Abstract

In this paper, a novel design of tapered dipole nanoantenna is introduced and numerically analyzed for energy harvesting applications. The proposed design consists of three steps tapered dipole nanoantenna with rectangular shape. Full systematic analysis is carried out where the antenna impedance, return loss, harvesting efficiency and field confinement are calculated using 3D finite element frequency domain method (3D-FEFD). The structure geometrical parameters are optimized using particle swarm algorithm (PSO) to improve the harvesting efficiency and reduce the return loss at wavelength of 500 nm. A harvesting efficiency of 55.3% is achieved which is higher than that of conventional dipole counterpart by 29%. This enhancement is attributed to the high field confinement in the dipole gap as a result of multiple tips created in the nanoantenna design. Furthermore, the antenna input impedance is tuned to match a wide range of fabricated diode based upon the multi-resonance characteristic of the proposed structure.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna

Huaqiao Zhao, Huotao Gao, Ting Cao, and Boya Li
Opt. Express 26(2) A178-A191 (2018)

Particle swarm optimization of nanoantenna-based infrared detectors

Edgar Briones, Riemann Ruiz-Cruz, Joel Briones, Natalia Gonzalez, Jorge Simon, Mayela Arreola, and Gregorio Alvarez-Alvarez
Opt. Express 26(22) 28484-28496 (2018)

Schottky-contact plasmonic dipole rectenna concept for biosensing

Mohammad Alavirad, Saba Siadat Mousavi, Langis Roy, and Pierre Berini
Opt. Express 21(4) 4328-4347 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Bailey, “A Proposed new concept for a solar-energy converter,” J. Eng. Power 94(2), 73–77 (1972).
    [Crossref]
  2. D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
    [Crossref]
  3. S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovolt. 1(1), 78–83 (2011).
    [Crossref]
  4. G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
    [Crossref]
  5. Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
    [Crossref]
  6. M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4, 4270 (2014).
    [Crossref] [PubMed]
  7. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  8. Z. Iluz and A. Boag, “Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band,” Opt. Lett. 36(15), 2773–2775 (2011).
    [Crossref] [PubMed]
  9. E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(S3Suppl 3), A412–A418 (2013).
    [Crossref] [PubMed]
  10. M. Hussein, N. F. Fahmy Areed, M. F. O. Hameed, and S. S. Obayya, “Design of flower-shaped dipole nano-antenna for energy harvesting,” IET Optoelectron. 8(4), 167–173 (2014).
    [Crossref]
  11. J. L. Stokes, Y. Yu, Z. H. Yuan, J. R. Pugh, M. Lopez-Garcia, N. Ahmad, and M. J. Cryan, “Analysis and design of a cross dipole nanoantenna for fluorescence-sensing applications,” J. Opt. Soc. Am. B 31(2), 302–310 (2014).
    [Crossref]
  12. S. Krishnan, “Design, fabrication and characterization of thin-film MIM diodes for rectenna array,” (University of South Florida, 2004).
  13. F. F. K. Hussain, A. M. Heikal, M. F. O. Hameed, J. El-Azab, W. S. Abdelaziz, and S. S. A. Obayya, “Dispersion characteristics of asymmetric channel plasmon polariton waveguides,” IEEE J. Quantum Electron. 50(6), 474–482 (2014).
    [Crossref]
  14. M. N. Gadalla, “Nano Antenna Integrated Diode (Rectenna) For Infrared Energy Harvesting,” (Kaust University, 2013).
  15. S. Maci, G. B. Gentili, P. Piazzesi, and C. Salvador, “Dual-band slot-loaded patch antenna,” IEE Proc. Microw. Antenn. Propag. 142, 225–232 (1995)
    [Crossref]
  16. H. R. Stuart, “Eigenmode analysis of small multi-resonant antennas,” in Proceeding of IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), pp. 1–4.
  17. M. Gustafsson and C. Sohl, “Summation rules for the antenna input impedance,” in Proceeding of IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), pp. 1–4.
    [Crossref]
  18. W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methyl methacrylate),” J. Vac. Sci. Technol. B 22(4), 1711–1716 (2004).
    [Crossref]
  19. J.-T. Lv, Y. Yan, W.-K. Zhang, Y.-H. Liu, Z.-Y. Jiang, and G.-Y. Si, “Plasmonic nanoantennae fabricated by focused Ion beam milling,” Int. J. Precis. Eng. Manuf. 16(4), 851–855 (2015).
    [Crossref]
  20. C. J. Lo, T. Aref, and A. Bezryadin, “Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams,” Nanotechnology 17(13), 3264–3267 (2006).
    [Crossref]
  21. P. F. A. Alkemade and E. van Veldhoven, “Deposition, Milling, and Etching with a Focused Helium Ion Beam,” in Nanofabrication: Techniques and Principles, M. Stepanova and S. Dew, eds. (Springer, 2012), pp. 275–300.
  22. O. Muskens, Y. Wang, M. Abb, S. Boden, C. H. Groot, and J. Aizpurua, “Helium ion beam milling for plasmonic nanoantennas,” SPIE Newsroom 1407, 5553 (2014).
    [Crossref]
  23. Comsol Multiphysics software.
  24. B. M. Rahman, D. M. Leung, S. S. Obayya, and K. T. Grattan, “Numerical analysis of bent waveguides: bending loss, transmission loss, mode coupling, and polarization coupling,” Appl. Opt. 47(16), 2961–2970 (2008).
    [Crossref] [PubMed]
  25. M. Rajarajan, S. Obayya, B. Rahman, K. Grattan, and H. El-Mikali, “Characterization of low-loss waveguide bends with offset-optimization for compact photonic integrated circuits,” IEE P-Optoelecton. 147(6), 382–388 (2000).
    [Crossref]
  26. E. A. Soliman, M. O. Sallam, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
    [Crossref]
  27. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  28. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
    [Crossref]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  30. A. E. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
    [Crossref]
  31. C. A. Balanis, Antenna Theory (John Wiley & Sons, 1997).
  32. P. Banerjee and T. Bezboruah, “Theoretical study of radiation characteristics of short dipole antenna,” in Proceedings of The International MultiConference of Engineers and Computer Scientists, (2014), pp. 785–790.
  33. J.-J. Greffet and F. Marquier, “Impedance of a nanoantenna and a quantum emitter,” in Frontiers in Optics 2011/Laser Science XXVII, OSA Technical Digest (Optical Society of America, 2011), paper LWG4.
  34. David Staelin, 6.661 Receivers, Antennas, and Signals, spring2003, (MIT OpenCourseWare), http://ocw.mit.edu (Accessed 1 Mar, 2016).
  35. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
    [Crossref]
  36. H. Liu, M. Erouel, E. Gerelli, A. Harouri, T. Benyattou, R. Orobtchouk, L. Milord, A. Belarouci, X. Letartre, and C. Jamois, “Nanoantenna-induced fringe splitting of Fabry-Perot interferometer: a model study of plasmonic/photonic coupling,” Opt. Express 23(24), 31085–31097 (2015).
    [Crossref] [PubMed]

