Abstract

The reflection of incident sunlight by photovoltaic modules prevents them from reaching their theoretical energy conversion limit. We explore the effectiveness of a universal external light trap that can tackle this reflection loss. A unique feature of external light traps is their capability to simultaneously recycle various broadband sources of reflection on the module level, such as the reflection from the metal front grid, the front interfaces, the reflective backside of the cell, and the white back sheet. The reflected light is recycled in the space between the solar cell and a mirror above the solar cell. A concentrator funnels the light into this cage through a small aperture in the mirror. As a proof-of-principle experiment, a significant reflectance reduction of a bare crystalline silicon (c-Si) photodiode is demonstrated. In contrast to conventional light trapping methods, external light trapping does not induce any damage to the active solar cell material. Moreover, this is a universally applicable technology that enables the use of thin and planar solar cells of superior electrical quality that were so far hindered by limited optical absorption. We considered several trap designs and identified fabrication issues. A series of prototype millimeter-scale external metal light traps were milled and applied on an untextured c-Si photodiode, which is used as a model for future thin solar cells. We determined the concentrator transmittance and analyzed the effect of both the concentration factor and cage height on the absorptance and spatial intensity distribution on the surface of the solar cell. This relatively simple and comprehensive light management solution can be a promising candidate for highly efficient solar modules using thin c-Si solar cells.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light trapping in ultrathin 25  μm exfoliated Si solar cells

Mohamed M. Hilali, Sayan Saha, Emmanuel Onyegam, Rajesh Rao, Leo Mathew, and Sanjay K. Banerjee
Appl. Opt. 53(27) 6140-6147 (2014)

Trapping light with micro lenses in thin film organic photovoltaic cells

Kristofer Tvingstedt, Simone Dal Zilio, Olle Inganäs, and Massimo Tormen
Opt. Express 16(26) 21608-21615 (2008)

Light-trapping lenses for solar cells

P. A. Davies
Appl. Opt. 31(28) 6021-6026 (1992)

References

  • View by:
  • |
  • |
  • |

  1. T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energ. Mat. Sol. C. 95, 18–21 (2011).
    [Crossref]
  2. S. C. Baker-Finch, “Rules and tools for understanding, modelling and designing textured silicon solar cells,” Thesis Australian National University (2012).
  3. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, 2011).
  4. S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19, 406–416 (2011).
    [Crossref]
  5. D. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76, 277–283 (2004).
    [Crossref]
  6. R. J. Beal, B. G. Potter, and J. H. Simmons, “Angle of incidence effects on external quantum efficiency in multicrystalline silicon photovoltaics,” IEEE J. Photovolt. 4, 1459–1464 (2014).
    [Crossref]
  7. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
    [Crossref] [PubMed]
  8. P. Campbell and M. A. Green, “The limiting efficiency of silicon solar cells under concentrated sunlight,” IEEE T. Electron. Dev. 33, 234–239 (1986).
    [Crossref]
  9. A. Gabor, “Cell-to-module gains and losses in crystalline silicon pv, gabor photovoltaics consulting,” July10, 2013, Intersolar NA.
  10. G. Peharz, W. Nemitz, V. Schmidt, S. Schweitzer, W. Mühleisen, and C. Hirschl, “Investigations on the photon-recycling properties of different back-sheets,” in Proceedings of EUPVSEC, (2014), pp. 3115–3118.
  11. “Pvlighthouse - tracey,” www.pvlighthouse.com.au .
  12. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
    [Crossref] [PubMed]
  13. A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of auger recombination in crystalline silicon,” Phys. Rev. B 86, 165202 (2012).
    [Crossref]
  14. M. Kerr, J. Schmidt, A. Cuevas, and J. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys. 89, 3821–3826 (2001).
    [Crossref]
  15. H. Jin and K. Weber, “Relationship between interface defect density and surface recombination velocity in (111) and (100) silicon/silicon oxide structure,” in Proceedings of EUPVSEC, (2008), pp. 244–247.
  16. K. Xiong, S. Lu, D. Jiang, J. Dong, and H. Yang, “Effective recombination velocity of textured surfaces,” Appl. Phys. Lett. 96, 193107 (2010).
    [Crossref]
  17. M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Dev. 31, 671–678 (1984).
    [Crossref]
  18. E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovolt. 5, 61–69 (2015).
    [Crossref]
  19. Consortium of several companies and research institutes, “International technology roadmap for photovoltaic (itrpv)”, www.itrpv.net .
  20. M. F. Schumann, S. Wiesendanger, J. C. Goldschmidt, B. Bläsi, K. Bittkau, U. W. Paetzold, A. Sprafke, R. B. Wehrspohn, C. Rockstuhl, and M. Wegener, “Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes,” Optica 2, 850–853 (2015).
    [Crossref]
  21. P. Verlinden, R. Swanson, and R. Crane, “7000 high-eficiency cells for a dream,” Prog. Photovolt. Res. Appl. 2, 143–152 (1994).
    [Crossref]
  22. M. Peters, J. C. Goldschmidt, T. Kirchartz, and B. Bläsi, “The photonic light trap - improved light trapping in solar cells by angularly selective filters,” Sol. Energ. Mat. Sol. C 93, 1721–1727 (2009).
    [Crossref]
  23. C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, “Enhanced light trapping in thin-film solar cells by a directionally selective filter,” Opt. Express 18, A133–A138 (2010).
    [Crossref] [PubMed]
  24. O. Höhn, T. Kraus, G. Bauhuis, U. T. Schwarz, and B. Bläsi, “Maximal power output by solar cells with angular confinement,” Opt. Express 22, A715–A722 (2014).
    [Crossref] [PubMed]
  25. E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted gaas solar cells,” Energ. Environ. Sci. 7, 1907–1912 (2014).
    [Crossref]
  26. R. A. Sinton and R. M. Swanson, “Increased photogeneration in thin silicon concentrator solar cells,” IEEE Electron Devic. Lett. 8, 547–549 (1987).
    [Crossref]
  27. A. Luque and J. C. Miñano, “Optical aspects in photovoltaic energy conversion,” Sol. Cells 31, 237–258 (1991).
    [Crossref]
  28. J. M. Gordon, D. Feuermann, and H. Mashaal, “Micro-optical designs for angular confinement in solar cells,” J. Photon. Energy 5, 055599 (2015).
    [Crossref]
  29. A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energ. Environ. Sci. 6, 1499–1503 (2013).
    [Crossref]
  30. L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photo-voltaic cells using an optical cavity,” J. Opt. 17, 055901 (2015).
    [Crossref]
  31. L. van Dijk, E. P. Marcus, A. J. Oostra, R. E. I. Schropp, and M. Di Vece, “3d-printed concentrator arrays for external light trapping on thin film solar cells,” Sol. Energ. Mat. Sol. C. 139, 19–26 (2015).
    [Crossref]
  32. L. van Dijk, U. W. Paetzold, G. A. Blab, R. E. I. Schropp, and M. Di Vece, “3D-printed external light trap for solar cells,” Prog. Photovolt. Res. Appl. 24, 623–633 (2016).
    [Crossref]
  33. “Edmund optics, item nr. 63-229 (CPC),” www.edmundoptics.com .
  34. I. Papakonstantinou and C. Tummeltshammer, “Fundamental limits of concentration in luminescent solar concentrators revised: the effect of reabsorption and nonunity quantum yield,” Optica 2, 841–849 (2015).
    [Crossref]
  35. G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energ. Mat. Sol. C. 140, 217–223 (2015).
    [Crossref]
  36. J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
    [Crossref]
  37. J. Miñano, A. Luque, and I. Tobias, “Light-confining cavities for photovoltaic applications based on the angular-spatial limitation of the escaping beam,” Appl. Opt. 31, 3114–3122 (1992).
    [Crossref] [PubMed]
  38. “Hamamatsu,” www.hamamatsu.com .
  39. U. Rau, U. W. Paetzold, and T. Kirchartz, “Thermodynamics of light management in photovoltaic devices,” Phys. Rev. B 90, 035211 (2014).
    [Crossref]
  40. M. Planck, “The theory of heat radiation (translation),” (Masius, P. Blackiston’s Son & Co, Philadelphia, 1914).
  41. P. Würfel and U. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (John Wiley & Sons, 2009).
  42. R. Winston, J. Miñano, and P. Benítez, Nonimaging Optics, Electronics & Electrical (Elsevier Academic, 2005).
  43. A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energ. Mat. Sol. C. 51, 269–290 (1998).
    [Crossref]
  44. M. Tormen, O. Inganäs, K. Tvingstedt, and S. Zilio, “Photovoltaic device with enhanced light harvesting,” (2010). US Patent App. 12/601, 798.
  45. K. Lee, J. Lee, B. A. Mazor, and S. R. Forrest, “Transforming the cost of solar-to-electrical energy conversion: Integrating thin-film GaAs solar cells with non-tracking mini-concentrators,” Light Sci. Appl. 4, e288 (2015).
    [Crossref]
  46. J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6, 6223 (2015).
    [Crossref] [PubMed]

