Abstract

A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface-relief and polarization gratings for solar concentrators

Ties M. de Jong, Dick K. G. de Boer, and Cees W. M. Bastiaansen
Opt. Express 19(16) 15127-15142 (2011)

Bio-inspired thin and flat solar concentrator for efficient, wide acceptance angle light collection

Rabin Dhakal, Jiwon Lee, and Jaeyoun Kim
Appl. Opt. 53(2) 306-315 (2014)

Ray-leakage-free sawtooth-shaped planar lightguide solar concentrators

Hong-Yu Wu and Shu-Chun Chu
Opt. Express 21(17) 20073-20089 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Swanson, “Photovoltaic concentrators,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley and Sons, 2003), Ch. 11.
  2. R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic Press, 2005).
  3. J. Chaves, Introduction to Nonimaging Optics (Taylor and Francis Group, 2008).
    [Crossref]
  4. W. H. Bloss, M. Griesinger, and E. R. Reinhardt, “Dispersive concentrating systems based on transmission phase holograms for solar applications,” Appl. Opt. 21(20), 3739–3742 (1982).
    [Crossref] [PubMed]
  5. J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
    [Crossref] [PubMed]
  6. T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Express 19(16), 15127–15142 (2011).
    [Crossref] [PubMed]
  7. J. E. Castillo, J. M. Russo, R. K. Kostuk, and G. A. Rosenberg, “Thermal effects of extended holographic regions for planar holographic concentrator,” J. Photonics Energy 1, 015504 (2011).
    [Crossref]
  8. D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1, 015505 (2011).
    [Crossref]
  9. T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Angular dependence of surface-relief gratings for solar and lighting applications,” Proc. SPIE 8124, 81240D (2011).
    [Crossref]
  10. T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Light-guide-based diffactive solar concentrators,” Proc. SPIE 8438, 84380X (2012).
    [Crossref]
  11. T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Angular dependence of surface-relief gratings for nonimaging applications,” Opt. Express, submitted (2016).
  12. W. T. Welford and R. Winston, “Nonconventional optical systems and the brightness theorem,” Appl. Opt. 21(9), 1531–1533 (1982).
    [Crossref] [PubMed]
  13. R. Winston and W. T. Welford, “Efficiency of nonimaging concentrators in the physical-optics model,” J. Opt. Soc. Am. 72(11), 1564–1566 (1982).
    [Crossref]
  14. R. Winston, “Principles of solar concentrators of a novel design,” Sol. Energy 16(2), 89–95 (1974).
    [Crossref]
  15. R. Winston, “Dielectric compound parabolic concentrators,” Appl. Opt. 15(2), 291–292 (1976).
    [Crossref] [PubMed]
  16. B. D. Markman, R. R. Ranade, and N. C. Giebink, “Nonimaging optics in luminescent solar concentration,” Opt. Express 20(S5), A622–A629 (2012).
    [Crossref] [PubMed]
  17. M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, G. G. Gregory, and D. Herrmann, “Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Opt. Eng. 54(4), 045105 (2015).
    [Crossref]

2015 (1)

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, G. G. Gregory, and D. Herrmann, “Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Opt. Eng. 54(4), 045105 (2015).
[Crossref]

2012 (2)

B. D. Markman, R. R. Ranade, and N. C. Giebink, “Nonimaging optics in luminescent solar concentration,” Opt. Express 20(S5), A622–A629 (2012).
[Crossref] [PubMed]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Light-guide-based diffactive solar concentrators,” Proc. SPIE 8438, 84380X (2012).
[Crossref]

2011 (4)

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Express 19(16), 15127–15142 (2011).
[Crossref] [PubMed]

J. E. Castillo, J. M. Russo, R. K. Kostuk, and G. A. Rosenberg, “Thermal effects of extended holographic regions for planar holographic concentrator,” J. Photonics Energy 1, 015504 (2011).
[Crossref]

D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1, 015505 (2011).
[Crossref]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Angular dependence of surface-relief gratings for solar and lighting applications,” Proc. SPIE 8124, 81240D (2011).
[Crossref]

2010 (1)

1982 (3)

1976 (1)

1974 (1)

R. Winston, “Principles of solar concentrators of a novel design,” Sol. Energy 16(2), 89–95 (1974).
[Crossref]

Bahl, M.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, G. G. Gregory, and D. Herrmann, “Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Opt. Eng. 54(4), 045105 (2015).
[Crossref]

Bastiaansen, C. W. M.

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Light-guide-based diffactive solar concentrators,” Proc. SPIE 8438, 84380X (2012).
[Crossref]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Angular dependence of surface-relief gratings for solar and lighting applications,” Proc. SPIE 8124, 81240D (2011).
[Crossref]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Express 19(16), 15127–15142 (2011).
[Crossref] [PubMed]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Angular dependence of surface-relief gratings for nonimaging applications,” Opt. Express, submitted (2016).

