Abstract

Raman scattering of photons by seawater molecules is an inelastic scattering process. This effect can contribute significantly to the water-leaving radiance signal observed by space-borne ocean-color spectroradiometers. If not accounted for during ocean-color processing, Raman scattering can cause biases in derived inherent optical properties (IOPs). Here we describe a Raman scattering correction (RSC) algorithm that has been integrated within NASA’s standard ocean-color processing software. We tested the RSC with NASA’s Generalized Inherent Optical Properties algorithm (GIOP). A comparison between derived IOPs and in situ data revealed that the magnitude of the derived backscattering coefficient and the phytoplankton absorption coefficient were reduced when the RSC was applied, whilst the absorption coefficient of colored dissolved and detrital matter remained unchanged. Importantly, our results show that the RSC did not degrade the retrieval skill of the GIOP. In addition, a time-series study of oligotrophic waters near Bermuda showed that the RSC did not introduce unwanted temporal trends or artifacts into derived IOPs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model

P. Jeremy Werdell, Sean W. Bailey, Bryan A. Franz, André Morel, and Charles R. McClain
Appl. Opt. 46(23) 5649-5666 (2007)

Generalized ocean color inversion model for retrieving marine inherent optical properties

P. Jeremy Werdell, Bryan A. Franz, Sean W. Bailey, Gene C. Feldman, Emmanuel Boss, Vittorio E. Brando, Mark Dowell, Takafumi Hirata, Samantha J. Lavender, ZhongPing Lee, Hubert Loisel, Stéphane Maritorena, Fréderic Mélin, Timothy S. Moore, Timothy J. Smyth, David Antoine, Emmanuel Devred, Odile Hembise Fanton d’Andon, and Antoine Mangin
Appl. Opt. 52(10) 2019-2037 (2013)