2015 (2)

2014 (6)

E. A. Soliman, M. O. Sallam, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
[Crossref]

O. Muskens, Y. Wang, M. Abb, S. Boden, C. H. Groot, and J. Aizpurua, “Helium ion beam milling for plasmonic nanoantennas,” SPIE Newsroom 1407, 5553 (2014).
[Crossref]

M. Hussein, N. F. Fahmy Areed, M. F. O. Hameed, and S. S. Obayya, “Design of flower-shaped dipole nano-antenna for energy harvesting,” IET Optoelectron. 8(4), 167–173 (2014).
[Crossref]

J. L. Stokes, Y. Yu, Z. H. Yuan, J. R. Pugh, M. Lopez-Garcia, N. Ahmad, and M. J. Cryan, “Analysis and design of a cross dipole nanoantenna for fluorescence-sensing applications,” J. Opt. Soc. Am. B 31(2), 302–310 (2014).
[Crossref]

F. F. K. Hussain, A. M. Heikal, M. F. O. Hameed, J. El-Azab, W. S. Abdelaziz, and S. S. A. Obayya, “Dispersion characteristics of asymmetric channel plasmon polariton waveguides,” IEEE J. Quantum Electron. 50(6), 474–482 (2014).
[Crossref]

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4, 4270 (2014).
[Crossref] [PubMed]

2013 (2)

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(S3Suppl 3), A412–A418 (2013).
[Crossref] [PubMed]

2012 (1)

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

2011 (2)

S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovolt. 1(1), 78–83 (2011).
[Crossref]

