G. Francia, “Pilot plants of solar steam generating stations,” Sol. Energy 12(1), 51–64 (1968).
[Crossref]

Garcia, P.

P. Garcia, A. Ferriere, and J. J. Bezian, “Codes for solar flux calculation dedicated to central receiver system applications: A comparative review,” Sol. Energy 82(3), 189–197 (2008).
[Crossref]

García-Martín, F.

F. García-Martín, M. Berenguel, A. Valverde, and E. Camacho, “Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver,” Sol. Energy 66(5), 355–369 (1999).
[Crossref]

Garf, B. A.

V. A. Baum, R. R. Aparasi, and B. A. Garf, “High-power solar installations,” Sol. Energy 1(1), 6–12 (1957).
[Crossref]

Gauché, P.

A. Grobler and P. Gauché, “A review of aiming strategies for central receivers,” in Proceedings of the second Southern African Solar Energy Conference, Port Elizabeth, South Africa, 2014.

J. Bode and P. Gauché, “Review of optical software for use in concentrating solar power systems,” in Proceedings of South African Solar Energy Conference, Stellenbosch, South Africa, 2012.

Gertig, C.

C. Gertig, A. Delgado, C. Hidalgo, and R. Ron, “SoFiA—A novel simulation tool for central receiver systems,” Energy Procedia 49, 1361–1370 (2014).
[Crossref]

Ghanadi, F.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Giostri, A.

F. Rinaldi, M. Binotti, A. Giostri, and G. Manzolini, “Comparison of linear and point focus collectors in solar power plants,” Energy Procedia 49, 1491–1500 (2014).
[Crossref]

Göhring, F.

S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, and E. Wahl, “Jülich solar power tower–Experimental evaluation of the storage subsystem and performance calcucation,” J. Sol. Energy Eng. 133(3), 031019 (2011).
[Crossref]

Gong, B.

H. Sun, B. Gong, and Q. Yao, “A review of wind loads on heliostats and trough collectors,” Renew. Sustain. Energy Rev. 32, 206–221 (2014).
[Crossref]

Goswami, D. Y.

S. M. Besarati and D. Y. Goswami, “A computationally efficient method for the design of the heliostat field for solar powr tower plant,” Renew. Energy 69, 226–232 (2014).
[Crossref]

Grigoriev, V.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Grobler, A.

A. Grobler and P. Gauché, “A review of aiming strategies for central receivers,” in Proceedings of the second Southern African Solar Energy Conference, Port Elizabeth, South Africa, 2014.

Gross, F.

K. R. Bhargav, F. Gross, and P. Schramek, “Life cycle cost optimized heliostat size for power towers,” Energy Procedia 49, 40–49 (2014).
[Crossref]

Guallar, J.

F. J. Collado and J. Guallar, “Campo: Generation of regular heliostat fields,” Renew. Energy 46, 49–59 (2012).
[Crossref]

Gueymard, C. A.

C. A. Gueymard, “The sun’s total and spectral irradiance for solar energy applications and solar radiation models,” Sol. Energy 76(4), 423–453 (2004).
[Crossref]

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Guillot, E.

J. P. Roccia, B. Piaud, C. Coustet, C. Caliot, E. Guillot, G. Flamant, and J. Delatorre, “SOLFAST, a ray-tracing Monte-Carlo software for solar concentrating facilities,” J. Phys. Conf. Ser. 369, 012029 (2012).
[Crossref]

Guo, M.

F. Sun, Z. Wang, M. Guo, Q. Yu, and F. Bai, “Optical performance of a heliostat in the DAHAN solar power plant,” Energy Procedia 49, 239–248 (2014).
[Crossref]

Hall, C.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Hänel, M.

S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, and E. Wahl, “Jülich solar power tower–Experimental evaluation of the storage subsystem and performance calcucation,” J. Sol. Energy Eng. 133(3), 031019 (2011).
[Crossref]

Heimsath, A.

R. Branke and A. Heimsath, “Raytrace3D power tower—A novel optical model for central receiver systems,” in Proceedings of the 16th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Perpignan, France,2010, pp. 21–24.

Hidalgo, C.

C. Gertig, A. Delgado, C. Hidalgo, and R. Ron, “SoFiA—A novel simulation tool for central receiver systems,” Energy Procedia 49, 1361–1370 (2014).
[Crossref]

Hinojosa, J. F.

C. A. Arancibia-Bulnes, M. I. Peña-Cruz, D. Marroquín-García, R. E. Cabanillas, C. A. Pérez-Rábago, D. Riveros-Rosas, J. F. Hinojosa, and C. A. Estrada, “Heliostat testing at a new facility in Sonora, Mexico,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Granada, Spain,2011.

Ho, C. K.

J. Yellowhair, J. D. Ortega, J. M. Christian, and C. K. Ho, “Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries,” Proc. SPIE 9191, 91910M (2014).
[Crossref]

C. C. Zang, J. M. Christian, J. K. Yuan, J. Sment, A. C. Moya, C. K. Ho, and Z. F. Wang, “Numerical simulation of wind loads and wind induced dynamic response of heliostats,” Energy Procedia 49, 1582–1591 (2014).
[Crossref]

E. Smith and C. K. Ho, “Field demonstration of an automated heliostat tracking correction method,” Energy Procedia 49, 2201–2210 (2014).
[Crossref]

C. K. Ho and B. D. Iverson, “Review of high-temperature central receiver designs for concentrating solar power,” Renew. Sustain. Energy Rev. 29, 835–846 (2014).
[Crossref]

S. Khalsa, C. K. Ho, and C. Andraka, “An automated method to correct heliostat tracking errors,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

Ho, T. H.

Y. T. Chen, C. S. Lim, T. H. Ho, B. H. Lim, and Y. N. Wang, “Off-axis aberration correction surface in solar energy application,” Sol. Energy 80(3), 268–271 (2006).
[Crossref]

Howell, J. R.

J. R. Howell, “The Monte Carlo method in radiative heat transfer,” J. Heat Transfer 120(3), 547–560 (1998).
[Crossref]

J. T. Farmer and J. R. Howell, “Comparison of Monte Carlo strategies for radiative transfer in participating media,” Adv. Heat Transf. 31, 333–429 (1998).
[Crossref]

Hughes, R. L.

E. A. Igel and R. L. Hughes, “Optical analysis of solar facility heliostats,” Sol. Energy 22(3), 283–295 (1979).
[Crossref]

Huleihil, M.

A. Kribus, M. Huleihil, A. Timinger, and R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69(2), 139–151 (2000).
[Crossref]

Igel, E. A.

E. A. Igel and R. L. Hughes, “Optical analysis of solar facility heliostats,” Sol. Energy 22(3), 283–295 (1979).
[Crossref]

Iverson, B. D.

C. K. Ho and B. D. Iverson, “Review of high-temperature central receiver designs for concentrating solar power,” Renew. Sustain. Energy Rev. 29, 835–846 (2014).
[Crossref]

Javadi, A.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13(8), 1800–1818 (2009).
[Crossref]

Kalogirou, S. A.

S. A. Kalogirou, “Solar thermal collectors and applications,” Prog. Energ. Combust 30(3), 231–295 (2004).
[Crossref]

Kang, Y.-H.

H.-J. Lee, J.-K. Kim, S.-N. Lee, H.-K. Yoon, Y.-H. Kang, and M.-H. Park, “Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea,” Energy Procedia 69, 126–131 (2015).
[Crossref]

Kannan, K. S.

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Karni, J.

Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
[Crossref]

R. Zaibel, E. Dagan, J. Karni, and H. Ries, “An astigmatic corrected target aligned heliostat for high concentration,” Sol. Energy Mater. Sol. Cells 37(2), 191–202 (1995).
[Crossref]

Kasetty, R.

M. T. Dunham, R. Kasetty, A. Mathur, and W. Lipiński, “Optical analysis of a heliostat array with linked tracking,” J. Sol. Energy Eng. 135(3), 034501 (2013).
[Crossref]

Keyhani, A.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13(8), 1800–1818 (2009).
[Crossref]

Khalsa, S.

S. Khalsa, C. K. Ho, and C. Andraka, “An automated method to correct heliostat tracking errors,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

Khellaf, A.

O. Behar, A. Khellaf, and K. Mohammedi, “A review of studies on central receiver solar thermal power plants,” Renew. Sustain. Energy Rev. 23, 12–39 (2013).
[Crossref]

Kim, J.-K.

H.-J. Lee, J.-K. Kim, S.-N. Lee, H.-K. Yoon, Y.-H. Kang, and M.-H. Park, “Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea,” Energy Procedia 69, 126–131 (2015).
[Crossref]

Kogan, A.

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar tower reflector systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

Koikari, S.