Influence of Raman scattering on ocean color inversion models

Toby K. Westberry, Emmanuel Boss, and Zhongping Lee
Appl. Opt. 52(22) 5552-5561 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. E. Walrafen, “Raman spectral studies of effects of temperature on water structure,” J. Chem. Phys. 47(1), 114–126 (1967).
    [Crossref]
  2. T. K. Westberry, E. Boss, and Z. Lee, “Influence of Raman scattering on ocean color inversion models,” Appl. Opt. 52(22), 5552–5561 (2013).
    [Crossref] [PubMed]
  3. H. R. Gordon, “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38(15), 3166–3174 (1999).
    [Crossref] [PubMed]
  4. R. H. Stavn and A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27(19), 4002–4011 (1988).
    [Crossref] [PubMed]
  5. C. Hu and K. J. Voss, “In situ measurements of Raman scattering in clear ocean water,” Appl. Opt. 36(27), 6962–6967 (1997).
    [Crossref] [PubMed]
  6. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
    [Crossref]
  7. H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39(18), 3001–3011 (2000).
    [Crossref] [PubMed]
  8. Z. Lee and Y. Huot, “On the non-closure of particle backscattering coefficient in oligotrophic oceans,” Opt. Express 22(23), 29223–29233 (2014).
    [Crossref] [PubMed]
  9. S. Sathyendranath and T. Platt, “Ocean-color model incorporating transspectral processes,” Appl. Opt. 37(12), 2216–2227 (1998).
    [Crossref] [PubMed]
  10. Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
    [Crossref]
  11. Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33(24), 5721–5732 (1994).
    [Crossref] [PubMed]
  12. B. R. Marshall and R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29(1), 71–84 (1990).
    [Crossref] [PubMed]
  13. W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless marine atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
    [Crossref]
  14. Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).
  15. A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tièche, “Light absorption properties and absorption budget of Southeast Pacific waters,” Journal of Geophysical Research: Oceans 115(C8), C08009 (2010).
    [Crossref]
  16. P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52(10), 2019–2037 (2013).
    [Crossref] [PubMed]
  17. J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37(15), 3324–3332 (1998).
    [Crossref] [PubMed]
  18. M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40(3), 343–348 (2001).
    [Crossref] [PubMed]
  19. NASA Goddard Space Flight Center, Ocean Ecology Laboratory, “Spectral Response Functions and Bandpass Averaged Quantities,” in Ocean Color Documents ( http://oceancolor.gsfc.nasa.gov/DOCS/RSR_tables.html , 2012).
  20. C. D. Mobley, “Hydrolight Technical Note 10: Interpretation of Raman Scattering Computations,” (Sequoia Scientific, 2012).
  21. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
  22. S. Sathyendranath and T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93(C8), 9270–9280 (1988).
    [Crossref]
  23. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
    [Crossref] [PubMed]
  24. A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tièche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
    [Crossref]
  25. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [Crossref] [PubMed]
  26. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34(8), 1510–1523 (1989).
    [Crossref]
  27. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. Oceans 104(C3), 5403–5421 (1999).
    [Crossref]
  28. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. Oceans 103, 31,033 - 031,044 (1998).
  29. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103(C11), 24937–24953 (1998).
    [Crossref]
  30. NASA Goddard Space Flight Center; Ocean Ecology Laboratory, Ocean Biology Distributed Active Archive Center, “Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua Ocean Color Data,” ( http://oceancolor.gsfc.nasa.gov/ , 2014).
  31. NASA Goddard Space Flight Center; Ocean Ecology Laboratory, Ocean Biology Distributed Active Archive Center, “Sea Viewing Wide-Field-of-view Sensor (SeaWiFS) Ocean Color Data,” ( http://oceancolor.gsfc.nasa.gov/ , 2014).
  32. T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt. 45(31), 8116–8131 (2006).
    [Crossref] [PubMed]
  33. S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea,” Journal of Geophysical Research: Oceans 102(C8), 18607–18625 (1997).
    [Crossref]
  34. L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water-column depth and substrate reflectance parameterization,” Journal of Geophysical Research: Oceans 120, 1741–1770 (2015).
  35. F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: method for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38(9), 1657–1662 (1999).
    [Crossref] [PubMed]
  36. S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47(12), 2035–2045 (2008).
    [Crossref] [PubMed]
  37. P. J. Werdell, B. A. Franz, J. T. Lefler, W. D. Robinson, and E. Boss, “Retrieving marine inherent optical properties from satellites using temperature and salinity-dependent backscattering by seawater,” Opt. Express 21(26), 32611–32622 (2013).
    [Crossref] [PubMed]
  38. C. R. McClain, S. R. Signorini, and J. R. Christian, “Subtropical gyre variability observed by ocean-color satellites,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 281–301 (2004).
    [Crossref]
  39. D. K. Steinberg, C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H. Knap, “Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry,” Deep Sea Res. Part II Top. Stud. Oceanogr. 48(8-9), 1405–1447 (2001).
    [Crossref]
  40. GCOS, Implementation plan for the global observing system for climate in support of the UNFCCC (2010 Update) (World Meteorological Organization, Available online at http://www.wmo.int/pages/prog/gcos/Publications/gcos-138.pdf , 2010), p. 180.
  41. B. A. Franz, M. J. Behrenfeld, D. A. Siegel, and P. J. Werdell, “3.k. Global Oceans: Global ocean phytoplankton,” in State of the Climate in 2014, J. Blunden and D. S. Arndt, eds. (Am. Meterol. Soc., 2015), pp. S85–S87.
  42. D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
    [Crossref]
  43. I. Cetinić, M. J. Perry, N. T. Briggs, E. Kallin, E. A. D'Asaro, and C. M. Lee, “Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment,” Journal of Geophysical Research: Oceans 117, n/a-n/a (2012).
    [Crossref]
  44. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
    [Crossref]
  45. J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).
    [Crossref]
  46. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
    [Crossref]

2015 (2)

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water-column depth and substrate reflectance parameterization,” Journal of Geophysical Research: Oceans 120, 1741–1770 (2015).

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).
[Crossref]

2014 (1)

2013 (4)

2010 (2)

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tièche, “Light absorption properties and absorption budget of Southeast Pacific waters,” Journal of Geophysical Research: Oceans 115(C8), C08009 (2010).
[Crossref]

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[Crossref]

2008 (2)

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47(12), 2035–2045 (2008).
[Crossref] [PubMed]

2007 (1)

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tièche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

2006 (1)

2005 (2)

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
[Crossref]

2004 (1)

C. R. McClain, S. R. Signorini, and J. R. Christian, “Subtropical gyre variability observed by ocean-color satellites,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 281–301 (2004).
[Crossref]

2002 (1)

2001 (2)

M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40(3), 343–348 (2001).
[Crossref] [PubMed]

D. K. Steinberg, C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H. Knap, “Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry,” Deep Sea Res. Part II Top. Stud. Oceanogr. 48(8-9), 1405–1447 (2001).
[Crossref]