2016 (1)

L. van Dijk, U. W. Paetzold, G. A. Blab, R. E. I. Schropp, and M. Di Vece, “3D-printed external light trap for solar cells,” Prog. Photovolt. Res. Appl. 24, 623–633 (2016).
[Crossref]

2015 (10)

K. Lee, J. Lee, B. A. Mazor, and S. R. Forrest, “Transforming the cost of solar-to-electrical energy conversion: Integrating thin-film GaAs solar cells with non-tracking mini-concentrators,” Light Sci. Appl. 4, e288 (2015).
[Crossref]

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6, 6223 (2015).
[Crossref] [PubMed]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energ. Mat. Sol. C. 140, 217–223 (2015).
[Crossref]

I. Papakonstantinou and C. Tummeltshammer, “Fundamental limits of concentration in luminescent solar concentrators revised: the effect of reabsorption and nonunity quantum yield,” Optica 2, 841–849 (2015).
[Crossref]

M. F. Schumann, S. Wiesendanger, J. C. Goldschmidt, B. Bläsi, K. Bittkau, U. W. Paetzold, A. Sprafke, R. B. Wehrspohn, C. Rockstuhl, and M. Wegener, “Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes,” Optica 2, 850–853 (2015).
[Crossref]

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref] [PubMed]

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovolt. 5, 61–69 (2015).
[Crossref]

J. M. Gordon, D. Feuermann, and H. Mashaal, “Micro-optical designs for angular confinement in solar cells,” J. Photon. Energy 5, 055599 (2015).
[Crossref]

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photo-voltaic cells using an optical cavity,” J. Opt. 17, 055901 (2015).
[Crossref]

L. van Dijk, E. P. Marcus, A. J. Oostra, R. E. I. Schropp, and M. Di Vece, “3d-printed concentrator arrays for external light trapping on thin film solar cells,” Sol. Energ. Mat. Sol. C. 139, 19–26 (2015).
[Crossref]

2014 (4)

E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted gaas solar cells,” Energ. Environ. Sci. 7, 1907–1912 (2014).
[Crossref]

R. J. Beal, B. G. Potter, and J. H. Simmons, “Angle of incidence effects on external quantum efficiency in multicrystalline silicon photovoltaics,” IEEE J. Photovolt. 4, 1459–1464 (2014).
[Crossref]

O. Höhn, T. Kraus, G. Bauhuis, U. T. Schwarz, and B. Bläsi, “Maximal power output by solar cells with angular confinement,” Opt. Express 22, A715–A722 (2014).
[Crossref] [PubMed]

U. Rau, U. W. Paetzold, and T. Kirchartz, “Thermodynamics of light management in photovoltaic devices,” Phys. Rev. B 90, 035211 (2014).
[Crossref]

2013 (1)

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energ. Environ. Sci. 6, 1499–1503 (2013).
[Crossref]