S. Koikari and K. Yoshida, “Development and preliminary evaluation of CUDA code for concentrating solar power system of tower reflector type,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Marrakech, Morocco,2012.

Kokhanovsky, A. A.

V. V. Rozanov, A. V. Rozanov, A. A. Kokhanovsky, and J. P. Burrows, “Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN,” J. Quant. Spectrosc. Ra. 133, 13–71 (2014).
[Crossref]

Koltun, P.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Kribus, A.

Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
[Crossref]

A. Kribus, M. Huleihil, A. Timinger, and R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69(2), 139–151 (2000).
[Crossref]

A. Kribus, V. Krupkin, A. Yogev, and W. Spirkl, “Performance limits of heliostat fields,” J. Sol. Energy Eng. 120(4), 240–246 (1998).
[Crossref]

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar tower reflector systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

Krüger, M.

S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, and E. Wahl, “Jülich solar power tower–Experimental evaluation of the storage subsystem and performance calcucation,” J. Sol. Energy Eng. 133(3), 031019 (2011).
[Crossref]

Krupkin, V.

A. Kribus, V. Krupkin, A. Yogev, and W. Spirkl, “Performance limits of heliostat fields,” J. Sol. Energy Eng. 120(4), 240–246 (1998).
[Crossref]

Kubisch, S.

S. Kubisch, M. Randt, R. Buck, A. Pfahl, and S. Unterschütz, “Wireless heliostat and control system for large self-powered heliostat fields,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy ,Granada, Spain,2011.

Laplaze, D.

G. Flamant, A. Ferriere, D. Laplaze, and C. Monty, “Solar processing of materials: Opportunities and new frontiers,” Sol. Energy 66(2), 117–132 (1999).
[Crossref]

Lee, C. Y.

C. Y. Lee, P. C. Chou, C. M. Chiang, and C. F. Lin, “Sun tracking systems: a review,” Sensors (Basel) 9(5), 3875–3890 (2009).
[Crossref] [PubMed]

Lee, H.-J.

H.-J. Lee, J.-K. Kim, S.-N. Lee, H.-K. Yoon, Y.-H. Kang, and M.-H. Park, “Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea,” Energy Procedia 69, 126–131 (2015).
[Crossref]

Lee, S.-N.

H.-J. Lee, J.-K. Kim, S.-N. Lee, H.-K. Yoon, Y.-H. Kang, and M.-H. Park, “Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea,” Energy Procedia 69, 126–131 (2015).
[Crossref]

Leonardi, E.

E. Leonardi and B. D’Aguanno, “CRS4-2: A numerical code for the calculation of the solar power collected in a central receiver system,” Energy 36(8), 4828–4837 (2011).
[Crossref]

L. Pisani, M. Cogoni, B. D’Aguanno, and E. Leonardi, “Optimization of heliostat fields for solar tower systems,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Perpignan, Morocco, 2012.

Lewis, D.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Lim, B.

Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
[Crossref]

Lim, B. H.

Y. T. Chen, C. S. Lim, T. H. Ho, B. H. Lim, and Y. N. Wang, “Off-axis aberration correction surface in solar energy application,” Sol. Energy 80(3), 268–271 (2006).
[Crossref]

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Lim, C.

Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
[Crossref]

Lim, C. S.

Y. T. Chen, C. S. Lim, T. H. Ho, B. H. Lim, and Y. N. Wang, “Off-axis aberration correction surface in solar energy application,” Sol. Energy 80(3), 268–271 (2006).
[Crossref]

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Lin, C. F.

C. Y. Lee, P. C. Chou, C. M. Chiang, and C. F. Lin, “Sun tracking systems: a review,” Sensors (Basel) 9(5), 3875–3890 (2009).
[Crossref] [PubMed]

Lin, Z.

X. Wei, Z. Lu, Z. Lin, H. Zhang, and Z. Ni, “Optimization procedure for design of heliostat field layout of a 1 MWe solar tower thermal power plant,” Proc. SPIE 6841, 684119 (2007).
[Crossref]

Lipinski, W.

M. T. Dunham, R. Kasetty, A. Mathur, and W. Lipiński, “Optical analysis of a heliostat array with linked tracking,” J. Sol. Energy Eng. 135(3), 034501 (2013).
[Crossref]

W. Lipiński and A. Steinfeld, “Annular compound parabolic concentrator,” J. Sol. Energy Eng. 128(1), 121–124 (2006).
[Crossref]

Lipps, F.

F. Lipps and L. Vant-Hull, “A cellwise method for the optimization of large central receiver systems,” Sol. Energy 20(6), 505–516 (1978).
[Crossref]

Lu, Z.

L. Ren, X. Wei, Z. Lu, W. Yu, W. Xu, and Z. Shen, “A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system,” Renew. Sustain. Energy Rev. 32, 76–83 (2014).
[Crossref]

X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, and Z. Yao, “A new method for the design of the heliostat field layout for solar tower power plant,” Renew. Energy 35(9), 1970–1975 (2010).
[Crossref]

X. Wei, Z. Lu, Z. Lin, H. Zhang, and Z. Ni, “Optimization procedure for design of heliostat field layout of a 1 MWe solar tower thermal power plant,” Proc. SPIE 6841, 684119 (2007).
[Crossref]

Manzolini, G.

F. Rinaldi, M. Binotti, A. Giostri, and G. Manzolini, “Comparison of linear and point focus collectors in solar power plants,” Energy Procedia 49, 1491–1500 (2014).
[Crossref]

Marroquín-García, D.

C. A. Arancibia-Bulnes, M. I. Peña-Cruz, D. Marroquín-García, R. E. Cabanillas, C. A. Pérez-Rábago, D. Riveros-Rosas, J. F. Hinojosa, and C. A. Estrada, “Heliostat testing at a new facility in Sonora, Mexico,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Granada, Spain,2011.

Martin, S.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Mathur, A.

M. T. Dunham, R. Kasetty, A. Mathur, and W. Lipiński, “Optical analysis of a heliostat array with linked tracking,” J. Sol. Energy Eng. 135(3), 034501 (2013).
[Crossref]

Meyers, S. A.

M. M. Okhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

Michel, I.

I. Michel, A. Peter, N. Claus, and V. Ngoc, “TieSOL—A GPU-based suite of software for central receiver solar power plants,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

Mills, D. R.

P. Schramek and D. R. Mills, “Multi-tower solar array,” Sol. Energy 75(3), 249–260 (2003).
[Crossref]

Milosavljevíc, D. D.

T. M. Pavlović, I. S. Radonjíc, D. D. Milosavljevíc, and L. S. Pantíc, “A review of concentrating solar power plants in the world and their potential use in Serbia,” Renew. Sustain. Energy Rev. 16(6), 3891–3902 (2012).
[Crossref]

Mitsos, A.

C. J. Noone, M. Torrilhon, and A. Mitsos, “Heliostat field optimization: A new computationally efficient model and biomimetic layout,” Sol. Energy 86(2), 792–803 (2012).
[Crossref]

Mobli, H.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13(8), 1800–1818 (2009).
[Crossref]

Moen, R. L.

E. A. Fletcher and R. L. Moen, “Hydrogen- and oxygen from water,” Science 197(4308), 1050–1056 (1977).
[Crossref] [PubMed]

Mohammedi, K.

O. Behar, A. Khellaf, and K. Mohammedi, “A review of studies on central receiver solar thermal power plants,” Renew. Sustain. Energy Rev. 23, 12–39 (2013).
[Crossref]

Monger, A.

D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

Monreal, A.

A. Mutuberria, A. Monreal, A. Albert, and M. Blanco, “Results of the empirical validation of Tonatiuh at Mini-Pegase CNRS-PROMES facility,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

Monty, C.

G. Flamant, A. Ferriere, D. Laplaze, and C. Monty, “Solar processing of materials: Opportunities and new frontiers,” Sol. Energy 66(2), 117–132 (1999).
[Crossref]

Mousazadeh, H.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13(8), 1800–1818 (2009).
[Crossref]

Moya, A. C.

C. C. Zang, J. M. Christian, J. K. Yuan, J. Sment, A. C. Moya, C. K. Ho, and Z. F. Wang, “Numerical simulation of wind loads and wind induced dynamic response of heliostats,” Energy Procedia 49, 1582–1591 (2014).
[Crossref]

Mutuberria, A.

A. Mutuberria, A. Monreal, A. Albert, and M. Blanco, “Results of the empirical validation of Tonatiuh at Mini-Pegase CNRS-PROMES facility,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

Myers, D.

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Nathan, G.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Ngoc, V.

I. Michel, A. Peter, N. Claus, and V. Ngoc, “TieSOL—A GPU-based suite of software for central receiver solar power plants,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

Ni, Z.