2000 (1)

1999 (3)

F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: method for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38(9), 1657–1662 (1999).
[Crossref] [PubMed]

H. R. Gordon, “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38(15), 3166–3174 (1999).
[Crossref] [PubMed]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. Oceans 104(C3), 5403–5421 (1999).
[Crossref]

1998 (3)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103(C11), 24937–24953 (1998).
[Crossref]

J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37(15), 3324–3332 (1998).
[Crossref] [PubMed]

S. Sathyendranath and T. Platt, “Ocean-color model incorporating transspectral processes,” Appl. Opt. 37(12), 2216–2227 (1998).
[Crossref] [PubMed]

1997 (3)

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
[Crossref] [PubMed]

C. Hu and K. J. Voss, “In situ measurements of Raman scattering in clear ocean water,” Appl. Opt. 36(27), 6962–6967 (1997).
[Crossref] [PubMed]

S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea,” Journal of Geophysical Research: Oceans 102(C8), 18607–18625 (1997).
[Crossref]

1994 (1)

1990 (2)

B. R. Marshall and R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29(1), 71–84 (1990).
[Crossref] [PubMed]

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless marine atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

1989 (1)

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34(8), 1510–1523 (1989).
[Crossref]

1988 (3)

S. Sathyendranath and T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93(C8), 9270–9280 (1988).
[Crossref]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

R. H. Stavn and A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27(19), 4002–4011 (1988).
[Crossref] [PubMed]

1967 (1)

G. E. Walrafen, “Raman spectral studies of effects of temperature on water structure,” J. Chem. Phys. 47(1), 114–126 (1967).
[Crossref]

Aiken, J.

Antoine, D.

Arnone, R.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Arnone, R. A.

Babin, M.

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tièche, “Light absorption properties and absorption budget of Southeast Pacific waters,” Journal of Geophysical Research: Oceans 115(C8), C08009 (2010).
[Crossref]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tièche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Bailey, S. W.

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Barnes, R. A.

Bartlett, J. S.

Bates, N. R.

D. K. Steinberg, C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H. Knap, “Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry,” Deep Sea Res. Part II Top. Stud. Oceanogr. 48(8-9), 1405–1447 (2001).
[Crossref]

Behrenfeld, M. J.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).
[Crossref]

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
[Crossref]

Boss, E.

Brando, V. E.

Brewin, R.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Bricaud, A.

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tièche, “Light absorption properties and absorption budget of Southeast Pacific waters,” Journal of Geophysical Research: Oceans 115(C8), C08009 (2010).
[Crossref]

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tièche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Brown, M. B.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).
[Crossref]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Carder, K. L.

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. Oceans 104(C3), 5403–5421 (1999).
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103(C11), 24937–24953 (1998).
[Crossref]

Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33(24), 5721–5732 (1994).
[Crossref] [PubMed]

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless marine atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34(8), 1510–1523 (1989).
[Crossref]

Carlson, C. A.

D. K. Steinberg, C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H. Knap, “Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry,” Deep Sea Res. Part II Top. Stud. Oceanogr. 48(8-9), 1405–1447 (2001).
[Crossref]

Chen, F. R.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. Oceans 104(C3), 5403–5421 (1999).
[Crossref]

Christian, J. R.

C. R. McClain, S. R. Signorini, and J. R. Christian, “Subtropical gyre variability observed by ocean-color satellites,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 281–301 (2004).
[Crossref]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Claustre, H.

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tièche, “Light absorption properties and absorption budget of Southeast Pacific waters,” Journal of Geophysical Research: Oceans 115(C8), C08009 (2010).
[Crossref]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tièche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

d’Andon, O. H.

Dall’Olmo, G.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).
[Crossref]

Darecki, M.

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Davis, C. O.

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33(24), 5721–5732 (1994).
[Crossref] [PubMed]

Devred, E.

Dongen-Vogels, V.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).
[Crossref]

Dowell, M.

Du, K.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Fearns, P. R. C.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water-column depth and substrate reflectance parameterization,” Journal of Geophysical Research: Oceans 120, 1741–1770 (2015).

Feldman, G. C.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water-column depth and substrate reflectance parameterization,” Journal of Geophysical Research: Oceans 120, 1741–1770 (2015).

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52(10), 2019–2037 (2013).
[Crossref] [PubMed]

Franz, B. A.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water-column depth and substrate reflectance parameterization,” Journal of Geophysical Research: Oceans 120, 1741–1770 (2015).