Benitez, P.

R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic Press, 2005).

Bloss, W. H.

Cassarly, W.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, G. G. Gregory, and D. Herrmann, “Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Opt. Eng. 54(4), 045105 (2015).
[Crossref]

Castillo, J. E.

J. E. Castillo, J. M. Russo, R. K. Kostuk, and G. A. Rosenberg, “Thermal effects of extended holographic regions for planar holographic concentrator,” J. Photonics Energy 1, 015504 (2011).
[Crossref]

Castro, J. M.

D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1, 015505 (2011).
[Crossref]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
[Crossref] [PubMed]

Chaves, J.

J. Chaves, Introduction to Nonimaging Optics (Taylor and Francis Group, 2008).
[Crossref]

de Boer, D. K. G.

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Light-guide-based diffactive solar concentrators,” Proc. SPIE 8438, 84380X (2012).
[Crossref]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Angular dependence of surface-relief gratings for solar and lighting applications,” Proc. SPIE 8124, 81240D (2011).
[Crossref]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Express 19(16), 15127–15142 (2011).
[Crossref] [PubMed]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Angular dependence of surface-relief gratings for nonimaging applications,” Opt. Express, submitted (2016).

de Jong, T. M.

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Light-guide-based diffactive solar concentrators,” Proc. SPIE 8438, 84380X (2012).
[Crossref]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Angular dependence of surface-relief gratings for solar and lighting applications,” Proc. SPIE 8124, 81240D (2011).
[Crossref]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Express 19(16), 15127–15142 (2011).
[Crossref] [PubMed]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Angular dependence of surface-relief gratings for nonimaging applications,” Opt. Express, submitted (2016).

Giebink, N. C.

Gregory, G. G.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, G. G. Gregory, and D. Herrmann, “Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Opt. Eng. 54(4), 045105 (2015).
[Crossref]

Griesinger, M.

Heller, E.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, G. G. Gregory, and D. Herrmann, “Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Opt. Eng. 54(4), 045105 (2015).
[Crossref]

Herrmann, D.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, G. G. Gregory, and D. Herrmann, “Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Opt. Eng. 54(4), 045105 (2015).
[Crossref]

Jiang, M.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, G. G. Gregory, and D. Herrmann, “Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Opt. Eng. 54(4), 045105 (2015).
[Crossref]

Kostuk, R. K.

D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1, 015505 (2011).
[Crossref]

J. E. Castillo, J. M. Russo, R. K. Kostuk, and G. A. Rosenberg, “Thermal effects of extended holographic regions for planar holographic concentrator,” J. Photonics Energy 1, 015504 (2011).
[Crossref]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
[Crossref] [PubMed]

Markman, B. D.

Minano, J. C.

R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic Press, 2005).

Myer, B.

Ranade, R. R.

Reinhardt, E. R.

Rosenberg, G. A.

J. E. Castillo, J. M. Russo, R. K. Kostuk, and G. A. Rosenberg, “Thermal effects of extended holographic regions for planar holographic concentrator,” J. Photonics Energy 1, 015504 (2011).
[Crossref]

Russo, J. M.

J. E. Castillo, J. M. Russo, R. K. Kostuk, and G. A. Rosenberg, “Thermal effects of extended holographic regions for planar holographic concentrator,” J. Photonics Energy 1, 015504 (2011).
[Crossref]

Scarmozzino, R.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, G. G. Gregory, and D. Herrmann, “Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Opt. Eng. 54(4), 045105 (2015).
[Crossref]

Swanson, R. M.

R. M. Swanson, “Photovoltaic concentrators,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley and Sons, 2003), Ch. 11.

Welford, W. T.

Winston, R.

Zhang, D.

D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1, 015505 (2011).
[Crossref]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
[Crossref] [PubMed]

Zhou, G.-R.

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, G. G. Gregory, and D. Herrmann, “Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Opt. Eng. 54(4), 045105 (2015).
[Crossref]

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

J. Photonics Energy (2)

J. E. Castillo, J. M. Russo, R. K. Kostuk, and G. A. Rosenberg, “Thermal effects of extended holographic regions for planar holographic concentrator,” J. Photonics Energy 1, 015504 (2011).
[Crossref]

D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1, 015505 (2011).
[Crossref]

Opt. Eng. (1)

M. Bahl, G.-R. Zhou, E. Heller, W. Cassarly, M. Jiang, R. Scarmozzino, G. G. Gregory, and D. Herrmann, “Mixed-level optical simulations of light-emitting diodes based on a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods,” Opt. Eng. 54(4), 045105 (2015).
[Crossref]

Opt. Express (2)

Proc. SPIE (2)

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Angular dependence of surface-relief gratings for solar and lighting applications,” Proc. SPIE 8124, 81240D (2011).
[Crossref]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Light-guide-based diffactive solar concentrators,” Proc. SPIE 8438, 84380X (2012).
[Crossref]

Sol. Energy (1)

R. Winston, “Principles of solar concentrators of a novel design,” Sol. Energy 16(2), 89–95 (1974).
[Crossref]

Other (4)

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Angular dependence of surface-relief gratings for nonimaging applications,” Opt. Express, submitted (2016).