2012 (2)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of auger recombination in crystalline silicon,” Phys. Rev. B 86, 165202 (2012).
[Crossref]

2011 (3)

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energ. Mat. Sol. C. 95, 18–21 (2011).
[Crossref]

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19, 406–416 (2011).
[Crossref]

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[Crossref]

2010 (2)

2009 (1)

M. Peters, J. C. Goldschmidt, T. Kirchartz, and B. Bläsi, “The photonic light trap - improved light trapping in solar cells by angularly selective filters,” Sol. Energ. Mat. Sol. C 93, 1721–1727 (2009).
[Crossref]

2004 (1)

D. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76, 277–283 (2004).
[Crossref]

2001 (1)

M. Kerr, J. Schmidt, A. Cuevas, and J. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys. 89, 3821–3826 (2001).
[Crossref]

1998 (1)

A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energ. Mat. Sol. C. 51, 269–290 (1998).
[Crossref]

1994 (1)

P. Verlinden, R. Swanson, and R. Crane, “7000 high-eficiency cells for a dream,” Prog. Photovolt. Res. Appl. 2, 143–152 (1994).
[Crossref]

1992 (1)

1991 (1)

A. Luque and J. C. Miñano, “Optical aspects in photovoltaic energy conversion,” Sol. Cells 31, 237–258 (1991).
[Crossref]

1987 (1)

R. A. Sinton and R. M. Swanson, “Increased photogeneration in thin silicon concentrator solar cells,” IEEE Electron Devic. Lett. 8, 547–549 (1987).
[Crossref]

1986 (1)

P. Campbell and M. A. Green, “The limiting efficiency of silicon solar cells under concentrated sunlight,” IEEE T. Electron. Dev. 33, 234–239 (1986).
[Crossref]

1984 (1)

M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Dev. 31, 671–678 (1984).
[Crossref]

Alcubilla, R.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref] [PubMed]

Arboiro, J.

A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energ. Mat. Sol. C. 51, 269–290 (1998).
[Crossref]

Arnaoutakis, G. E.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energ. Mat. Sol. C. 140, 217–223 (2015).
[Crossref]

Atwater, H.

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovolt. 5, 61–69 (2015).
[Crossref]

Atwater, H. A.

E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted gaas solar cells,” Energ. Environ. Sci. 7, 1907–1912 (2014).
[Crossref]

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[Crossref]

Atwater, J. H.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[Crossref]

Baker-Finch, S. C.

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19, 406–416 (2011).
[Crossref]

S. C. Baker-Finch, “Rules and tools for understanding, modelling and designing textured silicon solar cells,” Thesis Australian National University (2012).

Bauhuis, G.

Beal, R. J.

R. J. Beal, B. G. Potter, and J. H. Simmons, “Angle of incidence effects on external quantum efficiency in multicrystalline silicon photovoltaics,” IEEE J. Photovolt. 4, 1459–1464 (2014).
[Crossref]

Benítez, P.

R. Winston, J. Miñano, and P. Benítez, Nonimaging Optics, Electronics & Electrical (Elsevier Academic, 2005).

Bittkau, K.

Blab, G. A.

L. van Dijk, U. W. Paetzold, G. A. Blab, R. E. I. Schropp, and M. Di Vece, “3D-printed external light trap for solar cells,” Prog. Photovolt. Res. Appl. 24, 623–633 (2016).
[Crossref]

Bläsi, B.

Boriskina, S. V.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photo-voltaic cells using an optical cavity,” J. Opt. 17, 055901 (2015).
[Crossref]

Braun, A.

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energ. Environ. Sci. 6, 1499–1503 (2013).
[Crossref]

Bultman, J.

M. Kerr, J. Schmidt, A. Cuevas, and J. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys. 89, 3821–3826 (2001).
[Crossref]

Calle, E.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref] [PubMed]

Campbell, P.

P. Campbell and M. A. Green, “The limiting efficiency of silicon solar cells under concentrated sunlight,” IEEE T. Electron. Dev. 33, 234–239 (1986).
[Crossref]

Chen, G.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photo-voltaic cells using an optical cavity,” J. Opt. 17, 055901 (2015).
[Crossref]

Crane, R.

P. Verlinden, R. Swanson, and R. Crane, “7000 high-eficiency cells for a dream,” Prog. Photovolt. Res. Appl. 2, 143–152 (1994).
[Crossref]

Cuevas, A.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of auger recombination in crystalline silicon,” Phys. Rev. B 86, 165202 (2012).
[Crossref]

D. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76, 277–283 (2004).
[Crossref]

M. Kerr, J. Schmidt, A. Cuevas, and J. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys. 89, 3821–3826 (2001).
[Crossref]

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

Di Vece, M.

L. van Dijk, U. W. Paetzold, G. A. Blab, R. E. I. Schropp, and M. Di Vece, “3D-printed external light trap for solar cells,” Prog. Photovolt. Res. Appl. 24, 623–633 (2016).
[Crossref]

L. van Dijk, E. P. Marcus, A. J. Oostra, R. E. I. Schropp, and M. Di Vece, “3d-printed concentrator arrays for external light trapping on thin film solar cells,” Sol. Energ. Mat. Sol. C. 139, 19–26 (2015).
[Crossref]

Dong, J.

K. Xiong, S. Lu, D. Jiang, J. Dong, and H. Yang, “Effective recombination velocity of textured surfaces,” Appl. Phys. Lett. 96, 193107 (2010).
[Crossref]

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

Feuermann, D.

J. M. Gordon, D. Feuermann, and H. Mashaal, “Micro-optical designs for angular confinement in solar cells,” J. Photon. Energy 5, 055599 (2015).
[Crossref]

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energ. Environ. Sci. 6, 1499–1503 (2013).
[Crossref]

Fischer, S.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energ. Mat. Sol. C. 140, 217–223 (2015).
[Crossref]

Forrest, S. R.

K. Lee, J. Lee, B. A. Mazor, and S. R. Forrest, “Transforming the cost of solar-to-electrical energy conversion: Integrating thin-film GaAs solar cells with non-tracking mini-concentrators,” Light Sci. Appl. 4, e288 (2015).
[Crossref]

Gabor, A.