P. J. Werdell, B. A. Franz, J. T. Lefler, W. D. Robinson, and E. Boss, “Retrieving marine inherent optical properties from satellites using temperature and salinity-dependent backscattering by seawater,” Opt. Express 21(26), 32611–32622 (2013).
[Crossref] [PubMed]

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52(10), 2019–2037 (2013).
[Crossref] [PubMed]

S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47(12), 2035–2045 (2008).
[Crossref] [PubMed]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40(3), 343–348 (2001).
[Crossref] [PubMed]

Fry, E. S.

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103(C11), 24937–24953 (1998).
[Crossref]

S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea,” Journal of Geophysical Research: Oceans 102(C8), 18607–18625 (1997).
[Crossref]

Gentili, B.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tièche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Gordon, H. R.

H. R. Gordon, “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38(15), 3166–3174 (1999).
[Crossref] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Graff, J. R.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).
[Crossref]

Gregg, W. W.

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless marine atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. Oceans 104(C3), 5403–5421 (1999).
[Crossref]

Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33(24), 5721–5732 (1994).
[Crossref] [PubMed]

Hirata, T.

Hoge, F. E.

Hooker, S. B.

Hu, C.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

C. Hu and K. J. Voss, “In situ measurements of Raman scattering in clear ocean water,” Appl. Opt. 36(27), 6962–6967 (1997).
[Crossref] [PubMed]

Huot, Y.

Johnson, R. J.

D. K. Steinberg, C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H. Knap, “Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry,” Deep Sea Res. Part II Top. Stud. Oceanogr. 48(8-9), 1405–1447 (2001).
[Crossref]

Kaczmarek, S.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103(C11), 24937–24953 (1998).
[Crossref]

Kamykowski, D.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. Oceans 104(C3), 5403–5421 (1999).
[Crossref]

Knap, A. H.

D. K. Steinberg, C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H. Knap, “Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry,” Deep Sea Res. Part II Top. Stud. Oceanogr. 48(8-9), 1405–1447 (2001).
[Crossref]

Kostadinov, T. S.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[Crossref]

Lavender, S. J.

Lee, Z.

Lee, Z. P.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. Oceans 104(C3), 5403–5421 (1999).
[Crossref]

Lee, Z.-P.

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Lefler, J. T.

Lewis, M.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Lewis, M. R.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

Loisel, H.

Lyon, P. E.

Mangin, A.

Maritorena, S.

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52(10), 2019–2037 (2013).
[Crossref] [PubMed]

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103(C11), 24937–24953 (1998).
[Crossref]

Marshall, B. R.

McClain, C.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103(C11), 24937–24953 (1998).
[Crossref]

McClain, C. R.

C. R. McClain, S. R. Signorini, and J. R. Christian, “Subtropical gyre variability observed by ocean-color satellites,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 281–301 (2004).
[Crossref]

M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40(3), 343–348 (2001).
[Crossref] [PubMed]

McKinna, L. I. W.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water-column depth and substrate reflectance parameterization,” Journal of Geophysical Research: Oceans 120, 1741–1770 (2015).

Mélin, F.

Michaels, A. F.

D. K. Steinberg, C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H. Knap, “Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry,” Deep Sea Res. Part II Top. Stud. Oceanogr. 48(8-9), 1405–1447 (2001).
[Crossref]

Milligan, A. J.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).
[Crossref]

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103(C11), 24937–24953 (1998).
[Crossref]

Moore, G. F.

Moore, T. S.

Morel, A.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tièche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103(C11), 24937–24953 (1998).
[Crossref]

Peacock, T. G.

Perry, M. J.

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34(8), 1510–1523 (1989).
[Crossref]

Platt, T.

S. Sathyendranath and T. Platt, “Ocean-color model incorporating transspectral processes,” Appl. Opt. 37(12), 2216–2227 (1998).
[Crossref] [PubMed]

S. Sathyendranath and T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93(C8), 9270–9280 (1988).
[Crossref]

Pope, R. M.

Ras, J.

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tièche, “Light absorption properties and absorption budget of Southeast Pacific waters,” Journal of Geophysical Research: Oceans 115(C8), C08009 (2010).
[Crossref]

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tièche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Reichstetter, M.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water-column depth and substrate reflectance parameterization,” Journal of Geophysical Research: Oceans 120, 1741–1770 (2015).