X. Wei, Z. Lu, Z. Lin, H. Zhang, and Z. Ni, “Optimization procedure for design of heliostat field layout of a 1 MWe solar tower thermal power plant,” Proc. SPIE 6841, 684119 (2007).
[Crossref]

Nicodemus, F. E.

Noone, C. J.

C. J. Noone, M. Torrilhon, and A. Mitsos, “Heliostat field optimization: A new computationally efficient model and biomimetic layout,” Sol. Energy 86(2), 792–803 (2012).
[Crossref]

Okhtar, M. M.

M. M. Okhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

Ortega, J. D.

J. Yellowhair, J. D. Ortega, J. M. Christian, and C. K. Ho, “Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries,” Proc. SPIE 9191, 91910M (2014).
[Crossref]

Pacheco, J. E.

M. Romero, R. Buck, and J. E. Pacheco, “An update on solar central receiver systems, projects, and technologies,” J. Sol. Energy Eng. 124(2), 98–108 (2002).
[Crossref]

Pantíc, L. S.

T. M. Pavlović, I. S. Radonjíc, D. D. Milosavljevíc, and L. S. Pantíc, “A review of concentrating solar power plants in the world and their potential use in Serbia,” Renew. Sustain. Energy Rev. 16(6), 3891–3902 (2012).
[Crossref]

Park, M.-H.

H.-J. Lee, J.-K. Kim, S.-N. Lee, H.-K. Yoon, Y.-H. Kang, and M.-H. Park, “Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea,” Energy Procedia 69, 126–131 (2015).
[Crossref]

Pavlovic, T. M.

T. M. Pavlović, I. S. Radonjíc, D. D. Milosavljevíc, and L. S. Pantíc, “A review of concentrating solar power plants in the world and their potential use in Serbia,” Renew. Sustain. Energy Rev. 16(6), 3891–3902 (2012).
[Crossref]

Peña-Cruz, M. I.

C. A. Arancibia-Bulnes, M. I. Peña-Cruz, D. Marroquín-García, R. E. Cabanillas, C. A. Pérez-Rábago, D. Riveros-Rosas, J. F. Hinojosa, and C. A. Estrada, “Heliostat testing at a new facility in Sonora, Mexico,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Granada, Spain,2011.

Pérez-Rábago, C. A.

C. A. Arancibia-Bulnes, M. I. Peña-Cruz, D. Marroquín-García, R. E. Cabanillas, C. A. Pérez-Rábago, D. Riveros-Rosas, J. F. Hinojosa, and C. A. Estrada, “Heliostat testing at a new facility in Sonora, Mexico,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Granada, Spain,2011.

Peter, A.

I. Michel, A. Peter, N. Claus, and V. Ngoc, “TieSOL—A GPU-based suite of software for central receiver solar power plants,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

Pfahl, A.

A. Pfahl, “Survey of heliostat concepts for cost reduction,” J. Sol. Energy Eng. 136(1), 014501 (2013).
[Crossref]

Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
[Crossref]

S. Kubisch, M. Randt, R. Buck, A. Pfahl, and S. Unterschütz, “Wireless heliostat and control system for large self-powered heliostat fields,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy ,Granada, Spain,2011.

Piaud, B.

J. P. Roccia, B. Piaud, C. Coustet, C. Caliot, E. Guillot, G. Flamant, and J. Delatorre, “SOLFAST, a ray-tracing Monte-Carlo software for solar concentrating facilities,” J. Phys. Conf. Ser. 369, 012029 (2012).
[Crossref]

Pisani, L.

L. Pisani, M. Cogoni, B. D’Aguanno, and E. Leonardi, “Optimization of heliostat fields for solar tower systems,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Perpignan, Morocco, 2012.

Pitz-Paal, R.

R. Pitz-Paal, N. B. Botero, and A. Steinfeld, “Heliostat field layout optimization for high-temperature solar thermalchemical processing,” Sol. Energy 85(2), 334–343 (2011).
[Crossref]

B. Belhomme, R. Pitz-Paal, P. Schwarzbözl, and S. Ulmer, “A new fast ray tracing tool for high-precision simulation of heliostat fields,” J. Sol. Energy Eng. 131(3), 031002 (2009).
[Crossref]

M. Schmitz, P. Schwarzbözl, R. Buck, and R. Pitz-Paal, “Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators,” Sol. Energy 80(1), 111–120 (2006).
[Crossref]

R. Flesch, B. Belhomme, N. Ahlbrink, and R. Pitz-Paal, “Automatic determination of heliostat orientation using an auxiliary mirror,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Marrakech, Morocco, 2012.

P. Schwarzbözl, R. Pitz-Paal, and M. Schmitz, “Visual HFLCAL—A software tool for layout and optimisation of heliostat fields,” in Proceedings of the 15th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Berlin, Germany, 2009.

Pye, J.

C.-A. Asselineau, J. Zapata, and J. Pye, “Integration of Monte-Carlo ray tracing with a stochastic optimisation method: application to the design of solar receiver geometry,” Opt. Express 23(11), A437–A443 (2015).
[Crossref] [PubMed]

J. Coventry and J. Pye, “Heliostat cost reduction–where to now?” Energy Procedia 49, 60–70 (2014).
[Crossref]

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Qiu, A.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Rabl, A.

A. Rabl and P. Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” J. Sol. Energy Eng. 104(3), 237–250 (1982).
[Crossref]

A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18(2), 93–111 (1976).
[Crossref]

Radonjíc, I. S.

T. M. Pavlović, I. S. Radonjíc, D. D. Milosavljevíc, and L. S. Pantíc, “A review of concentrating solar power plants in the world and their potential use in Serbia,” Renew. Sustain. Energy Rev. 16(6), 3891–3902 (2012).
[Crossref]

Ramos, F.

F. Ramos and L. Crespo, “A new powerful tool for heliostat field layout and receiver geometry optimization: NSPOC,” in Proceedings of the 15th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Berlin, Germany,2009.

Randt, M.

S. Kubisch, M. Randt, R. Buck, A. Pfahl, and S. Unterschütz, “Wireless heliostat and control system for large self-powered heliostat fields,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy ,Granada, Spain,2011.

Relloso, S.

S. Relloso and M. Domingo, “Solar projects analysis using SENSOL,” in Proceedings of the 13th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Seville, Spain, 2006.

Ren, L.

L. Ren, X. Wei, Z. Lu, W. Yu, W. Xu, and Z. Shen, “A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system,” Renew. Sustain. Energy Rev. 32, 76–83 (2014).
[Crossref]

Ries, H.

R. Zaibel, E. Dagan, J. Karni, and H. Ries, “An astigmatic corrected target aligned heliostat for high concentration,” Sol. Energy Mater. Sol. Cells 37(2), 191–202 (1995).
[Crossref]

H. Ries and M. Schubnell, “The optics of a two stage solar furnace,” Sol. Energy Mater. 21(2–3), 213–217 (1990).
[Crossref]

Rinaldi, F.

F. Rinaldi, M. Binotti, A. Giostri, and G. Manzolini, “Comparison of linear and point focus collectors in solar power plants,” Energy Procedia 49, 1491–1500 (2014).
[Crossref]

Riveros-Rosas, D.

C. A. Arancibia-Bulnes, M. I. Peña-Cruz, D. Marroquín-García, R. E. Cabanillas, C. A. Pérez-Rábago, D. Riveros-Rosas, J. F. Hinojosa, and C. A. Estrada, “Heliostat testing at a new facility in Sonora, Mexico,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Granada, Spain,2011.

Roccia, J. P.

J. P. Roccia, B. Piaud, C. Coustet, C. Caliot, E. Guillot, G. Flamant, and J. Delatorre, “SOLFAST, a ray-tracing Monte-Carlo software for solar concentrating facilities,” J. Phys. Conf. Ser. 369, 012029 (2012).
[Crossref]

Romero, M.

M. Sánchez and M. Romero, “Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces,” Sol. Energy 80(7), 861–874 (2006).
[Crossref]

M. Romero, R. Buck, and J. E. Pacheco, “An update on solar central receiver systems, projects, and technologies,” J. Sol. Energy Eng. 124(2), 98–108 (2002).
[Crossref]

Ron, R.

C. Gertig, A. Delgado, C. Hidalgo, and R. Ron, “SoFiA—A novel simulation tool for central receiver systems,” Energy Procedia 49, 1361–1370 (2014).
[Crossref]

Rozanov, A. V.

V. V. Rozanov, A. V. Rozanov, A. A. Kokhanovsky, and J. P. Burrows, “Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN,” J. Quant. Spectrosc. Ra. 133, 13–71 (2014).
[Crossref]

Rozanov, V. V.