A. Gabor, “Cell-to-module gains and losses in crystalline silicon pv, gabor photovoltaics consulting,” July10, 2013, Intersolar NA.

Garcia de Abajo, J.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[Crossref]

Garín, M.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref] [PubMed]

Gerber, A.

Giebink, N. C.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6, 6223 (2015).
[Crossref] [PubMed]

Glunz, S. W.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of auger recombination in crystalline silicon,” Phys. Rev. B 86, 165202 (2012).
[Crossref]

Goldschmidt, J. C.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energ. Mat. Sol. C. 140, 217–223 (2015).
[Crossref]

M. F. Schumann, S. Wiesendanger, J. C. Goldschmidt, B. Bläsi, K. Bittkau, U. W. Paetzold, A. Sprafke, R. B. Wehrspohn, C. Rockstuhl, and M. Wegener, “Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes,” Optica 2, 850–853 (2015).
[Crossref]

M. Peters, J. C. Goldschmidt, T. Kirchartz, and B. Bläsi, “The photonic light trap - improved light trapping in solar cells by angularly selective filters,” Sol. Energ. Mat. Sol. C 93, 1721–1727 (2009).
[Crossref]

Gordon, J. M.

J. M. Gordon, D. Feuermann, and H. Mashaal, “Micro-optical designs for angular confinement in solar cells,” J. Photon. Energy 5, 055599 (2015).
[Crossref]

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energ. Environ. Sci. 6, 1499–1503 (2013).
[Crossref]

Green, M.

M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Dev. 31, 671–678 (1984).
[Crossref]

Green, M. A.

P. Campbell and M. A. Green, “The limiting efficiency of silicon solar cells under concentrated sunlight,” IEEE T. Electron. Dev. 33, 234–239 (1986).
[Crossref]

Hegedus, S.

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, 2011).

Hirschl, C.

G. Peharz, W. Nemitz, V. Schmidt, S. Schweitzer, W. Mühleisen, and C. Hirschl, “Investigations on the photon-recycling properties of different back-sheets,” in Proceedings of EUPVSEC, (2014), pp. 3115–3118.

Höhn, O.

Hsu, W.-C.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photo-voltaic cells using an optical cavity,” J. Opt. 17, 055901 (2015).
[Crossref]

Inganäs, O.

M. Tormen, O. Inganäs, K. Tvingstedt, and S. Zilio, “Photovoltaic device with enhanced light harvesting,” (2010). US Patent App. 12/601, 798.

Ivaturi, A.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energ. Mat. Sol. C. 140, 217–223 (2015).
[Crossref]

Jiang, D.

K. Xiong, S. Lu, D. Jiang, J. Dong, and H. Yang, “Effective recombination velocity of textured surfaces,” Appl. Phys. Lett. 96, 193107 (2010).
[Crossref]

Jin, H.

H. Jin and K. Weber, “Relationship between interface defect density and surface recombination velocity in (111) and (100) silicon/silicon oxide structure,” in Proceedings of EUPVSEC, (2008), pp. 244–247.

Katz, E. A.

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energ. Environ. Sci. 6, 1499–1503 (2013).
[Crossref]

Kayes, B. M.

E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted gaas solar cells,” Energ. Environ. Sci. 7, 1907–1912 (2014).
[Crossref]

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energ. Environ. Sci. 6, 1499–1503 (2013).
[Crossref]

Kerr, M.

M. Kerr, J. Schmidt, A. Cuevas, and J. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys. 89, 3821–3826 (2001).
[Crossref]

Kerr, M. J.

D. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76, 277–283 (2004).
[Crossref]

Kirchartz, T.

U. Rau, U. W. Paetzold, and T. Kirchartz, “Thermodynamics of light management in photovoltaic devices,” Phys. Rev. B 90, 035211 (2014).
[Crossref]

C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, “Enhanced light trapping in thin-film solar cells by a directionally selective filter,” Opt. Express 18, A133–A138 (2010).
[Crossref] [PubMed]

M. Peters, J. C. Goldschmidt, T. Kirchartz, and B. Bläsi, “The photonic light trap - improved light trapping in solar cells by angularly selective filters,” Sol. Energ. Mat. Sol. C 93, 1721–1727 (2009).
[Crossref]

Kosten, E.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[Crossref]

Kosten, E. D.

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovolt. 5, 61–69 (2015).
[Crossref]

E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted gaas solar cells,” Energ. Environ. Sci. 7, 1907–1912 (2014).
[Crossref]

Krämer, K. W.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energ. Mat. Sol. C. 140, 217–223 (2015).
[Crossref]

Kraus, T.

Lee, J.

K. Lee, J. Lee, B. A. Mazor, and S. R. Forrest, “Transforming the cost of solar-to-electrical energy conversion: Integrating thin-film GaAs solar cells with non-tracking mini-concentrators,” Light Sci. Appl. 4, e288 (2015).
[Crossref]

Lee, K.

K. Lee, J. Lee, B. A. Mazor, and S. R. Forrest, “Transforming the cost of solar-to-electrical energy conversion: Integrating thin-film GaAs solar cells with non-tracking mini-concentrators,” Light Sci. Appl. 4, e288 (2015).
[Crossref]

Leo, A.

D. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76, 277–283 (2004).
[Crossref]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

Lloyd, J. V.

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovolt. 5, 61–69 (2015).
[Crossref]

Lu, S.

K. Xiong, S. Lu, D. Jiang, J. Dong, and H. Yang, “Effective recombination velocity of textured surfaces,” Appl. Phys. Lett. 96, 193107 (2010).
[Crossref]

Luque, A.

A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energ. Mat. Sol. C. 51, 269–290 (1998).
[Crossref]

J. Miñano, A. Luque, and I. Tobias, “Light-confining cavities for photovoltaic applications based on the angular-spatial limitation of the escaping beam,” Appl. Opt. 31, 3114–3122 (1992).
[Crossref] [PubMed]

A. Luque and J. C. Miñano, “Optical aspects in photovoltaic energy conversion,” Sol. Cells 31, 237–258 (1991).
[Crossref]

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, 2011).