Reifel, K. M.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).
[Crossref]

Reynolds, R. A.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

Rhea, W. J.

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

Robinson, W. D.

Roesler, C. S.

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34(8), 1510–1523 (1989).
[Crossref]

Röttgers, R.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

Sathyendranath, S.

S. Sathyendranath and T. Platt, “Ocean-color model incorporating transspectral processes,” Appl. Opt. 37(12), 2216–2227 (1998).
[Crossref] [PubMed]

J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37(15), 3324–3332 (1998).
[Crossref] [PubMed]

S. Sathyendranath and T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93(C8), 9270–9280 (1988).
[Crossref]

Sciandra, A.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

Shang, S.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Shea, D. M.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water-column depth and substrate reflectance parameterization,” Journal of Geophysical Research: Oceans 120, 1741–1770 (2015).

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
[Crossref]

Siegel, D. A.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[Crossref]

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103(C11), 24937–24953 (1998).
[Crossref]

S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea,” Journal of Geophysical Research: Oceans 102(C8), 18607–18625 (1997).
[Crossref]

Signorini, S. R.

C. R. McClain, S. R. Signorini, and J. R. Christian, “Subtropical gyre variability observed by ocean-color satellites,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 281–301 (2004).
[Crossref]

Smith, R. C.

B. R. Marshall and R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29(1), 71–84 (1990).
[Crossref] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

Smyth, T. J.

Stavn, R. H.

Steinberg, D. K.

D. K. Steinberg, C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H. Knap, “Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry,” Deep Sea Res. Part II Top. Stud. Oceanogr. 48(8-9), 1405–1447 (2001).
[Crossref]

Steward, R. G.

Stramska, M.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

Stramski, D.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39(18), 3001–3011 (2000).
[Crossref] [PubMed]

Tièche, F.

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tièche, “Light absorption properties and absorption budget of Southeast Pacific waters,” Journal of Geophysical Research: Oceans 115(C8), C08009 (2010).
[Crossref]

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tièche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Twardowski, M. S.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

Vodacek, A.

Voss, K. J.

Walrafen, G. E.

G. E. Walrafen, “Raman spectral studies of effects of temperature on water structure,” J. Chem. Phys. 47(1), 114–126 (1967).
[Crossref]

Wang, M.

Weeks, S. J.

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water-column depth and substrate reflectance parameterization,” Journal of Geophysical Research: Oceans 120, 1741–1770 (2015).

Weidemann, A. D.

Werdell, P. J.

Westberry, T. K.

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).
[Crossref]

T. K. Westberry, E. Boss, and Z. Lee, “Influence of Raman scattering on ocean color inversion models,” Appl. Opt. 52(22), 5552–5561 (2013).
[Crossref] [PubMed]

Appl. Opt. (16)

T. K. Westberry, E. Boss, and Z. Lee, “Influence of Raman scattering on ocean color inversion models,” Appl. Opt. 52(22), 5552–5561 (2013).
[Crossref] [PubMed]

H. R. Gordon, “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38(15), 3166–3174 (1999).
[Crossref] [PubMed]

R. H. Stavn and A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27(19), 4002–4011 (1988).
[Crossref] [PubMed]

C. Hu and K. J. Voss, “In situ measurements of Raman scattering in clear ocean water,” Appl. Opt. 36(27), 6962–6967 (1997).
[Crossref] [PubMed]

H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39(18), 3001–3011 (2000).
[Crossref] [PubMed]

S. Sathyendranath and T. Platt, “Ocean-color model incorporating transspectral processes,” Appl. Opt. 37(12), 2216–2227 (1998).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33(24), 5721–5732 (1994).
[Crossref] [PubMed]

B. R. Marshall and R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29(1), 71–84 (1990).
[Crossref] [PubMed]

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52(10), 2019–2037 (2013).
[Crossref] [PubMed]

J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37(15), 3324–3332 (1998).
[Crossref] [PubMed]

M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40(3), 343–348 (2001).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
[Crossref] [PubMed]

T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt. 45(31), 8116–8131 (2006).
[Crossref] [PubMed]

F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: method for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38(9), 1657–1662 (1999).
[Crossref] [PubMed]

S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47(12), 2035–2045 (2008).
[Crossref] [PubMed]

Biogeosciences (2)

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008).
[Crossref]

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[Crossref]

Deep Sea Res. Part I Oceanogr. Res. Pap. (1)