V. V. Rozanov, A. V. Rozanov, A. A. Kokhanovsky, and J. P. Burrows, “Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN,” J. Quant. Spectrosc. Ra. 133, 13–71 (2014).
[Crossref]

Salehan, S.

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Salomé, A.

A. Salomé, F. Chhel, G. Flamant, A. Ferrière, and F. Thiery, “Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower,” Sol. Energy 94, 352–366 (2013).
[Crossref]

Sánchez, M.

M. Sánchez and M. Romero, “Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces,” Sol. Energy 80(7), 861–874 (2006).
[Crossref]

Schell, S.

S. Schell, “Design and evaluation of eSolar’s heliostat fields,” Sol. Energy 85(4), 614–619 (2011).
[Crossref]

Schiel, W.

G. Weinrebe, M. Schmitz-Goeb, and W. Schiel, “On the performance of the ASM 150 stressed membrane heliostat,” in Proceedings of the ASME Int. Solar Energy Conference, San Antonio, USA, 1996.

Schmitz, M.

M. Schmitz, P. Schwarzbözl, R. Buck, and R. Pitz-Paal, “Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators,” Sol. Energy 80(1), 111–120 (2006).
[Crossref]

P. Schwarzbözl, R. Pitz-Paal, and M. Schmitz, “Visual HFLCAL—A software tool for layout and optimisation of heliostat fields,” in Proceedings of the 15th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Berlin, Germany, 2009.

Schmitz-Goeb, M.

G. Weinrebe, M. Schmitz-Goeb, and W. Schiel, “On the performance of the ASM 150 stressed membrane heliostat,” in Proceedings of the ASME Int. Solar Energy Conference, San Antonio, USA, 1996.

Schramek, P.

K. R. Bhargav, F. Gross, and P. Schramek, “Life cycle cost optimized heliostat size for power towers,” Energy Procedia 49, 40–49 (2014).
[Crossref]

P. Schramek and D. R. Mills, “Multi-tower solar array,” Sol. Energy 75(3), 249–260 (2003).
[Crossref]

Schubnell, M.

H. Ries and M. Schubnell, “The optics of a two stage solar furnace,” Sol. Energy Mater. 21(2–3), 213–217 (1990).
[Crossref]

Schwarzbözl, P.

B. Belhomme, R. Pitz-Paal, P. Schwarzbözl, and S. Ulmer, “A new fast ray tracing tool for high-precision simulation of heliostat fields,” J. Sol. Energy Eng. 131(3), 031002 (2009).
[Crossref]

M. Schmitz, P. Schwarzbözl, R. Buck, and R. Pitz-Paal, “Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators,” Sol. Energy 80(1), 111–120 (2006).
[Crossref]

P. Schwarzbözl, R. Pitz-Paal, and M. Schmitz, “Visual HFLCAL—A software tool for layout and optimisation of heliostat fields,” in Proceedings of the 15th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Berlin, Germany, 2009.

Segal, A.

A. Segal and M. Epstein, “Comparative performances of ‘tower-top’ and ‘tower-reflector’ central solar receivers,” Sol. Energy 65(4), 207–226 (1999).
[Crossref]

A. Segal and M. Epstein, “Modeling of solar receiver for cracking of liquid petroleum gas,” J. Sol. Energy Eng. 119(1), 48–51 (1997).
[Crossref]

A. Segal and M. Epstein, “Method for canting tower reflector facets,” in Proceedings of the 14th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Las Vegas, USA2008.

Sharifi, A.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13(8), 1800–1818 (2009).
[Crossref]

Sheikh Abdul Rezan, S. A. H.

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Shen, Z.

L. Ren, X. Wei, Z. Lu, W. Yu, W. Xu, and Z. Shen, “A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system,” Renew. Sustain. Energy Rev. 32, 76–83 (2014).
[Crossref]

Siala, F.

F. Siala and M. Elayeb, “Mathematical formulation of a graphical method for a no-blocking heliostat field layout,” Renew. Energy 23(1), 77–92 (2001).
[Crossref]

Sment, J.

C. C. Zang, J. M. Christian, J. K. Yuan, J. Sment, A. C. Moya, C. K. Ho, and Z. F. Wang, “Numerical simulation of wind loads and wind induced dynamic response of heliostats,” Energy Procedia 49, 1582–1591 (2014).
[Crossref]

Smith, E.

E. Smith and C. K. Ho, “Field demonstration of an automated heliostat tracking correction method,” Energy Procedia 49, 2201–2210 (2014).
[Crossref]

Sparrow, E. M.

Spirkl, W.

A. Kribus, V. Krupkin, A. Yogev, and W. Spirkl, “Performance limits of heliostat fields,” J. Sol. Energy Eng. 120(4), 240–246 (1998).
[Crossref]

Steinfeld, A.

R. Pitz-Paal, N. B. Botero, and A. Steinfeld, “Heliostat field layout optimization for high-temperature solar thermalchemical processing,” Sol. Energy 85(2), 334–343 (2011).
[Crossref]

W. Lipiński and A. Steinfeld, “Annular compound parabolic concentrator,” J. Sol. Energy Eng. 128(1), 121–124 (2006).
[Crossref]

Stone, K. W.

D. G. Brown and K. W. Stone, “High accuracy/low cost tracking system for solar concentrators using a neural network,” in Proceedings of the 28th Intersociety Energy Conversion Engineering Conference, Atlanta, USA, 1993.

Stuart, W.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Sun, F.

F. Sun, Z. Wang, M. Guo, Q. Yu, and F. Bai, “Optical performance of a heliostat in the DAHAN solar power plant,” Energy Procedia 49, 239–248 (2014).
[Crossref]

Sun, H.

H. Sun, B. Gong, and Q. Yao, “A review of wind loads on heliostats and trough collectors,” Renew. Sustain. Energy Rev. 32, 206–221 (2014).
[Crossref]

Tam, C. M.

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Tan, K. K.

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Tan, M. H.

K.-K. Chong and M. H. Tan, “Comparison study of two different sun-tracking methods in optical efficiency of heliostat field,” Int. J. Photoenergy 2012, 908364 (2012).
[Crossref]

Tang, Y.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Teufel, E.

R. Buck and E. Teufel, “Comparison and optimization of heliostat canting methods,” J. Sol. Energy Eng. 131(1), 011001 (2009).
[Crossref]

Thiery, F.

A. Salomé, F. Chhel, G. Flamant, A. Ferrière, and F. Thiery, “Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower,” Sol. Energy 94, 352–366 (2013).
[Crossref]

Timinger, A.

A. Kribus, M. Huleihil, A. Timinger, and R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69(2), 139–151 (2000).
[Crossref]

Torrance, K. E.

Torrilhon, M.

C. J. Noone, M. Torrilhon, and A. Mitsos, “Heliostat field optimization: A new computationally efficient model and biomimetic layout,” Sol. Energy 86(2), 792–803 (2012).
[Crossref]

Ulmer, S.

B. Belhomme, R. Pitz-Paal, P. Schwarzbözl, and S. Ulmer, “A new fast ray tracing tool for high-precision simulation of heliostat fields,” J. Sol. Energy Eng. 131(3), 031002 (2009).
[Crossref]

Unterschütz, S.

S. Kubisch, M. Randt, R. Buck, A. Pfahl, and S. Unterschütz, “Wireless heliostat and control system for large self-powered heliostat fields,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy ,Granada, Spain,2011.

Valverde, A.

F. García-Martín, M. Berenguel, A. Valverde, and E. Camacho, “Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver,” Sol. Energy 66(5), 355–369 (1999).
[Crossref]

Vant-Hull, L.

F. Lipps and L. Vant-Hull, “A cellwise method for the optimization of large central receiver systems,” Sol. Energy 20(6), 505–516 (1978).
[Crossref]

Vant-Hull, L. L.

L. L. Vant-Hull, “Issues with beam-down concepts,” Energy Procedia 49, 257–264 (2014).
[Crossref]

Venn, F.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Vittitoe, C. N.

C. N. Vittitoe and F. Biggs, “Six-gaussian representation of the angular-brightness distribution for solar radiation,” Sol. Energy 27(6), 469–490 (1981).
[Crossref]

Wahl, E.

S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, and E. Wahl, “Jülich solar power tower–Experimental evaluation of the storage subsystem and performance calcucation,” J. Sol. Energy Eng. 133(3), 031019 (2011).
[Crossref]

Wang, Y. N.

Y. T. Chen, C. S. Lim, T. H. Ho, B. H. Lim, and Y. N. Wang, “Off-axis aberration correction surface in solar energy application,” Sol. Energy 80(3), 268–271 (2006).
[Crossref]

Wang, Z.