Macdonald, D.

D. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76, 277–283 (2004).
[Crossref]

Marcus, E. P.

L. van Dijk, E. P. Marcus, A. J. Oostra, R. E. I. Schropp, and M. Di Vece, “3d-printed concentrator arrays for external light trapping on thin film solar cells,” Sol. Energ. Mat. Sol. C. 139, 19–26 (2015).
[Crossref]

Marques-Hueso, J.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energ. Mat. Sol. C. 140, 217–223 (2015).
[Crossref]

Maruyama, E.

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energ. Mat. Sol. C. 95, 18–21 (2011).
[Crossref]

Mashaal, H.

J. M. Gordon, D. Feuermann, and H. Mashaal, “Micro-optical designs for angular confinement in solar cells,” J. Photon. Energy 5, 055599 (2015).
[Crossref]

Mazor, B. A.

K. Lee, J. Lee, B. A. Mazor, and S. R. Forrest, “Transforming the cost of solar-to-electrical energy conversion: Integrating thin-film GaAs solar cells with non-tracking mini-concentrators,” Light Sci. Appl. 4, e288 (2015).
[Crossref]

McIntosh, K. R.

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19, 406–416 (2011).
[Crossref]

Meulblok, B. M.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6, 6223 (2015).
[Crossref] [PubMed]

Miñano, J.

Miñano, J. C.

A. Luque and J. C. Miñano, “Optical aspects in photovoltaic energy conversion,” Sol. Cells 31, 237–258 (1991).
[Crossref]

Mishima, T.

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energ. Mat. Sol. C. 95, 18–21 (2011).
[Crossref]

Mühleisen, W.

G. Peharz, W. Nemitz, V. Schmidt, S. Schweitzer, W. Mühleisen, and C. Hirschl, “Investigations on the photon-recycling properties of different back-sheets,” in Proceedings of EUPVSEC, (2014), pp. 3115–3118.

Nemitz, W.

G. Peharz, W. Nemitz, V. Schmidt, S. Schweitzer, W. Mühleisen, and C. Hirschl, “Investigations on the photon-recycling properties of different back-sheets,” in Proceedings of EUPVSEC, (2014), pp. 3115–3118.

Newman, B. K.

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovolt. 5, 61–69 (2015).
[Crossref]

Oostra, A. J.

L. van Dijk, E. P. Marcus, A. J. Oostra, R. E. I. Schropp, and M. Di Vece, “3d-printed concentrator arrays for external light trapping on thin film solar cells,” Sol. Energ. Mat. Sol. C. 139, 19–26 (2015).
[Crossref]

Ortega, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref] [PubMed]

Paetzold, U. W.

L. van Dijk, U. W. Paetzold, G. A. Blab, R. E. I. Schropp, and M. Di Vece, “3D-printed external light trap for solar cells,” Prog. Photovolt. Res. Appl. 24, 623–633 (2016).
[Crossref]

M. F. Schumann, S. Wiesendanger, J. C. Goldschmidt, B. Bläsi, K. Bittkau, U. W. Paetzold, A. Sprafke, R. B. Wehrspohn, C. Rockstuhl, and M. Wegener, “Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes,” Optica 2, 850–853 (2015).
[Crossref]

U. Rau, U. W. Paetzold, and T. Kirchartz, “Thermodynamics of light management in photovoltaic devices,” Phys. Rev. B 90, 035211 (2014).
[Crossref]

Papakonstantinou, I.

Parsons, J.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[Crossref]

Peharz, G.

G. Peharz, W. Nemitz, V. Schmidt, S. Schweitzer, W. Mühleisen, and C. Hirschl, “Investigations on the photon-recycling properties of different back-sheets,” in Proceedings of EUPVSEC, (2014), pp. 3115–3118.

Peters, M.

C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, “Enhanced light trapping in thin-film solar cells by a directionally selective filter,” Opt. Express 18, A133–A138 (2010).
[Crossref] [PubMed]

M. Peters, J. C. Goldschmidt, T. Kirchartz, and B. Bläsi, “The photonic light trap - improved light trapping in solar cells by angularly selective filters,” Sol. Energ. Mat. Sol. C 93, 1721–1727 (2009).
[Crossref]

Planck, M.

M. Planck, “The theory of heat radiation (translation),” (Masius, P. Blackiston’s Son & Co, Philadelphia, 1914).

Polman, A.

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovolt. 5, 61–69 (2015).
[Crossref]

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[Crossref]

Potter, B. G.

R. J. Beal, B. G. Potter, and J. H. Simmons, “Angle of incidence effects on external quantum efficiency in multicrystalline silicon photovoltaics,” IEEE J. Photovolt. 4, 1459–1464 (2014).
[Crossref]

Price, J. S.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6, 6223 (2015).
[Crossref] [PubMed]

Rau, U.

Repo, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref] [PubMed]

Richards, B. S.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energ. Mat. Sol. C. 140, 217–223 (2015).
[Crossref]

Richter, A.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of auger recombination in crystalline silicon,” Phys. Rev. B 86, 165202 (2012).
[Crossref]

Rockstuhl, C.

Rogers, J. A.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6, 6223 (2015).
[Crossref] [PubMed]

Ruby, D.

D. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76, 277–283 (2004).
[Crossref]

Sakata, H.

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energ. Mat. Sol. C. 95, 18–21 (2011).
[Crossref]

Sala, G.

A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energ. Mat. Sol. C. 51, 269–290 (1998).
[Crossref]

Samundsett, C.

D. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76, 277–283 (2004).
[Crossref]

Savin, H.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref] [PubMed]

Schmidt, J.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of auger recombination in crystalline silicon,” Phys. Rev. B 86, 165202 (2012).
[Crossref]

M. Kerr, J. Schmidt, A. Cuevas, and J. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys. 89, 3821–3826 (2001).
[Crossref]

Schmidt, V.