Z. Iluz and A. Boag, “Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band,” Opt. Lett. 36(15), 2773–2775 (2011).
[Crossref] [PubMed]

2010 (1)

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

2009 (1)

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[Crossref]

2008 (3)

2006 (1)

C. J. Lo, T. Aref, and A. Bezryadin, “Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams,” Nanotechnology 17(13), 3264–3267 (2006).
[Crossref]

2004 (1)

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methyl methacrylate),” J. Vac. Sci. Technol. B 22(4), 1711–1716 (2004).
[Crossref]

2000 (1)

M. Rajarajan, S. Obayya, B. Rahman, K. Grattan, and H. El-Mikali, “Characterization of low-loss waveguide bends with offset-optimization for compact photonic integrated circuits,” IEE P-Optoelecton. 147(6), 382–388 (2000).
[Crossref]

1972 (2)

R. L. Bailey, “A Proposed new concept for a solar-energy converter,” J. Eng. Power 94(2), 73–77 (1972).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abb, M.

O. Muskens, Y. Wang, M. Abb, S. Boden, C. H. Groot, and J. Aizpurua, “Helium ion beam milling for plasmonic nanoantennas,” SPIE Newsroom 1407, 5553 (2014).
[Crossref]

Abdelaziz, W. S.

F. F. K. Hussain, A. M. Heikal, M. F. O. Hameed, J. El-Azab, W. S. Abdelaziz, and S. S. A. Obayya, “Dispersion characteristics of asymmetric channel plasmon polariton waveguides,” IEEE J. Quantum Electron. 50(6), 474–482 (2014).
[Crossref]

Abdel-Rahman, M.

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4, 4270 (2014).
[Crossref] [PubMed]

Ahmad, N.

Aizpurua, J.

O. Muskens, Y. Wang, M. Abb, S. Boden, C. H. Groot, and J. Aizpurua, “Helium ion beam milling for plasmonic nanoantennas,” SPIE Newsroom 1407, 5553 (2014).
[Crossref]

Alda, J.

Alù, A. E.

A. E. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref]

Aref, T.

C. J. Lo, T. Aref, and A. Bezryadin, “Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams,” Nanotechnology 17(13), 3264–3267 (2006).
[Crossref]

Bailey, R. L.

R. L. Bailey, “A Proposed new concept for a solar-energy converter,” J. Eng. Power 94(2), 73–77 (1972).
[Crossref]

Banerjee, P.

P. Banerjee and T. Bezboruah, “Theoretical study of radiation characteristics of short dipole antenna,” in Proceedings of The International MultiConference of Engineers and Computer Scientists, (2014), pp. 785–790.

Belarouci, A.

Benyattou, T.

Bernstein, G. H.

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methyl methacrylate),” J. Vac. Sci. Technol. B 22(4), 1711–1716 (2004).
[Crossref]

Bezboruah, T.

P. Banerjee and T. Bezboruah, “Theoretical study of radiation characteristics of short dipole antenna,” in Proceedings of The International MultiConference of Engineers and Computer Scientists, (2014), pp. 785–790.

Bezryadin, A.

C. J. Lo, T. Aref, and A. Bezryadin, “Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams,” Nanotechnology 17(13), 3264–3267 (2006).
[Crossref]

Boag, A.

Boden, S.

O. Muskens, Y. Wang, M. Abb, S. Boden, C. H. Groot, and J. Aizpurua, “Helium ion beam milling for plasmonic nanoantennas,” SPIE Newsroom 1407, 5553 (2014).
[Crossref]

Briones, E.

Capasso, F.

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cryan, M. J.

Cubukcu, E.

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[Crossref]

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
[Crossref]

El-Azab, J.

F. F. K. Hussain, A. M. Heikal, M. F. O. Hameed, J. El-Azab, W. S. Abdelaziz, and S. S. A. Obayya, “Dispersion characteristics of asymmetric channel plasmon polariton waveguides,” IEEE J. Quantum Electron. 50(6), 474–482 (2014).
[Crossref]

El-Mikali, H.

M. Rajarajan, S. Obayya, B. Rahman, K. Grattan, and H. El-Mikali, “Characterization of low-loss waveguide bends with offset-optimization for compact photonic integrated circuits,” IEE P-Optoelecton. 147(6), 382–388 (2000).
[Crossref]

Engheta, N.

A. E. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref]

Erouel, M.