F. Sun, Z. Wang, M. Guo, Q. Yu, and F. Bai, “Optical performance of a heliostat in the DAHAN solar power plant,” Energy Procedia 49, 239–248 (2014).
[Crossref]

X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, and Z. Yao, “A new method for the design of the heliostat field layout for solar tower power plant,” Renew. Energy 35(9), 1970–1975 (2010).
[Crossref]

Wang, Z. F.

C. C. Zang, J. M. Christian, J. K. Yuan, J. Sment, A. C. Moya, C. K. Ho, and Z. F. Wang, “Numerical simulation of wind loads and wind induced dynamic response of heliostats,” Energy Procedia 49, 1582–1591 (2014).
[Crossref]

Wei, X.

L. Ren, X. Wei, Z. Lu, W. Yu, W. Xu, and Z. Shen, “A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system,” Renew. Sustain. Energy Rev. 32, 76–83 (2014).
[Crossref]

X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, and Z. Yao, “A new method for the design of the heliostat field layout for solar tower power plant,” Renew. Energy 35(9), 1970–1975 (2010).
[Crossref]

X. Wei, Z. Lu, Z. Lin, H. Zhang, and Z. Ni, “Optimization procedure for design of heliostat field layout of a 1 MWe solar tower thermal power plant,” Proc. SPIE 6841, 684119 (2007).
[Crossref]

Weinrebe, G.

G. Weinrebe, M. Schmitz-Goeb, and W. Schiel, “On the performance of the ASM 150 stressed membrane heliostat,” in Proceedings of the ASME Int. Solar Energy Conference, San Antonio, USA, 1996.

Wendelin, T.

T. Wendelin, “SolTRACE: a new optical modeling tool for concentrating solar optics,” in Proceedings of the ISEC 2003: International Solar Energy Conference, New York, USA, 2003, pp. 253–260.
[Crossref]

Xu, W.

L. Ren, X. Wei, Z. Lu, W. Yu, W. Xu, and Z. Shen, “A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system,” Renew. Sustain. Energy Rev. 32, 76–83 (2014).
[Crossref]

Yao, Q.

H. Sun, B. Gong, and Q. Yao, “A review of wind loads on heliostats and trough collectors,” Renew. Sustain. Energy Rev. 32, 206–221 (2014).
[Crossref]

Yao, Z.

X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, and Z. Yao, “A new method for the design of the heliostat field layout for solar tower power plant,” Renew. Energy 35(9), 1970–1975 (2010).
[Crossref]

Yellowhair, J.

J. Yellowhair, J. D. Ortega, J. M. Christian, and C. K. Ho, “Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries,” Proc. SPIE 9191, 91910M (2014).
[Crossref]

Yogev, A.

A. Kribus, V. Krupkin, A. Yogev, and W. Spirkl, “Performance limits of heliostat fields,” J. Sol. Energy Eng. 120(4), 240–246 (1998).
[Crossref]

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar tower reflector systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

Yoon, H.-K.

H.-J. Lee, J.-K. Kim, S.-N. Lee, H.-K. Yoon, Y.-H. Kang, and M.-H. Park, “Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea,” Energy Procedia 69, 126–131 (2015).
[Crossref]

Yoshida, K.

S. Koikari and K. Yoshida, “Development and preliminary evaluation of CUDA code for concentrating solar power system of tower reflector type,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Marrakech, Morocco,2012.

Yu, J.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

Yu, Q.

F. Sun, Z. Wang, M. Guo, Q. Yu, and F. Bai, “Optical performance of a heliostat in the DAHAN solar power plant,” Energy Procedia 49, 239–248 (2014).
[Crossref]

Yu, W.

L. Ren, X. Wei, Z. Lu, W. Yu, W. Xu, and Z. Shen, “A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system,” Renew. Sustain. Energy Rev. 32, 76–83 (2014).
[Crossref]

X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, and Z. Yao, “A new method for the design of the heliostat field layout for solar tower power plant,” Renew. Energy 35(9), 1970–1975 (2010).
[Crossref]

Yuan, J. K.

C. C. Zang, J. M. Christian, J. K. Yuan, J. Sment, A. C. Moya, C. K. Ho, and Z. F. Wang, “Numerical simulation of wind loads and wind induced dynamic response of heliostats,” Energy Procedia 49, 1582–1591 (2014).
[Crossref]

Yunus, J.

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Zaibel, R.

R. Zaibel, E. Dagan, J. Karni, and H. Ries, “An astigmatic corrected target aligned heliostat for high concentration,” Sol. Energy Mater. Sol. Cells 37(2), 191–202 (1995).
[Crossref]

Zang, C. C.

C. C. Zang, J. M. Christian, J. K. Yuan, J. Sment, A. C. Moya, C. K. Ho, and Z. F. Wang, “Numerical simulation of wind loads and wind induced dynamic response of heliostats,” Energy Procedia 49, 1582–1591 (2014).
[Crossref]

Zapata, J.

Zhang, H.

X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, and Z. Yao, “A new method for the design of the heliostat field layout for solar tower power plant,” Renew. Energy 35(9), 1970–1975 (2010).
[Crossref]

X. Wei, Z. Lu, Z. Lin, H. Zhang, and Z. Ni, “Optimization procedure for design of heliostat field layout of a 1 MWe solar tower thermal power plant,” Proc. SPIE 6841, 684119 (2007).
[Crossref]

Zhang, H. L.

H. L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renew. Sustain. Energy Rev. 22, 466–481 (2013).
[Crossref]

Zunft, S.

S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, and E. Wahl, “Jülich solar power tower–Experimental evaluation of the storage subsystem and performance calcucation,” J. Sol. Energy Eng. 133(3), 031019 (2011).
[Crossref]

Adv. Heat Transf. (1)

J. T. Farmer and J. R. Howell, “Comparison of Monte Carlo strategies for radiative transfer in participating media,” Adv. Heat Transf. 31, 333–429 (1998).
[Crossref]

Appl. Opt. (1)

Energy (1)

E. Leonardi and B. D’Aguanno, “CRS4-2: A numerical code for the calculation of the solar power collected in a central receiver system,” Energy 36(8), 4828–4837 (2011).
[Crossref]

Energy Convers. Manage. (1)

M. Atif and F. A. Al-Sulaiman, “Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm,” Energy Convers. Manage. 95, 1–9 (2015).
[Crossref]

Energy Procedia (9)

C. C. Zang, J. M. Christian, J. K. Yuan, J. Sment, A. C. Moya, C. K. Ho, and Z. F. Wang, “Numerical simulation of wind loads and wind induced dynamic response of heliostats,” Energy Procedia 49, 1582–1591 (2014).
[Crossref]

F. Sun, Z. Wang, M. Guo, Q. Yu, and F. Bai, “Optical performance of a heliostat in the DAHAN solar power plant,” Energy Procedia 49, 239–248 (2014).
[Crossref]

H.-J. Lee, J.-K. Kim, S.-N. Lee, H.-K. Yoon, Y.-H. Kang, and M.-H. Park, “Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea,” Energy Procedia 69, 126–131 (2015).
[Crossref]

C. Gertig, A. Delgado, C. Hidalgo, and R. Ron, “SoFiA—A novel simulation tool for central receiver systems,” Energy Procedia 49, 1361–1370 (2014).
[Crossref]

F. Rinaldi, M. Binotti, A. Giostri, and G. Manzolini, “Comparison of linear and point focus collectors in solar power plants,” Energy Procedia 49, 1491–1500 (2014).
[Crossref]

L. L. Vant-Hull, “Issues with beam-down concepts,” Energy Procedia 49, 257–264 (2014).
[Crossref]

K. R. Bhargav, F. Gross, and P. Schramek, “Life cycle cost optimized heliostat size for power towers,” Energy Procedia 49, 40–49 (2014).
[Crossref]

J. Coventry and J. Pye, “Heliostat cost reduction–where to now?” Energy Procedia 49, 60–70 (2014).
[Crossref]

E. Smith and C. K. Ho, “Field demonstration of an automated heliostat tracking correction method,” Energy Procedia 49, 2201–2210 (2014).
[Crossref]

Int. J. Hydrogen Energy (1)

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar tower reflector systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

Int. J. Photoenergy (1)

K.-K. Chong and M. H. Tan, “Comparison study of two different sun-tracking methods in optical efficiency of heliostat field,” Int. J. Photoenergy 2012, 908364 (2012).
[Crossref]

J. Heat Transfer (1)

J. R. Howell, “The Monte Carlo method in radiative heat transfer,” J. Heat Transfer 120(3), 547–560 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Conf. Ser. (1)

