Abstract

Silicon nanostructures have light-harvesting effects for enhancing the performance of solar cells. Based on theoretical investigations on the optical properties of silicon nanowire (Si NW), the influencing laws of the size of Si NW on its light-harvesting effect are proposed. For the first time, we reveal that the resonant wavelength of Si NW predicted by the leaky mode theory does not correspond to the actual resonant wavelength calculated by the discrete dipole approximation method, but exactly coincides with the leftmost wavelength of the resonance peak. Then, the size dependency of the resonant intensity and width of Si NW is different from that of spherical nanoparticles, which can be deduced from the Mie theory. The size dependencies of resonant intensity and width are also applicative for silver/silicon composite nanowires. In addition, it is found that the harvested light by the Si and Ag/Si NW both show significant radial locality feature. The insight in this work is fundamental for the design and fabrication of efficient light -harvesting nanostructures for photovoltaic devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced light-harvesting capability for silicon single-nanowire solar cells coupled with metallic cavity

Feng Gai, Cheng Zhang, Yaohui Zhan, and Xiaofeng Li
Opt. Express 24(26) A1505-A1513 (2016)

Enhanced absorptive characteristics of metal nanoparticle-coated silicon nanowires for solar cell applications

Keya Zhou, Sang-Won Jee, Zhongyi Guo, Shutian Liu, and Jung-Ho Lee
Appl. Opt. 50(31) G63-G68 (2011)

Effective light absorption and its enhancement factor for silicon nanowire-based solar cell

Zhiqiang Duan, Meicheng Li, Trevor Mwenya, Pengfei Fu, Yingfeng Li, and Dandan Song
Appl. Opt. 55(1) 117-121 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
    [Crossref] [PubMed]
  2. G.-L. Zang, G.-P. Sheng, C. Shi, Y.-K. Wang, W.-W. Li, and H.-Q. Yu, “A bio-photoelectrochemical cell with a MoS 3-modified silicon nanowire photocathode for hydrogen and electricity production,” Energy Environ. Sci. 7(9), 3033–3039 (2014).
    [Crossref]
  3. T. Song, S.-T. Lee, and B. Sun, “Silicon nanowires for photovoltaic applications: The progress and challenge,” Nano Energy 1(5), 654–673 (2012).
    [Crossref]
  4. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [Crossref] [PubMed]
  5. H. Park and K. B. Crozier, “Elliptical silicon nanowire photodetectors for polarization-resolved imaging,” Opt. Express 23(6), 7209–7216 (2015).
    [Crossref] [PubMed]
  6. J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58(8), 1361–1387 (2013).
    [Crossref]
  7. K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8(1), 75–97 (2013).
    [Crossref]
  8. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [PubMed]
  9. Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
    [Crossref]
  10. Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
    [Crossref]
  11. Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
    [Crossref]
  12. Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
    [Crossref] [PubMed]
  13. H. Bao, W. Zhang, L. Chen, H. Huang, C. Yang, and X. Ruan, “An investigation of the optical properties of disordered silicon nanowire mats,” J. Appl. Phys. 112(12), 124301 (2012).
    [Crossref]
  14. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  15. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
    [Crossref] [PubMed]
  16. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
    [Crossref] [PubMed]
  17. T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
    [Crossref] [PubMed]
  18. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  19. L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).
  20. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  21. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  22. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [Crossref]
  23. P. J. Flatau and B. T. Draine, “Fast near field calculations in the discrete dipole approximation for regular rectilinear grids,” Opt. Express 20(2), 1247–1252 (2012).
    [Crossref] [PubMed]
  24. B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” arXiv:1305.6497 (2013).
  25. J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
    [Crossref] [PubMed]
  26. B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
    [Crossref]
  27. D. W. Lynch and W. Hunter, Comments on the optical constants of metals and an introduction to the data for several metals, Handbook of Optical Constants of Solids (Academic Press, 1985).
  28. J. Geist, The index of refraction of silicon in the visible and very near IR-Silicon (Si) Revisited (1.1–3.1 eV), Handbook of Optical Constants of Solids (Academic Press, 1998).
  29. Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express 20(13), 13847–13856 (2012).
    [Crossref] [PubMed]

2015 (5)

H. Park and K. B. Crozier, “Elliptical silicon nanowire photodetectors for polarization-resolved imaging,” Opt. Express 23(6), 7209–7216 (2015).
[Crossref] [PubMed]

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
[Crossref]

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

2014 (3)

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

G.-L. Zang, G.-P. Sheng, C. Shi, Y.-K. Wang, W.-W. Li, and H.-Q. Yu, “A bio-photoelectrochemical cell with a MoS 3-modified silicon nanowire photocathode for hydrogen and electricity production,” Energy Environ. Sci. 7(9), 3033–3039 (2014).
[Crossref]

L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).