Fahmy Areed, N. F.

M. Hussein, N. F. Fahmy Areed, M. F. O. Hameed, and S. S. Obayya, “Design of flower-shaped dipole nano-antenna for energy harvesting,” IET Optoelectron. 8(4), 167–173 (2014).
[Crossref]

Fischer, H.

Gadalla, M. N.

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4, 4270 (2014).
[Crossref] [PubMed]

Gerelli, E.

González, F. J.

Grattan, K.

M. Rajarajan, S. Obayya, B. Rahman, K. Grattan, and H. El-Mikali, “Characterization of low-loss waveguide bends with offset-optimization for compact photonic integrated circuits,” IEE P-Optoelecton. 147(6), 382–388 (2000).
[Crossref]

Grattan, K. T.

Groot, C. H.

O. Muskens, Y. Wang, M. Abb, S. Boden, C. H. Groot, and J. Aizpurua, “Helium ion beam milling for plasmonic nanoantennas,” SPIE Newsroom 1407, 5553 (2014).
[Crossref]

Grover, S.

S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovolt. 1(1), 78–83 (2011).
[Crossref]

Gustafsson, M.

M. Gustafsson and C. Sohl, “Summation rules for the antenna input impedance,” in Proceeding of IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), pp. 1–4.
[Crossref]

Hameed, M. F. O.

M. Hussein, N. F. Fahmy Areed, M. F. O. Hameed, and S. S. Obayya, “Design of flower-shaped dipole nano-antenna for energy harvesting,” IET Optoelectron. 8(4), 167–173 (2014).
[Crossref]

F. F. K. Hussain, A. M. Heikal, M. F. O. Hameed, J. El-Azab, W. S. Abdelaziz, and S. S. A. Obayya, “Dispersion characteristics of asymmetric channel plasmon polariton waveguides,” IEEE J. Quantum Electron. 50(6), 474–482 (2014).
[Crossref]

Harouri, A.

Heikal, A. M.

F. F. K. Hussain, A. M. Heikal, M. F. O. Hameed, J. El-Azab, W. S. Abdelaziz, and S. S. A. Obayya, “Dispersion characteristics of asymmetric channel plasmon polariton waveguides,” IEEE J. Quantum Electron. 50(6), 474–482 (2014).
[Crossref]

Hu, W.

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methyl methacrylate),” J. Vac. Sci. Technol. B 22(4), 1711–1716 (2004).
[Crossref]

Hussain, F. F. K.

F. F. K. Hussain, A. M. Heikal, M. F. O. Hameed, J. El-Azab, W. S. Abdelaziz, and S. S. A. Obayya, “Dispersion characteristics of asymmetric channel plasmon polariton waveguides,” IEEE J. Quantum Electron. 50(6), 474–482 (2014).
[Crossref]

Hussein, M.

M. Hussein, N. F. Fahmy Areed, M. F. O. Hameed, and S. S. Obayya, “Design of flower-shaped dipole nano-antenna for energy harvesting,” IET Optoelectron. 8(4), 167–173 (2014).
[Crossref]

Iluz, Z.

Jamois, C.

Jiang, Z.-Y.

J.-T. Lv, Y. Yan, W.-K. Zhang, Y.-H. Liu, Z.-Y. Jiang, and G.-Y. Si, “Plasmonic nanoantennae fabricated by focused Ion beam milling,” Int. J. Precis. Eng. Manuf. 16(4), 851–855 (2015).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
[Crossref]

Kotter, D. K.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

Letartre, X.

Leung, D. M.

Lieberman, M.

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methyl methacrylate),” J. Vac. Sci. Technol. B 22(4), 1711–1716 (2004).
[Crossref]

Liu, H.

Liu, Y.-H.

J.-T. Lv, Y. Yan, W.-K. Zhang, Y.-H. Liu, Z.-Y. Jiang, and G.-Y. Si, “Plasmonic nanoantennae fabricated by focused Ion beam milling,” Int. J. Precis. Eng. Manuf. 16(4), 851–855 (2015).
[Crossref]

Lo, C. J.

C. J. Lo, T. Aref, and A. Bezryadin, “Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams,” Nanotechnology 17(13), 3264–3267 (2006).
[Crossref]

Lopez-Garcia, M.

Lv, J.-T.