G. Peharz, W. Nemitz, V. Schmidt, S. Schweitzer, W. Mühleisen, and C. Hirschl, “Investigations on the photon-recycling properties of different back-sheets,” in Proceedings of EUPVSEC, (2014), pp. 3115–3118.

Schropp, R. E. I.

L. van Dijk, U. W. Paetzold, G. A. Blab, R. E. I. Schropp, and M. Di Vece, “3D-printed external light trap for solar cells,” Prog. Photovolt. Res. Appl. 24, 623–633 (2016).
[Crossref]

L. van Dijk, E. P. Marcus, A. J. Oostra, R. E. I. Schropp, and M. Di Vece, “3d-printed concentrator arrays for external light trapping on thin film solar cells,” Sol. Energ. Mat. Sol. C. 139, 19–26 (2015).
[Crossref]

Schumann, M. F.

Schwarz, U. T.

Schweitzer, S.

G. Peharz, W. Nemitz, V. Schmidt, S. Schweitzer, W. Mühleisen, and C. Hirschl, “Investigations on the photon-recycling properties of different back-sheets,” in Proceedings of EUPVSEC, (2014), pp. 3115–3118.

Sheng, X.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6, 6223 (2015).
[Crossref] [PubMed]

Simmons, J. H.

R. J. Beal, B. G. Potter, and J. H. Simmons, “Angle of incidence effects on external quantum efficiency in multicrystalline silicon photovoltaics,” IEEE J. Photovolt. 4, 1459–1464 (2014).
[Crossref]

Sinton, R. A.

R. A. Sinton and R. M. Swanson, “Increased photogeneration in thin silicon concentrator solar cells,” IEEE Electron Devic. Lett. 8, 547–549 (1987).
[Crossref]

Spinelli, P.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[Crossref]

Sprafke, A.

Swanson, R.

P. Verlinden, R. Swanson, and R. Crane, “7000 high-eficiency cells for a dream,” Prog. Photovolt. Res. Appl. 2, 143–152 (1994).
[Crossref]

Swanson, R. M.

R. A. Sinton and R. M. Swanson, “Increased photogeneration in thin silicon concentrator solar cells,” IEEE Electron Devic. Lett. 8, 547–549 (1987).
[Crossref]

Taguchi, M.

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energ. Mat. Sol. C. 95, 18–21 (2011).
[Crossref]

Tobias, I.

Tormen, M.

M. Tormen, O. Inganäs, K. Tvingstedt, and S. Zilio, “Photovoltaic device with enhanced light harvesting,” (2010). US Patent App. 12/601, 798.

Tummeltshammer, C.

Tvingstedt, K.

M. Tormen, O. Inganäs, K. Tvingstedt, and S. Zilio, “Photovoltaic device with enhanced light harvesting,” (2010). US Patent App. 12/601, 798.

Ulbrich, C.

van de Groep, J.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[Crossref]

van Dijk, L.

L. van Dijk, U. W. Paetzold, G. A. Blab, R. E. I. Schropp, and M. Di Vece, “3D-printed external light trap for solar cells,” Prog. Photovolt. Res. Appl. 24, 623–633 (2016).
[Crossref]

L. van Dijk, E. P. Marcus, A. J. Oostra, R. E. I. Schropp, and M. Di Vece, “3d-printed concentrator arrays for external light trapping on thin film solar cells,” Sol. Energ. Mat. Sol. C. 139, 19–26 (2015).
[Crossref]

van Lare, C.

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[Crossref]

Verlinden, P.

P. Verlinden, R. Swanson, and R. Crane, “7000 high-eficiency cells for a dream,” Prog. Photovolt. Res. Appl. 2, 143–152 (1994).
[Crossref]

von Gastrow, G.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref] [PubMed]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

Weber, K.

H. Jin and K. Weber, “Relationship between interface defect density and surface recombination velocity in (111) and (100) silicon/silicon oxide structure,” in Proceedings of EUPVSEC, (2008), pp. 244–247.

Wegener, M.

Wehrspohn, R. B.

Weinstein, L. A.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photo-voltaic cells using an optical cavity,” J. Opt. 17, 055901 (2015).
[Crossref]

Werner, F.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of auger recombination in crystalline silicon,” Phys. Rev. B 86, 165202 (2012).
[Crossref]

Wiesendanger, S.

Winderbaum, S.

D. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76, 277–283 (2004).
[Crossref]

Winston, R.

R. Winston, J. Miñano, and P. Benítez, Nonimaging Optics, Electronics & Electrical (Elsevier Academic, 2005).

Würfel, P.

P. Würfel and U. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (John Wiley & Sons, 2009).

Würfel, U.

P. Würfel and U. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (John Wiley & Sons, 2009).

Xiong, K.

K. Xiong, S. Lu, D. Jiang, J. Dong, and H. Yang, “Effective recombination velocity of textured surfaces,” Appl. Phys. Lett. 96, 193107 (2010).
[Crossref]

Yang, H.

K. Xiong, S. Lu, D. Jiang, J. Dong, and H. Yang, “Effective recombination velocity of textured surfaces,” Appl. Phys. Lett. 96, 193107 (2010).
[Crossref]

Yerci, S.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photo-voltaic cells using an optical cavity,” J. Opt. 17, 055901 (2015).
[Crossref]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

Zilio, S.