J. P. Roccia, B. Piaud, C. Coustet, C. Caliot, E. Guillot, G. Flamant, and J. Delatorre, “SOLFAST, a ray-tracing Monte-Carlo software for solar concentrating facilities,” J. Phys. Conf. Ser. 369, 012029 (2012).
[Crossref]

J. Quant. Spectrosc. Ra. (1)

V. V. Rozanov, A. V. Rozanov, A. A. Kokhanovsky, and J. P. Burrows, “Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN,” J. Quant. Spectrosc. Ra. 133, 13–71 (2014).
[Crossref]

J. Sol. Energy Eng. (12)

A. Rabl and P. Bendt, “Effect of circumsolar radiation on performance of focusing collectors,” J. Sol. Energy Eng. 104(3), 237–250 (1982).
[Crossref]

M. Romero, R. Buck, and J. E. Pacheco, “An update on solar central receiver systems, projects, and technologies,” J. Sol. Energy Eng. 124(2), 98–108 (2002).
[Crossref]

A. Segal and M. Epstein, “Modeling of solar receiver for cracking of liquid petroleum gas,” J. Sol. Energy Eng. 119(1), 48–51 (1997).
[Crossref]

Y. Chen, A. Kribus, B. Lim, C. Lim, K. Chong, J. Karni, R. Buck, A. Pfahl, and T. Bligh, “Comparison of two sun tracking methods in the application of a heliostat field,” J. Sol. Energy Eng. 126(1), 638–644 (2004).
[Crossref]

R. Buck and E. Teufel, “Comparison and optimization of heliostat canting methods,” J. Sol. Energy Eng. 131(1), 011001 (2009).
[Crossref]

A. Pfahl, “Survey of heliostat concepts for cost reduction,” J. Sol. Energy Eng. 136(1), 014501 (2013).
[Crossref]

A. Kribus, V. Krupkin, A. Yogev, and W. Spirkl, “Performance limits of heliostat fields,” J. Sol. Energy Eng. 120(4), 240–246 (1998).
[Crossref]

W. Lipiński and A. Steinfeld, “Annular compound parabolic concentrator,” J. Sol. Energy Eng. 128(1), 121–124 (2006).
[Crossref]

B. Belhomme, R. Pitz-Paal, P. Schwarzbözl, and S. Ulmer, “A new fast ray tracing tool for high-precision simulation of heliostat fields,” J. Sol. Energy Eng. 131(3), 031002 (2009).
[Crossref]

S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, and E. Wahl, “Jülich solar power tower–Experimental evaluation of the storage subsystem and performance calcucation,” J. Sol. Energy Eng. 133(3), 031019 (2011).
[Crossref]

M. M. Okhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

M. T. Dunham, R. Kasetty, A. Mathur, and W. Lipiński, “Optical analysis of a heliostat array with linked tracking,” J. Sol. Energy Eng. 135(3), 034501 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

J. Yellowhair, J. D. Ortega, J. M. Christian, and C. K. Ho, “Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries,” Proc. SPIE 9191, 91910M (2014).
[Crossref]

X. Wei, Z. Lu, Z. Lin, H. Zhang, and Z. Ni, “Optimization procedure for design of heliostat field layout of a 1 MWe solar tower thermal power plant,” Proc. SPIE 6841, 684119 (2007).
[Crossref]

Prog. Energ. Combust (1)

S. A. Kalogirou, “Solar thermal collectors and applications,” Prog. Energ. Combust 30(3), 231–295 (2004).
[Crossref]

Renew. Energy (5)

F. Siala and M. Elayeb, “Mathematical formulation of a graphical method for a no-blocking heliostat field layout,” Renew. Energy 23(1), 77–92 (2001).
[Crossref]

S. M. Besarati and D. Y. Goswami, “A computationally efficient method for the design of the heliostat field for solar powr tower plant,” Renew. Energy 69, 226–232 (2014).
[Crossref]

F. J. Collado, “Preliminary design of surrounding heliostat fields,” Renew. Energy 34(5), 1359–1363 (2009).
[Crossref]

F. J. Collado and J. Guallar, “Campo: Generation of regular heliostat fields,” Renew. Energy 46, 49–59 (2012).
[Crossref]

X. Wei, Z. Lu, Z. Wang, W. Yu, H. Zhang, and Z. Yao, “A new method for the design of the heliostat field layout for solar tower power plant,” Renew. Energy 35(9), 1970–1975 (2010).
[Crossref]

Renew. Sustain. Energy Rev. (7)

H. Sun, B. Gong, and Q. Yao, “A review of wind loads on heliostats and trough collectors,” Renew. Sustain. Energy Rev. 32, 206–221 (2014).
[Crossref]

C. K. Ho and B. D. Iverson, “Review of high-temperature central receiver designs for concentrating solar power,” Renew. Sustain. Energy Rev. 29, 835–846 (2014).
[Crossref]

O. Behar, A. Khellaf, and K. Mohammedi, “A review of studies on central receiver solar thermal power plants,” Renew. Sustain. Energy Rev. 23, 12–39 (2013).
[Crossref]

T. M. Pavlović, I. S. Radonjíc, D. D. Milosavljevíc, and L. S. Pantíc, “A review of concentrating solar power plants in the world and their potential use in Serbia,” Renew. Sustain. Energy Rev. 16(6), 3891–3902 (2012).
[Crossref]

H. L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renew. Sustain. Energy Rev. 22, 466–481 (2013).
[Crossref]

L. Ren, X. Wei, Z. Lu, W. Yu, W. Xu, and Z. Shen, “A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system,” Renew. Sustain. Energy Rev. 32, 76–83 (2014).
[Crossref]

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13(8), 1800–1818 (2009).
[Crossref]

Science (1)

E. A. Fletcher and R. L. Moen, “Hydrogen- and oxygen from water,” Science 197(4308), 1050–1056 (1977).
[Crossref] [PubMed]

Sensors (Basel) (1)

C. Y. Lee, P. C. Chou, C. M. Chiang, and C. F. Lin, “Sun tracking systems: a review,” Sensors (Basel) 9(5), 3875–3890 (2009).
[Crossref] [PubMed]

Sol. Energy (25)

C. N. Vittitoe and F. Biggs, “Six-gaussian representation of the angular-brightness distribution for solar radiation,” Sol. Energy 27(6), 469–490 (1981).
[Crossref]

A. Salomé, F. Chhel, G. Flamant, A. Ferrière, and F. Thiery, “Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower,” Sol. Energy 94, 352–366 (2013).
[Crossref]

K. K. Chong, “Optical analysis for simplified astigmatic correction of non-imaging focusing heliostat,” Sol. Energy 84(8), 1356–1365 (2010).
[Crossref]

E. A. Igel and R. L. Hughes, “Optical analysis of solar facility heliostats,” Sol. Energy 22(3), 283–295 (1979).
[Crossref]

Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bdi, O. Aliman, S. Salehan, S. A. H. Sheikh Abdul Rezan, C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Sol. Energy 71(3), 155–164 (2001).
[Crossref]

Y. T. Chen, C. S. Lim, T. H. Ho, B. H. Lim, and Y. N. Wang, “Off-axis aberration correction surface in solar energy application,” Sol. Energy 80(3), 268–271 (2006).
[Crossref]

A. Kribus, M. Huleihil, A. Timinger, and R. Ben-Mair, “Performance of a rectangular secondary concentrator with an asymmetric heliostat field,” Sol. Energy 69(2), 139–151 (2000).
[Crossref]

S. Schell, “Design and evaluation of eSolar’s heliostat fields,” Sol. Energy 85(4), 614–619 (2011).
[Crossref]

M. Schmitz, P. Schwarzbözl, R. Buck, and R. Pitz-Paal, “Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators,” Sol. Energy 80(1), 111–120 (2006).
[Crossref]

A. Segal and M. Epstein, “Comparative performances of ‘tower-top’ and ‘tower-reflector’ central solar receivers,” Sol. Energy 65(4), 207–226 (1999).
[Crossref]

P. Schramek and D. R. Mills, “Multi-tower solar array,” Sol. Energy 75(3), 249–260 (2003).
[Crossref]

A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18(2), 93–111 (1976).
[Crossref]

A. L. Ávila-Marín, “Volumetric receivers in solar thermal power plants with central receiver system technology: A review,” Sol. Energy 85(5), 891–910 (2011).
[Crossref]

V. A. Baum, R. R. Aparasi, and B. A. Garf, “High-power solar installations,” Sol. Energy 1(1), 6–12 (1957).
[Crossref]

G. Francia, “Pilot plants of solar steam generating stations,” Sol. Energy 12(1), 51–64 (1968).
[Crossref]

G. Flamant, A. Ferriere, D. Laplaze, and C. Monty, “Solar processing of materials: Opportunities and new frontiers,” Sol. Energy 66(2), 117–132 (1999).
[Crossref]