J.-T. Lv, Y. Yan, W.-K. Zhang, Y.-H. Liu, Z.-Y. Jiang, and G.-Y. Si, “Plasmonic nanoantennae fabricated by focused Ion beam milling,” Int. J. Precis. Eng. Manuf. 16(4), 851–855 (2015).
[Crossref]

Ma, Z.

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

Martin, O. J. F.

Milord, L.

Moddel, G.

S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovolt. 1(1), 78–83 (2011).
[Crossref]

Muskens, O.

O. Muskens, Y. Wang, M. Abb, S. Boden, C. H. Groot, and J. Aizpurua, “Helium ion beam milling for plasmonic nanoantennas,” SPIE Newsroom 1407, 5553 (2014).
[Crossref]

Novack, S. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

Obayya, S.

M. Rajarajan, S. Obayya, B. Rahman, K. Grattan, and H. El-Mikali, “Characterization of low-loss waveguide bends with offset-optimization for compact photonic integrated circuits,” IEE P-Optoelecton. 147(6), 382–388 (2000).
[Crossref]

Obayya, S. S.

M. Hussein, N. F. Fahmy Areed, M. F. O. Hameed, and S. S. Obayya, “Design of flower-shaped dipole nano-antenna for energy harvesting,” IET Optoelectron. 8(4), 167–173 (2014).
[Crossref]

B. M. Rahman, D. M. Leung, S. S. Obayya, and K. T. Grattan, “Numerical analysis of bent waveguides: bending loss, transmission loss, mode coupling, and polarization coupling,” Appl. Opt. 47(16), 2961–2970 (2008).
[Crossref] [PubMed]

Obayya, S. S. A.

F. F. K. Hussain, A. M. Heikal, M. F. O. Hameed, J. El-Azab, W. S. Abdelaziz, and S. S. A. Obayya, “Dispersion characteristics of asymmetric channel plasmon polariton waveguides,” IEEE J. Quantum Electron. 50(6), 474–482 (2014).
[Crossref]

Orobtchouk, R.

Pinhero, P. J.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

Pugh, J. R.

Rahman, B.

M. Rajarajan, S. Obayya, B. Rahman, K. Grattan, and H. El-Mikali, “Characterization of low-loss waveguide bends with offset-optimization for compact photonic integrated circuits,” IEE P-Optoelecton. 147(6), 382–388 (2000).
[Crossref]

Rahman, B. M.

Rajarajan, M.

M. Rajarajan, S. Obayya, B. Rahman, K. Grattan, and H. El-Mikali, “Characterization of low-loss waveguide bends with offset-optimization for compact photonic integrated circuits,” IEE P-Optoelecton. 147(6), 382–388 (2000).
[Crossref]

Sallam, M. O.

E. A. Soliman, M. O. Sallam, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
[Crossref]

Sarveswaran, K.

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methyl methacrylate),” J. Vac. Sci. Technol. B 22(4), 1711–1716 (2004).
[Crossref]

Shamim, A.

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4, 4270 (2014).
[Crossref] [PubMed]

Si, G.-Y.

J.-T. Lv, Y. Yan, W.-K. Zhang, Y.-H. Liu, Z.-Y. Jiang, and G.-Y. Si, “Plasmonic nanoantennae fabricated by focused Ion beam milling,” Int. J. Precis. Eng. Manuf. 16(4), 851–855 (2015).
[Crossref]

Slafer, W. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

Sohl, C.

M. Gustafsson and C. Sohl, “Summation rules for the antenna input impedance,” in Proceeding of IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), pp. 1–4.
[Crossref]

Soliman, E. A.

E. A. Soliman, M. O. Sallam, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
[Crossref]

Stokes, J. L.

Stuart, H. R.

H. R. Stuart, “Eigenmode analysis of small multi-resonant antennas,” in Proceeding of IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), pp. 1–4.

Vandenbosch, G. A. E.

E. A. Soliman, M. O. Sallam, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
[Crossref]

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

Wang, Y.

O. Muskens, Y. Wang, M. Abb, S. Boden, C. H. Groot, and J. Aizpurua, “Helium ion beam milling for plasmonic nanoantennas,” SPIE Newsroom 1407, 5553 (2014).
[Crossref]

Yan, Y.