M. Tormen, O. Inganäs, K. Tvingstedt, and S. Zilio, “Photovoltaic device with enhanced light harvesting,” (2010). US Patent App. 12/601, 798.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. van Lare, J. van de Groep, J. Garcia de Abajo, A. Polman, and H. A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 151113 (2011).
[Crossref]

K. Xiong, S. Lu, D. Jiang, J. Dong, and H. Yang, “Effective recombination velocity of textured surfaces,” Appl. Phys. Lett. 96, 193107 (2010).
[Crossref]

Energ. Environ. Sci. (2)

E. D. Kosten, B. M. Kayes, and H. A. Atwater, “Experimental demonstration of enhanced photon recycling in angle-restricted gaas solar cells,” Energ. Environ. Sci. 7, 1907–1912 (2014).
[Crossref]

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energ. Environ. Sci. 6, 1499–1503 (2013).
[Crossref]

IEEE Electron Devic. Lett. (1)

R. A. Sinton and R. M. Swanson, “Increased photogeneration in thin silicon concentrator solar cells,” IEEE Electron Devic. Lett. 8, 547–549 (1987).
[Crossref]

IEEE J. Photovolt. (2)

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. Atwater, “Limiting light escape angle in silicon photovoltaics: ideal and realistic cells,” IEEE J. Photovolt. 5, 61–69 (2015).
[Crossref]

R. J. Beal, B. G. Potter, and J. H. Simmons, “Angle of incidence effects on external quantum efficiency in multicrystalline silicon photovoltaics,” IEEE J. Photovolt. 4, 1459–1464 (2014).
[Crossref]

IEEE T. Electron. Dev. (1)

P. Campbell and M. A. Green, “The limiting efficiency of silicon solar cells under concentrated sunlight,” IEEE T. Electron. Dev. 33, 234–239 (1986).
[Crossref]

IEEE Trans. Electron. Dev. (1)

M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Dev. 31, 671–678 (1984).
[Crossref]

J. Appl. Phys. (1)

M. Kerr, J. Schmidt, A. Cuevas, and J. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys. 89, 3821–3826 (2001).
[Crossref]

J. Opt. (1)

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photo-voltaic cells using an optical cavity,” J. Opt. 17, 055901 (2015).
[Crossref]

J. Photon. Energy (1)

J. M. Gordon, D. Feuermann, and H. Mashaal, “Micro-optical designs for angular confinement in solar cells,” J. Photon. Energy 5, 055599 (2015).
[Crossref]

Light Sci. Appl. (1)

K. Lee, J. Lee, B. A. Mazor, and S. R. Forrest, “Transforming the cost of solar-to-electrical energy conversion: Integrating thin-film GaAs solar cells with non-tracking mini-concentrators,” Light Sci. Appl. 4, e288 (2015).
[Crossref]

Nano Lett. (1)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12, 1616–1619 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6, 6223 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10, 624–628 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Optica (2)

Phys. Rev. B (2)

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of auger recombination in crystalline silicon,” Phys. Rev. B 86, 165202 (2012).
[Crossref]

U. Rau, U. W. Paetzold, and T. Kirchartz, “Thermodynamics of light management in photovoltaic devices,” Phys. Rev. B 90, 035211 (2014).
[Crossref]

Prog. Photovolt. Res. Appl. (3)

P. Verlinden, R. Swanson, and R. Crane, “7000 high-eficiency cells for a dream,” Prog. Photovolt. Res. Appl. 2, 143–152 (1994).
[Crossref]

L. van Dijk, U. W. Paetzold, G. A. Blab, R. E. I. Schropp, and M. Di Vece, “3D-printed external light trap for solar cells,” Prog. Photovolt. Res. Appl. 24, 623–633 (2016).
[Crossref]

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19, 406–416 (2011).
[Crossref]

Sol. Cells (1)

A. Luque and J. C. Miñano, “Optical aspects in photovoltaic energy conversion,” Sol. Cells 31, 237–258 (1991).
[Crossref]

Sol. Energ. Mat. Sol. C (1)

M. Peters, J. C. Goldschmidt, T. Kirchartz, and B. Bläsi, “The photonic light trap - improved light trapping in solar cells by angularly selective filters,” Sol. Energ. Mat. Sol. C 93, 1721–1727 (2009).
[Crossref]

Sol. Energ. Mat. Sol. C. (4)

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energ. Mat. Sol. C. 140, 217–223 (2015).
[Crossref]

L. van Dijk, E. P. Marcus, A. J. Oostra, R. E. I. Schropp, and M. Di Vece, “3d-printed concentrator arrays for external light trapping on thin film solar cells,” Sol. Energ. Mat. Sol. C. 139, 19–26 (2015).
[Crossref]

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energ. Mat. Sol. C. 95, 18–21 (2011).
[Crossref]

A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energ. Mat. Sol. C. 51, 269–290 (1998).
[Crossref]

Sol. Energy (1)

D. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy 76, 277–283 (2004).
[Crossref]

Other (13)

S. C. Baker-Finch, “Rules and tools for understanding, modelling and designing textured silicon solar cells,” Thesis Australian National University (2012).

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, 2011).

A. Gabor, “Cell-to-module gains and losses in crystalline silicon pv, gabor photovoltaics consulting,” July10, 2013, Intersolar NA.

G. Peharz, W. Nemitz, V. Schmidt, S. Schweitzer, W. Mühleisen, and C. Hirschl, “Investigations on the photon-recycling properties of different back-sheets,” in Proceedings of EUPVSEC, (2014), pp. 3115–3118.

“Pvlighthouse - tracey,” www.pvlighthouse.com.au .

H. Jin and K. Weber, “Relationship between interface defect density and surface recombination velocity in (111) and (100) silicon/silicon oxide structure,” in Proceedings of EUPVSEC, (2008), pp. 244–247.

“Edmund optics, item nr. 63-229 (CPC),” www.edmundoptics.com .

“Hamamatsu,” www.hamamatsu.com .

Consortium of several companies and research institutes, “International technology roadmap for photovoltaic (itrpv)”, www.itrpv.net .

M. Planck, “The theory of heat radiation (translation),” (Masius, P. Blackiston’s Son & Co, Philadelphia, 1914).

P. Würfel and U. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (John Wiley & Sons, 2009).

R. Winston, J. Miñano, and P. Benítez, Nonimaging Optics, Electronics & Electrical (Elsevier Academic, 2005).

M. Tormen, O. Inganäs, K. Tvingstedt, and S. Zilio, “Photovoltaic device with enhanced light harvesting,” (2010). US Patent App. 12/601, 798.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Illustration of a cross section of an external light trap on top of a specularly reflective solar cell. Light is focused through an aperture and is trapped within a cage. The reflectivity of the concentrator (Rc) and that of the cage are important parameters of the light trap. The cage height determines the optical path within the cage and the intensity distribution on the solar cell. Light reflecting from the front interfaces (❶), back interfaces (❶), metal grid (❸), and white back sheet (❹) is recycled.