J. R. Graff, T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, “Analytical phytoplankton carbon measurements spanning diverse ecosystems,” Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).
[Crossref]

Deep Sea Res. Part II Top. Stud. Oceanogr. (2)

C. R. McClain, S. R. Signorini, and J. R. Christian, “Subtropical gyre variability observed by ocean-color satellites,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 281–301 (2004).
[Crossref]

D. K. Steinberg, C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H. Knap, “Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry,” Deep Sea Res. Part II Top. Stud. Oceanogr. 48(8-9), 1405–1447 (2001).
[Crossref]

Global Biogeochem. Cycles (1)

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005).
[Crossref]

J. Chem. Phys. (1)

G. E. Walrafen, “Raman spectral studies of effects of temperature on water structure,” J. Chem. Phys. 47(1), 114–126 (1967).
[Crossref]

J. Geophys. Res. (1)

S. Sathyendranath and T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93(C8), 9270–9280 (1988).
[Crossref]

J. Geophys. Res. Atmos. (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. Atmos. 93(D9), 10909–10924 (1988).
[Crossref]

J. Geophys. Res. Oceans (4)

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. Oceans 110, C02017 (2005).

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. Oceans 104(C3), 5403–5421 (1999).
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103(C11), 24937–24953 (1998).
[Crossref]

Journal of Geophysical Research: Oceans (3)

S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea,” Journal of Geophysical Research: Oceans 102(C8), 18607–18625 (1997).
[Crossref]

L. I. W. McKinna, P. R. C. Fearns, S. J. Weeks, P. J. Werdell, M. Reichstetter, B. A. Franz, D. M. Shea, and G. C. Feldman, “A semianalytical ocean color inversion algorithm with explicit water-column depth and substrate reflectance parameterization,” Journal of Geophysical Research: Oceans 120, 1741–1770 (2015).

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tièche, “Light absorption properties and absorption budget of Southeast Pacific waters,” Journal of Geophysical Research: Oceans 115(C8), C08009 (2010).
[Crossref]

Limnol. Oceanogr. (3)

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless marine atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34(8), 1510–1523 (1989).
[Crossref]

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tièche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52(1), 217–229 (2007).
[Crossref]

Opt. Express (2)

Other (9)

I. Cetinić, M. J. Perry, N. T. Briggs, E. Kallin, E. A. D'Asaro, and C. M. Lee, “Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment,” Journal of Geophysical Research: Oceans 117, n/a-n/a (2012).
[Crossref]

NASA Goddard Space Flight Center, Ocean Ecology Laboratory, “Spectral Response Functions and Bandpass Averaged Quantities,” in Ocean Color Documents ( http://oceancolor.gsfc.nasa.gov/DOCS/RSR_tables.html , 2012).

C. D. Mobley, “Hydrolight Technical Note 10: Interpretation of Raman Scattering Computations,” (Sequoia Scientific, 2012).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. Oceans 103, 31,033 - 031,044 (1998).

NASA Goddard Space Flight Center; Ocean Ecology Laboratory, Ocean Biology Distributed Active Archive Center, “Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua Ocean Color Data,” ( http://oceancolor.gsfc.nasa.gov/ , 2014).

NASA Goddard Space Flight Center; Ocean Ecology Laboratory, Ocean Biology Distributed Active Archive Center, “Sea Viewing Wide-Field-of-view Sensor (SeaWiFS) Ocean Color Data,” ( http://oceancolor.gsfc.nasa.gov/ , 2014).

GCOS, Implementation plan for the global observing system for climate in support of the UNFCCC (2010 Update) (World Meteorological Organization, Available online at http://www.wmo.int/pages/prog/gcos/Publications/gcos-138.pdf , 2010), p. 180.