J.-T. Lv, Y. Yan, W.-K. Zhang, Y.-H. Liu, Z.-Y. Jiang, and G.-Y. Si, “Plasmonic nanoantennae fabricated by focused Ion beam milling,” Int. J. Precis. Eng. Manuf. 16(4), 851–855 (2015).
[Crossref]

Yu, Y.

Yuan, Z. H.

Zhang, W.-K.

J.-T. Lv, Y. Yan, W.-K. Zhang, Y.-H. Liu, Z.-Y. Jiang, and G.-Y. Si, “Plasmonic nanoantennae fabricated by focused Ion beam milling,” Int. J. Precis. Eng. Manuf. 16(4), 851–855 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[Crossref]

IEE P-Optoelecton. (1)

M. Rajarajan, S. Obayya, B. Rahman, K. Grattan, and H. El-Mikali, “Characterization of low-loss waveguide bends with offset-optimization for compact photonic integrated circuits,” IEE P-Optoelecton. 147(6), 382–388 (2000).
[Crossref]

IEEE J. Photovolt. (1)

S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovolt. 1(1), 78–83 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

F. F. K. Hussain, A. M. Heikal, M. F. O. Hameed, J. El-Azab, W. S. Abdelaziz, and S. S. A. Obayya, “Dispersion characteristics of asymmetric channel plasmon polariton waveguides,” IEEE J. Quantum Electron. 50(6), 474–482 (2014).
[Crossref]

IET Optoelectron. (1)

M. Hussein, N. F. Fahmy Areed, M. F. O. Hameed, and S. S. Obayya, “Design of flower-shaped dipole nano-antenna for energy harvesting,” IET Optoelectron. 8(4), 167–173 (2014).
[Crossref]

Int. J. Precis. Eng. Manuf. (1)

J.-T. Lv, Y. Yan, W.-K. Zhang, Y.-H. Liu, Z.-Y. Jiang, and G.-Y. Si, “Plasmonic nanoantennae fabricated by focused Ion beam milling,” Int. J. Precis. Eng. Manuf. 16(4), 851–855 (2015).
[Crossref]

J. Eng. Power (1)

R. L. Bailey, “A Proposed new concept for a solar-energy converter,” J. Eng. Power 94(2), 73–77 (1972).
[Crossref]

J. Lightwave Technol. (1)

E. A. Soliman, M. O. Sallam, and G. A. E. Vandenbosch, “Plasmonic grid array of gold nanorods for point-to-point optical communications,” J. Lightwave Technol. 32(24), 4898–4904 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Sol. Energy Eng. (1)

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
[Crossref]

J. Vac. Sci. Technol. B (1)

W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, “Sub-10 nm electron beam lithography using cold development of poly (methyl methacrylate),” J. Vac. Sci. Technol. B 22(4), 1711–1716 (2004).
[Crossref]

Nano Energy (1)

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

Nanotechnology (1)

C. J. Lo, T. Aref, and A. Bezryadin, “Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams,” Nanotechnology 17(13), 3264–3267 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

A. E. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[Crossref]

Sci. Rep. (1)

M. N. Gadalla, M. Abdel-Rahman, and A. Shamim, “Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification,” Sci. Rep. 4, 4270 (2014).
[Crossref] [PubMed]

Sol. Energy (1)

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

SPIE Newsroom (1)

O. Muskens, Y. Wang, M. Abb, S. Boden, C. H. Groot, and J. Aizpurua, “Helium ion beam milling for plasmonic nanoantennas,” SPIE Newsroom 1407, 5553 (2014).
[Crossref]

Other (13)

Comsol Multiphysics software.

C. A. Balanis, Antenna Theory (John Wiley & Sons, 1997).

P. Banerjee and T. Bezboruah, “Theoretical study of radiation characteristics of short dipole antenna,” in Proceedings of The International MultiConference of Engineers and Computer Scientists, (2014), pp. 785–790.

J.-J. Greffet and F. Marquier, “Impedance of a nanoantenna and a quantum emitter,” in Frontiers in Optics 2011/Laser Science XXVII, OSA Technical Digest (Optical Society of America, 2011), paper LWG4.

David Staelin, 6.661 Receivers, Antennas, and Signals, spring2003, (MIT OpenCourseWare), http://ocw.mit.edu (Accessed 1 Mar, 2016).

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

P. F. A. Alkemade and E. van Veldhoven, “Deposition, Milling, and Etching with a Focused Helium Ion Beam,” in Nanofabrication: Techniques and Principles, M. Stepanova and S. Dew, eds. (Springer, 2012), pp. 275–300.