R. M. Swanson, “Photovoltaic concentrators,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley and Sons, 2003), Ch. 11.

R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic Press, 2005).

J. Chaves, Introduction to Nonimaging Optics (Taylor and Francis Group, 2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Sketch of a slanted grating. (b) Grating for in-coupling showing the ±1st orders (m = ±1) diffracted into TIR and the undiffracted 0th order (m = 0) leaving the light guide. For the considered slanted grating, the m = +1 order is much more intense than the m = −1 order.
Fig. 2
Fig. 2 Diffraction efficiency for unpolarized light, calculated using Rigorous Coupled-Wave Analysis, of the +1st transmitted order as a function of the normalized wavelength (λ/Λ) and of the angle of incidence θin in air for a slanted surface-relief grating in SU-8 (d/Λ = 1.37,γ = 21.87°,nin = 1,nout = 1.6). For the region bounded by the dashed lines the angle of diffraction will satisfy 1/nout sinθmneff./nout.
Fig. 3
Fig. 3 Diffraction efficiency for unpolarized light, calculated using Rigorous Coupled-Wave Analysis, of the ±1st and ±2nd orders as a function of the normalized wavelength (λ/Λ) and of the angle inside the light guide for a slanted surface-relief grating in SU-8 (d/Λ = 1.37,γ = 21.87°,nin = 1,nout = 1.6). The dashed lines correspond to sinθ = ±1/nout and sinθ = ±neff./nout.
Fig. 4
Fig. 4 Sketch of a tapered light guide. For a grating in SU-8 and nout = 1.6 the dimensions are given by: β = 7.67° and w/h = 7.42.
Fig. 5
Fig. 5 Sketch illustrating the construction of the parabolic part of the light guide. The shaded part corresponds to the combined concentrator (right end of the tapered light guide, the parabolic light guide and the flat light guide).
Fig. 6
Fig. 6 Sketch of a combination of a tapered light guide (TLG), a parabolic light guide (PLG), a flat light guide (FLG) and a Compound Parabolic Concentrator (CPC). All geometrical components are drawn to the same scale assuming a grating in SU-8 and nout = 1.6.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

1 / n out sin θ m n eff . / n out
1 m λ / Λ sin θ in n eff . m λ / Λ ,
λ c = n eff . + 1 2 Λ .
sin ( θ acc . ( λ c ) ) = n eff . 1 2 .
C max = n out 1 sin θ acc . .
C g , max = 2 n out n eff . 1 .
C g = in out ,
C g , max = 10.848 ( n eff . = 1.295 , n out = 1.6 ) .
C g , max TIR = n out cos θ c sin ( θ acc . ( λ c ) ) = 2 n out 2 1 n eff . 1 .
C g , max TIR = 8.468 ( n eff . = 1.295 , n out = 1.6 ) .
θ + = arcsin ( n eff . n out ) , θ = θ c = arcsin ( 1 n out ) .
β = θ + θ 2 = 1 2 [ arcsin ( n eff . n out ) arcsin ( 1 n out ) ] .
in TLG h TLG = 1 tan | β | = ( tan [ 1 2 arcsin ( n eff . n out ) 1 2 arcsin ( 1 n out ) ] ) 1 ,
in FLG h = tan θ = 1 n out 2 1 .
( x h ) 2 + ( z h ) 2 = ( sin θ x h + cos θ z h 2 cos θ ) 2
= 1 n out 2 ( x h + n out 2 1 z h 2 n out 2 1 ) 2 .
x h = tan θ = 1 n out 2 1 ;
x + h = 2 n eff . n out 2 1 n out 2 n eff . + n out 2 n eff . 2 n out 2 1 .
h TLG = x + tan θ + = n eff . n out 2 n eff . 2 ,
C g CLG = in TLG h + x + h
= 2 n out 2 1 n eff . 1 = C g , max TIR .
C g CPC = 1 cos θ c = n out n out 2 1 .
w CPC h = n out 2 1 + n out 2 ( n out 2 1 ) ,
C g D-LGC = C g CPC C g CLG = 2 n out n eff . 1 = C g , max .
in TLG h = 7.141 , in PLG h = 0.526 , in FLG h = 0.801 , C g CPC = 1.281 .
β = 7.676 ° , w h = 9.381 .

Metrics