B. A. Franz, M. J. Behrenfeld, D. A. Siegel, and P. J. Werdell, “3.k. Global Oceans: Global ocean phytoplankton,” in State of the Climate in 2014, J. Blunden and D. S. Arndt, eds. (Am. Meterol. Soc., 2015), pp. S85–S87.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Left-hand side: Raman excitation spectral response function (blue) for spectral emission at 412 m (illustrated as black line). Right-hand side: Raman excitation spectral response function (blue) for emission across an 11 nm band centered on 412 nm (illustrated as a black rectangle).
Fig. 2
Fig. 2 Normalized phytoplankton absorption coefficients at MODISA band centers. The Three lines demonstrate a*ϕ(λ) modeled for different Chla concentrations. Solid lines represent interpolated data, dotted lines represented linear extrapolations to wavelengths shorter than 412 nm.
Fig. 3
Fig. 3 Left-hand side: normalized phytoplankton absorption coefficients extracted from SeaBASS. Center: scatter plot of extrapolated estimates of a*ϕ(362) compared with actual values. Left-hand side: scatter plot of extrapolated estimates of a*ϕ(383) compared with actual values. Blue triangles denote spectrally flat extrapolation from 412 nm. Red circles denote simple linear model extrapolation.
Fig. 4
Fig. 4 Comparison plots of GIOP-derived IOPs and in situ observations at 443 nm for SeaWiFS and MODISA. Scatter plots on the left-hand column (blue shaded) denote IOPs derived with no Raman correction applied (GIOP-NR). Scatter plots on the right-hand columns (red shaded) denote IOPs derived with the Raman correction applied (GIOP-RA). See Tables 4 ad 5 for accompanying statistics.
Fig. 5
Fig. 5 Histograms of the ratio of GIOP-NR to GIOP-RA. The three columns left-to-right correspond to the IOPs: bbp(443), adg(443) and aϕ(443), respectively. The top rows are SeaWiFS results, whilst the bottom rows are MODISA results. The vertical solid black line denotes where the ratio is equal to 1.0, and the dotted vertical black line is the median value of each distribution.
Fig. 6
Fig. 6 SeaWiFS IOPs derived using the GIOP algorithm for BATS region. Left-hand panels show time-series plots of and bbp(443) (top), adg(443) (middle) and aϕ(443) (bottom). The colors denote IOPs derived from remote-sensing reflectances without (red) and with (blue) the RSC applied. The right-hand panels are time-series of the relative difference between bbp(443) (top), adg(443) (middle) and aϕ(443) (bottom) derived from Raman-corrected and Raman-uncorrected remote-sensing reflectances.

Tables (6)

Tables Icon

Table 1 Band centers for MODISA and the band centers for the corresponding Raman excitation band. The single OMI level-3 band suitable for use in the Raman correction is also given.

Tables Icon

Table 2 Summary of terms used to calculate the Raman scattering contribution to the remote-sensing reflectance

Tables Icon

Table 3 Regression statistics for extrapolated values of the normalized phytoplankton absorption coefficients compared with actual values

Tables Icon

Table 4 Matchup statistics for IOPs retrieved using the GIOP algorithms compared with in situ (SeaBASS) observations at SeaWiFS wavelengths. The two major columns denote IOPs derived with no Raman correction applied (GIOP-NR) and IOPs derived with the Raman correction applied (GIOP-RA)

Tables Icon

Table 5 Matchup statistics for IOPs retrieved using the GIOP algorithms compared with in situ (SeaBASS) observations at MODISA wavelengths. The two major columns denote IOPs derived with no Raman correction applied (GIOP-NR) and IOPs derived with the Raman correction applied (GIOP-RA)

Tables Icon

Table 6 Median ratio of IOPs derived without the Raman correction applied (GIOP-NR) and IOPs derived with the Raman correction applied (GIOP-RA) at both SeaWiFS and MODISA wavelengths.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R rs,E (λ)= R rs,S (λ) R rs,R (λ).
b R ( λ S )= λ ex a R ( λ ex )f( λ ex λ S ) d λ ex .
R rs,R ( λ S )=[ 1 4π n 2 b R ( λ s ) [ K d ( λ ex )+ K U ( λ S ) ] E d ( 0 , λ ex ) E d ( 0 + , λ S ) ] ×[ 1+ b b ( λ ex ) μ u [ K d ( λ ex )+ K U ( λ S ) ] + b b ( λ S ) K U ( λ S ) ].
K d (λ)= [ a(λ)+ b b (λ) ] / cos θ solz
K U (λ)= [ a(λ)+ b b (λ) ] / μ u
a(λ)= a w (λ)+ a ϕ (λ)+ a dg (λ)
b b (λ)= b bw (λ)+ b bp (λ)
a dg (λ)= a dg (443)exp{ S(λ443) }
b bp (λ)= b bp (555) [ 555 /λ ] γ
a ϕ (λ)= a ϕ (443)× a ϕ * (Chla; λ)
τ(λ)=τ(490) [ 490 /λ ] α
MR=median( X ^ i / X i )
MPE=median[ 100%×| X ^ i / X i 1 | ]

Metrics