Fig. 2
Fig. 2

(a) Design of the 3× concentrator. (b) Photo of the milled concentrators and the cages. The milled concentrators have a concentration factor of 3×, 6×, and 9×. The cages make a vertical spacing between the cell and the reflective bottom of the concentrator of 2, 3, and 4 mm. (c–e) Photos of the top view of the concentrators with different concentration factor: (c) C = 3×, (d) C = 6×, and (e) C = 9×. The concentrators are placed 3 cm from a sheet of squared graph paper. The center (in white dashed ring) shows a direct view of the squared graph paper (out of focus) through the aperture. Outside the center, a distorted image is formed of the straight lines of the graph paper due to the concentrator curvature. The camera is focused on the concentrator surface.

Fig. 3
Fig. 3

(a) Close-up of the milling head inside the milling cutter machine. (b) Milling process of the external light trap. The aluminum rod that will become the concentrator is fixed in the setup. Various bits are used for the different fabrication stages of the concentrator. A beam of cooling liquid is used to carry away heat generated during the milling and to remove the released metal chips during the milling. (c–e) Top view of the concentrators with different concentration factor (C=3–9×).

Fig. 4
Fig. 4

Plot of the EQE for various trap configurations. The red solid line shows the EQE of the bare, flat, and untextured c-Si solar cell. The yellow, green, and blue solid line are the best measured EQE of the c-Si cell with a cage height of 4 mm external light traps with respectively C=3, 6, and 9×. The red dashed line shows the measured absorptance of the bare cell (bareA). The blue dashed line shows the calculated absorptance of the cell with the 9× concentrator applied. The gray dashed line is the measured reflectance of polished silver coated aluminum.

Fig. 5
Fig. 5

Plot of the EQE for different cage heights measured using the C = 6× concentrator. The red line shows the EQE of the bare solar cell, which has a plateau at 0.64 (see bottom dashed line). The light-red shaded area indicates the drop in EQE when the concentrator is placed directly on top of the cell due to parasitic absorption in the concentrator (see ❶). The integration of a cage below the concentrator results in external light trapping. Thereby, the EQE of cell with external light trap exceeds the EQE of the bare cell (see ❷). The upper blue line (EQEaperture) shows the EQE for a slightly tilted beam of light that passed the aperture without hitting the concentrator, for a cage height of 4 mm. EQEaperture closely approximates the black dashed statistical absorptance limit for a cell with a reflectance of 36%. The inset shows the top view of the concentrator and roughly indicates the size of the monochromatic beam.

Fig. 6
Fig. 6

Comparison of the theoretical and experimental transmittance of the concentrators. (a) Reflectance as a function of the angle of incidence (θi) of a smooth silver surface, for s-, p-, and un-polarized (*) light, at a wavelength of 532 nm. This data is used to calculate the following transmittance maps. (b–d) Calculated transmittance maps according to the Fresnel equations based on the polarization and incidence angle of the three silver coated concentrators (C=3×, 6×, and 9×) for incoming light (532 nm), traveling parallel to the concentrator axis. The maps (top view of concentrator) show the transmittance as a function of the incidence (x, y) position. Due to the geometry of the concentrator, the light can be p-polarized and s-polarized with respect to the plane of incidence depending on the incident spot. (e–g) Experimental transmittance maps for light with a wavelength of 532 nm. Note that the color bars of the theoretical and experimental maps differ significantly. The measured transmittance at the outer edge is faded out, to indicate that the laser beam slightly overlaps with the rim of the concentrator.

Fig. 7
Fig. 7

(a) Schematic top view of a concentrator. The concentric circles illustrate a few milling lines. Polarized light hitting the concentrator induces oscillating electrical currents on the surface of the concentrator. At the top and bottom these currents are orthogonal to the milled circles, while at the left and right side these currents are parallel to the milled lines. This difference in orientation has a major impact on the observed reflectance. (bd) SEM images of the concentrator surface. (b) A 3× aluminum concentrator before deposition of silver. The regular stripes are caused by the milling process. (c) A 6× concentrator after polishing and evaporation of Ag. (d) Zoom-in of a metal blob on which different metal grains can be seen.

Fig. 8
Fig. 8

(a) Illustration of the setup used for the ray tracing. A light source with a collimated beam is aimed at the C = 6× concentrator with a cage and solar cell behind. A series of simulations was performed with different cage height. The simulations are performed at normal incidence. (b) Effective absorptance by a cell within an external light trap with C = 6×. The reflectivity represents that of our cell (36%) and that of a typical solar module (13%). For a short cage the light is not trapped. The absorptance increases initially, and levels off at ∼6 mm. The dashed lines show the statistical absorptance limit. (ce) Simulated intensity distribution on the solar cell with increase of cage height (0–10 mm) for R = 36%, and C = 6×. The absorptance becomes more homogeneous with increase of the cage height. For pixels with a white color the absorptance exceeds 250 mW/cm2. (f–h) Intensity maps for hcage = 50 mm, R = 36% at C = 3×, 6×, and 9×. The central ring is illuminated stronger due to direct and reflected illumination.

Fig. 9
Fig. 9

Polar plot of the path of the sun during one year for a location on the equator. The concentric rings indicate the elevation of the sun and the position on the ring is the compass direction. If the sun is directly overhead it is in the center of this plot. During the summer and winter solstice, the sun moves along the top and bottom curve respectively. The red line shows the boundary of the acceptance angles for a static, horizontal module with a linear concentrator.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A trap = EQE trap IQE = EQE trap EQE bare A bare .
P escape = A aperture A concentrator ( = 1 C ) .
A t = T c A sc 1 R sc ( 1 C 1 ) R cage ,

Metrics