S. Krishnan, “Design, fabrication and characterization of thin-film MIM diodes for rectenna array,” (University of South Florida, 2004).

M. N. Gadalla, “Nano Antenna Integrated Diode (Rectenna) For Infrared Energy Harvesting,” (Kaust University, 2013).

S. Maci, G. B. Gentili, P. Piazzesi, and C. Salvador, “Dual-band slot-loaded patch antenna,” IEE Proc. Microw. Antenn. Propag. 142, 225–232 (1995)
[Crossref]

H. R. Stuart, “Eigenmode analysis of small multi-resonant antennas,” in Proceeding of IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), pp. 1–4.

M. Gustafsson and C. Sohl, “Summation rules for the antenna input impedance,” in Proceeding of IEEE Antennas and Propagation Society International Symposium (IEEE, 2008), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 (a) Conventional dipole [‎4], (b) Type 1 (2-steps tapered dipole), (c) Type 2 (3-steps tapered dipole).
Fig. 2
Fig. 2 Surface current distribution over nanoantenna structures at 500 nm wavelength (the bigger arrows indicates higher divergence of current) for (a) conventional dipole, (b) type 1, and (c) type 2.
Fig. 3
Fig. 3 Wavelength dependent harvesting efficiency for conventional dipole by the FDTD [4] and FEFD method.
Fig. 4
Fig. 4 Wavelength dependent harvesting efficiency for the conventional dipole at different minimum mesh element sizes.
Fig. 5
Fig. 5 Wavelength dependent harvesting efficiency for the conventional dipole using different permittivities based on experimental data [4], Johnson and Christy model [27], Palik model [‎29] along with that reported by Vandenbosch and Ma [4].
Fig. 6
Fig. 6 Fitness function (Eq. (2) values for type 2 nanoantenna versus number of iterations of the PSO algorithm. The corresponding values of S 11 and η rad are demonstrated for 3 points.
Fig. 7
Fig. 7 Variation of harvesting efficiency versus wavelength for conventional dipole [‎‎4] and the suggested designs of type 1 and type 2 nanoantennas.
Fig. 8
Fig. 8 Wavelength dependent return loss at the nanoantenna port for conventional dipole [‎‎4] and the proposed designs of type 1 and type 2 nanoantennas.
Fig. 9
Fig. 9 Electric field distribution over dipole structures at λ = 500 nm and G=20 nm for the (a) conventional dipole, (b) type 1, and (c) type 2 nanoantennas.
Fig. 10
Fig. 10 Variation of real and imaginary parts of the antenna input impedance with the gap size.
Fig. 11
Fig. 11 Variation of the harvesting efficiency and the total current at the nanoantenna port with the change of the gap size.
Fig. 12
Fig. 12 Real and imaginary parts of the input impedance for type 2 nanoantenna with 500 Ω resonance impedance.
Fig. 13
Fig. 13 Real and imaginary parts of the input impedance for optimized type 2 nanoantennas with resonance impedance of (a) 1 kΩ and (b) 2 kΩ.
Fig. 14
Fig. 14 Variation of harvesting efficiency versus wavelength for type 2 nanoantennas with different resonant impedance.
Fig. 15
Fig. 15 Values of harvesting efficiency and resonance impedance with 5% variation of W 1 parameter.
Fig. 16
Fig. 16 Values of harvesting efficiency and resonance impedance with 5% variation of L 1 parameter.

Tables (4)

Tables Icon

Table 1 Radiated Power and Power Loss Equations Extracted from the Simulated Electric and Magnetic Fields [‎23,‎‎31]

Tables Icon

Table 2 Dipole Designs Dimensions in Nanometer Introduced to the FEFD analyzer

Tables Icon

Table 3 Type 2 Design Configurations for Different Input Impedance at λ = 500 nm

Tables Icon

Table 4 Fabrication Tolerance for Type 2 Design Parameters at λ = 500 nm

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η rad = P rad P in = P rad P rad + P loss
f=  c 1 × η rad + c 2 ×| S 11 |
W i >  W i+1
W i   W i+1 >5 nm
n L i × W i  const ,    n=1,2,3
η total = 0 P( λ,T )×  η rad ( λ ) dλ 0 P( λ,T ) dλ
Z= R rad + R loss +jX

Metrics