D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

C. A. Gueymard, “The sun’s total and spectral irradiance for solar energy applications and solar radiation models,” Sol. Energy 76(4), 423–453 (2004).
[Crossref]

M. Sánchez and M. Romero, “Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces,” Sol. Energy 80(7), 861–874 (2006).
[Crossref]

R. Pitz-Paal, N. B. Botero, and A. Steinfeld, “Heliostat field layout optimization for high-temperature solar thermalchemical processing,” Sol. Energy 85(2), 334–343 (2011).
[Crossref]

F. Lipps and L. Vant-Hull, “A cellwise method for the optimization of large central receiver systems,” Sol. Energy 20(6), 505–516 (1978).
[Crossref]

C. J. Noone, M. Torrilhon, and A. Mitsos, “Heliostat field optimization: A new computationally efficient model and biomimetic layout,” Sol. Energy 86(2), 792–803 (2012).
[Crossref]

P. Garcia, A. Ferriere, and J. J. Bezian, “Codes for solar flux calculation dedicated to central receiver system applications: A comparative review,” Sol. Energy 82(3), 189–197 (2008).
[Crossref]

F. García-Martín, M. Berenguel, A. Valverde, and E. Camacho, “Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver,” Sol. Energy 66(5), 355–369 (1999).
[Crossref]

Sol. Energy Mater. (1)

H. Ries and M. Schubnell, “The optics of a two stage solar furnace,” Sol. Energy Mater. 21(2–3), 213–217 (1990).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

R. Zaibel, E. Dagan, J. Karni, and H. Ries, “An astigmatic corrected target aligned heliostat for high concentration,” Sol. Energy Mater. Sol. Cells 37(2), 191–202 (1995).
[Crossref]

Other (57)

S. Khalsa, C. K. Ho, and C. Andraka, “An automated method to correct heliostat tracking errors,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

R. Flesch, B. Belhomme, N. Ahlbrink, and R. Pitz-Paal, “Automatic determination of heliostat orientation using an auxiliary mirror,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Marrakech, Morocco, 2012.

S. A. Jones, “A comparison of on-axis and off-axis heliostat alignment strategies,” Technical Report, SAND96–0566C (Sandia National Laboratories, 1996).

J. Yellowhair and C. K. Ho, “Heliostat canting and focusing methods: an overview and comparison,” in Proceedings of ASME 2010 4th Int. Conference on Energy Sustainability, Phoenix, Arizona, USA, 2010, pp. 609–615.
[Crossref]

J. Yellowhair, K. Chavez, and E. Sproul, “Canting of heliostat facets using a target in reflection,” Technical Report, SAND2010–5413C (Sandia National Laboratories, 2008).

A. Segal and M. Epstein, “Method for canting tower reflector facets,” in Proceedings of the 14th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Las Vegas, USA2008.

D. G. Brown and K. W. Stone, “High accuracy/low cost tracking system for solar concentrators using a neural network,” in Proceedings of the 28th Intersociety Energy Conversion Engineering Conference, Atlanta, USA, 1993.

G. Weinrebe, M. Schmitz-Goeb, and W. Schiel, “On the performance of the ASM 150 stressed membrane heliostat,” in Proceedings of the ASME Int. Solar Energy Conference, San Antonio, USA, 1996.

W. Bender, “Final technical progress report: Development of low-cost suspension heliostat,” Technical Report, NREL/SR-5200–57611 National Renewable Energy Laboratory (Colorado, USA 2013).

Schlaich Bergermann und Partner, http://www.sbp.de/en/themes/stellio-heliostat-the-state-of-the-art-concentrating-solar-power-csp/ . Last retrieved on April 23, 2016.

J. Coventry, M. Arjomandi, J. Barry, M. Blanco, G. Burgess, J. Campbell, P. Connor, M. Emes, P. Fairman, D. Farrant, F. Ghanadi, V. Grigoriev, C. Hall, P. Koltun, D. Lewis, S. Martin, G. Nathan, J. Pye, A. Qiu, W. Stuart, Y. Tang, F. Venn, and J. Yu, “Development of the ASTRI heliostat”, in Proceedings of the 21st SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Cape Town, South Africa, 2015.

L. L. Vant-Hull, “Central tower concentrating solar power (CSP) systems,” in Concentrating Solar Power Technology: Principles, Developments and Applications, K. Lovegrove and W. Stein, eds. (Woodhead Publishing Limited, 2012).

A. Grobler and P. Gauché, “A review of aiming strategies for central receivers,” in Proceedings of the second Southern African Solar Energy Conference, Port Elizabeth, South Africa, 2014.

F. Biggs and C. N. Vittitoe, “HELIOS: A computational model for solar concentrators,” Technical Report, SAND77–1185C (Sandia National Laboratories, 1977).

G. P. Kuiper, editior, The Photosphere, The Sun, The Solar System I (University of Chicago Press, 1953).

K. Lovegrove and J. Pye, “Fundamental principles of concentrating solar power (CSP) systems,” in Concentrating Solar Power Technology: Principles, Developments and Applications, K. Lovegrove and W. Stein, eds. (Elsevier, 2012).

L. L. Vant-Hull, “Concentrator optics,” in Solar Thermal Power Plants: Fundamentals, Technology, Systems, Economics, C.-J. Winter, R. L. Sizmann, L. L. Vant-Hull, eds. (Springer-Verlag, 1991).

J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (Wiley, 1980).

K. Lovegrove and W. Stein, eds., Concentrating Solar Power Technology: Principles, Developments and Applications (Elsevier, 2012).

M. F. Modest, Radiative Heat Transfer (Academic Press, 2013), 3rd edition.

P. K. Falcone, “A handbook for solar central receiver design,” Technical Report, SAND86–8009 (Sandia National Laboratories, 1986).

R. Buck, “Heliostat field layout using non-restricted optimization,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical EnergyMarrakech, Morocco, 2012, pp. 11–24.

A. Steinfeld and R. Palumbo, “Solar thermochemical process technology,” in Encyclopedia of Physical Science and Technology, Vol. 15 (Academic Press, 2001), pp. 237–256.

R. N. Wilson, Reflecting Telescope Optics 1, 2nd edition (Springer, 2004).

C. S. P. World, www.cspworld.org/cspworldmap . Last retrieved on 21 January 2016.

NREL, “Concentrating Solar Power projects,” www.nrel.gov/csp/solarpaces /. Last retrieved on 21 January 2016.

W. T. Welford and R. Winston, High Collection Nonimaging Optics (Academic Press, 1989).

R. M. Goody and Y. L. Yung, Atmospheric Radiation (Oxford University Press, 1989), 2nd edition.

M. S. Mehos, “Part 3: Status report Task I: Solar thermal electric systems,” in IEA SolarPACES IA Annual Report 2006 (German Aerospace Center DLR, 2007).

R. Buck, Solar Power Raytracing Tool SPRAY User Manual (German Aerospace Center (DLR), 2011).

M. Blanco and D. Alarcon, “EnerTracer: A new computer tool for energy analysis of concentrating systems,” in Proceedings of the 10th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Sydney, Australia,2000.

R. Monterreal, “A new computer code for solar concentrating optics simulation,” Le Journal de Physique IV 9, Pr3–77–Pr3–82 (1999).
[Crossref]

S. Koikari and K. Yoshida, “Development and preliminary evaluation of CUDA code for concentrating solar power system of tower reflector type,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Marrakech, Morocco,2012.

F. Ramos and L. Crespo, “A new powerful tool for heliostat field layout and receiver geometry optimization: NSPOC,” in Proceedings of the 15th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Berlin, Germany,2009.

R. Branke and A. Heimsath, “Raytrace3D power tower—A novel optical model for central receiver systems,” in Proceedings of the 16th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Perpignan, France,2010, pp. 21–24.

S. Relloso and M. Domingo, “Solar projects analysis using SENSOL,” in Proceedings of the 13th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Seville, Spain, 2006.

W. Grasse, H. P. Hertlein, C.-J. Winter, and G. W. Braun, “Thermal solar power plants experience,” in Solar Thermal Power Plants: Fundamentals, Technology, Systems, Economics, C.-J. Winter, R. L. Sizmann, L. L. Vant-Hull, eds. (Springer-Verlag, 1991).

I. Michel, A. Peter, N. Claus, and V. Ngoc, “TieSOL—A GPU-based suite of software for central receiver solar power plants,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

Y. Meller, “Tracer—a Pythonic ray-tracing package with solar energy focus,” https://github.com/yosefm/tracer 2013. Last retrieved on 23 April 2016.

M. J. Blanco, “Tonatiuh: An object oriented, distributed computing, Monte-Carlo ray tracer for the design and simulation of solar concentrating systems,” http://www1.eere.energy.gov/solar/review_meeting/pdfs/p_34_blan co_univ_tx_brownsville.pdf . Last retrieved on 23 January 2016.

J. Petrasch, “A free and open source Monte Carlo ray tracing program for concentrating solar energy research,” in Proceedings of the ASME 2010 4th Int. Conference on Energy Sustainability,Phoenix, USA 2010.
[Crossref]

C. K. Ho, “Software and codes for analysis of concentrating solar power technologies,” Technical Report, SAND2008–8053 (Sandia National Laboratories, 2008).

J. Bode and P. Gauché, “Review of optical software for use in concentrating solar power systems,” in Proceedings of South African Solar Energy Conference, Stellenbosch, South Africa, 2012.

T. A. Dellin and M. J. Fish, “User’s manual for DELSOL: A computer code for calculating the optical performance, field layout and optimal system design for solar central receiver plants,” Technical Report, SAND79–8215 (Sandia National Laboratories, USA, 1979).

B. L. Kistler, “A user’s manual for DELSOL3: a computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants,” Technical Report, SAND86–8018 (Sandia National Laboratories, USA 1986).

P. Schwarzbözl, R. Pitz-Paal, and M. Schmitz, “Visual HFLCAL—A software tool for layout and optimisation of heliostat fields,” in Proceedings of the 15th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Berlin, Germany, 2009.

P. L. Leary and J. D. Hankins, “Users guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants,” Technical Report, SAND77–8280 (Sandia National Laboratories, 1977).

T. Wendelin, “SolTRACE: a new optical modeling tool for concentrating solar optics,” in Proceedings of the ISEC 2003: International Solar Energy Conference, New York, USA, 2003, pp. 253–260.
[Crossref]

P. A. C. E. S. Solar, http://solarpaces.org/library . Last retrieved on 21 January 2016.

Wikipedia, “List of solar thermal power stations,” https://en.wikipedia.org/wiki/List_of_solar_thermal_power_s tations. Last retrieved on 21 January 2016.

C. A. Arancibia-Bulnes, M. I. Peña-Cruz, D. Marroquín-García, R. E. Cabanillas, C. A. Pérez-Rábago, D. Riveros-Rosas, J. F. Hinojosa, and C. A. Estrada, “Heliostat testing at a new facility in Sonora, Mexico,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Granada, Spain,2011.

A. Mutuberria, A. Monreal, A. Albert, and M. Blanco, “Results of the empirical validation of Tonatiuh at Mini-Pegase CNRS-PROMES facility,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy, Granada, Spain,2011.

S. Kubisch, M. Randt, R. Buck, A. Pfahl, and S. Unterschütz, “Wireless heliostat and control system for large self-powered heliostat fields,” in Proceedings of the 17th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy ,Granada, Spain,2011.

G. García, A. Egea, and M. Romero, “Performance evaluation of the first solar tower operating with autonomous heliostats: PCHA project,” in Poceedings of the 12th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Oaxaca, Mexico, 2004.

J. W. Strachan and R. M. Houser, “Testing and evaluation of large-area heliostats for solar thermal applications,” Technical Report, SAND92–1381 (Sandia National Laboratories, 1993).

L. Pisani, M. Cogoni, B. D’Aguanno, and E. Leonardi, “Optimization of heliostat fields for solar tower systems,” in Proceedings of the 18th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Perpignan, Morocco, 2012.

A. Mutuberria, J. Pascual, M. Guisado, and F. Mallor, “Comparison of heliostat field layout design methodologies and impact on power plant efficiency,” presented in the 20th SolarPACES Int. Symposium on Concentrating Solar Power and Chemical Energy,Beijing, China, 2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a SCR system consisting of a heliostat field, a central tower receiver, thermal energy storage system, and a power block [3].

Fig. 2
Fig. 2

Simplified radiative transfer model of an SCR system.

Fig. 3
Fig. 3

Optical losses in an SCR system that are pertinent to the definition of the optical efficiency [3].

Fig. 4
Fig. 4

Blackbody absorption, Carnot and ideal thermodynamic conversion efficiencies as functions of the receiver temperature for selected values of the solar concentration ratio [29].

Fig. 5
Fig. 5

Examples of SCR system configurations: (a) a single tower receiver with a single asymmetric aperture and a polar heliostat field (reprinted from [30], Copyright (2007), with permission from SolarPACES) b) a single tower receiver with a circumferential aperture and a surround field (reprinted from [4], Copyright (2002), with permission from the American Society of Mechanical Engineers) c) a single tower receiver with multiple apertures and multiple polar fields located concentrically around the receiver (left: reprinted from [31], Copyright (2006), with permission from Elsevier; right: reprinted from [32], Copyright (1999), with permission from Elsevier) d) multiple tower receivers immersed in a surround field constructed as a superposition of multiple fields (reprinted from [33], Copyright (2003), with permission from Elsevier), and (e) tower-reflector system (reprinted from [34], Copyright (1998), with permission from Elsevier).

Fig. 6
Fig. 6

Basic receiver types: (a) external receiver and (b) cavity receiver. Reprinted from [38], Copyright (2014), with permission from Elsevier.

Fig. 7
Fig. 7

Heliostat design examples: (a) flat glass–metal heliostat (1.14 m2 eSolar heliostat) (reprinted from [46], Copyright (2011), with permission from Elsevier) b) stressed–membrane heliostat (150 m2 metal membrane heliostat, PSA) (reprinted from [47], Copyright (1996), with permission from Schlaich Bergermann und Partner (SBP)), and (c) focusing glass–metal heliostat (16 m2 Solaflect’s suspension heliostat) (reprinted from [48], Copyright (2013), with permission from Solaflect Energy).

Fig. 8
Fig. 8

Heliostat field layouts developed with different approaches: (a) dense radial staggered method b) Campo code c) graphical method d) DELSOL code and (e) biomimetic pattern. The color bar shows the annual optical efficiency values. Reprinted from [95], Copyright (2014), with permission from SolarPACES.

Fig. 9
Fig. 9

Selected SCR demonstration systems: (a) NSTTF, USA (reprinted from [77], Copyright (1999), with permission from Elsevier) b) DAHAN tower plant, China (reprinted from [110], Copyright (2014), with permission from solar thermal group of Chinese Academy of Sciences) c) Daegu Solar Power Tower, South Korea (reprinted from [111], Copyright (2015), with permission from Elsevier) d) Jülich Solar Tower, Germany (reprinted from [133], Copyright (2011), with permission from the American Society of Mechanical Engineers) e) Heliostat Test Field, Sonora, Mexico (reprinted from [112], Copyright (2011), with permission from SolarPACES) f) SSPS-CRS facility, Spain (reprinted from [134], Copyright (1991), with permission from Springer).

Tables (3)

Tables Icon

Table 1 Tools for solar central receiver system modeling

Tables Icon

Table 2 Demonstration solar central receiver systems [39,40]

Tables Icon

Table 3 Commercial solar central receiver systems [39,40]

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I λ,solar ( r ,λ, s ^ ,t )= d Q solar ( r ,λ, s ^ ,t ) | n ^ s ^ |dAdλdΩdt = d Q ˙ solar ( r ,λ, s ^ ,t ) | n ^ s ^ |dAdλdΩ
q ˙ λ,solar ( r ,λ,t )= Ω=0 2π I λ,solar ( r ,λ, s ^ ,t ) | n ^ s ^ |dΩ
ρ λ '' ( r ,λ, s ^ i , s ^ r )= d I λ ( r ,λ, s ^ i , s ^ r ) I λ ( r ,λ, s ^ i )| n ^ s ^ i |d Ω i
ρ λ '' ( r ,λ, s ^ i , s ^ r )={ , for θ r = θ i , ψ r = ψ i +π 0, for all other s ^ r optically smooth
ρ λ '' ( r ,λ )= ρ λ ' ( r ,λ )/π diffuse
Q ˙ rec ( r )= λ=0 A rec Ω=0 2π I λ,rec ( r ,λ, s ^ )| n ^ s ^ | dΩdAdλ
η optical = Δt Q ˙ rec dt G A mirror Δt
η optical = η cosine η shading η reflection η blocking η spillage η atmosphere
C a = A conc A rec
C f = Q ˙ rec A rec G
C ¯ f = Δt Q ˙ rec dt G A rec Δt
C a,ideal,2D = 1 sin θ c ,
C a,ideal,3D = 1 sin 2 θ c ,
η absorption =α εσ T H 4 GC
η thermal = Q ˙ net A rec GC
η ideal = η absorption,bb η Carnot =( 1 σ T H 4 GC )( 1 T L T H )

Metrics