2013 (5)

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
[Crossref] [PubMed]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
[Crossref] [PubMed]

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58(8), 1361–1387 (2013).
[Crossref]

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8(1), 75–97 (2013).
[Crossref]

2012 (4)

T. Song, S.-T. Lee, and B. Sun, “Silicon nanowires for photovoltaic applications: The progress and challenge,” Nano Energy 1(5), 654–673 (2012).
[Crossref]

H. Bao, W. Zhang, L. Chen, H. Huang, C. Yang, and X. Ruan, “An investigation of the optical properties of disordered silicon nanowire mats,” J. Appl. Phys. 112(12), 124301 (2012).
[Crossref]

Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express 20(13), 13847–13856 (2012).
[Crossref] [PubMed]

P. J. Flatau and B. T. Draine, “Fast near field calculations in the discrete dipole approximation for regular rectilinear grids,” Opt. Express 20(2), 1247–1252 (2012).
[Crossref] [PubMed]

2010 (6)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

2009 (1)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

2007 (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

1994 (1)

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Bai, F.

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Bao, H.

H. Bao, W. Zhang, L. Chen, H. Huang, C. Yang, and X. Ruan, “An investigation of the optical properties of disordered silicon nanowire mats,” J. Appl. Phys. 112(12), 124301 (2012).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Brongersma, M. L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Cabarrocas, P. R. I.

L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Cao, L.

Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express 20(13), 13847–13856 (2012).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Chen, L.

H. Bao, W. Zhang, L. Chen, H. Huang, C. Yang, and X. Ruan, “An investigation of the optical properties of disordered silicon nanowire mats,” J. Appl. Phys. 112(12), 124301 (2012).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Chu, L.

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Coenen, T.

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
[Crossref] [PubMed]

Crozier, K. B.

Draine, B. T.

Dross, F.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58(8), 1361–1387 (2013).
[Crossref]

Fan, P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Fan, Z.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Feng, M.

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Flatau, P. J.

Foldyna, M.

L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).

Fu, P.

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
[Crossref]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gilbert, M.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58(8), 1361–1387 (2013).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hu, Y.

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8(1), 75–97 (2013).
[Crossref]

Hua, B.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

Huang, H.

H. Bao, W. Zhang, L. Chen, H. Huang, C. Yang, and X. Ruan, “An investigation of the optical properties of disordered silicon nanowire mats,” J. Appl. Phys. 112(12), 124301 (2012).
[Crossref]

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Huang, R.

Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
[Crossref]

Jiang, B.

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
[Crossref]

Johnson, E.

L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Kurstjens, R.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58(8), 1361–1387 (2013).
[Crossref]

Lee, S.-T.

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8(1), 75–97 (2013).
[Crossref]

T. Song, S.-T. Lee, and B. Sun, “Silicon nanowires for photovoltaic applications: The progress and challenge,” Nano Energy 1(5), 654–673 (2012).
[Crossref]

Leu, P. W.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Li, L.

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8(1), 75–97 (2013).
[Crossref]

Li, M.

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
[Crossref]

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Li, R.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
[Crossref]

Li, W.-W.

G.-L. Zang, G.-P. Sheng, C. Shi, Y.-K. Wang, W.-W. Li, and H.-Q. Yu, “A bio-photoelectrochemical cell with a MoS 3-modified silicon nanowire photocathode for hydrogen and electricity production,” Energy Environ. Sci. 7(9), 3033–3039 (2014).
[Crossref]

Li, Y.

Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
[Crossref]

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Liang, F.-X.

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Liu, H.

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Luo, L.

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Mann, J. K.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58(8), 1361–1387 (2013).
[Crossref]

Misra, S.

L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).

Nie, B.

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Park, H.

Park, J.-S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Peng, K.-Q.

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8(1), 75–97 (2013).
[Crossref]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Polman, A.

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
[Crossref] [PubMed]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Poortmans, J.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58(8), 1361–1387 (2013).
[Crossref]

Pourtois, G.

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58(8), 1361–1387 (2013).
[Crossref]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Qian, S.

L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).

Ruan, X.

H. Bao, W. Zhang, L. Chen, H. Huang, C. Yang, and X. Ruan, “An investigation of the optical properties of disordered silicon nanowire mats,” J. Appl. Phys. 112(12), 124301 (2012).
[Crossref]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Shen, C.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
[Crossref]

Sheng, G.-P.

G.-L. Zang, G.-P. Sheng, C. Shi, Y.-K. Wang, W.-W. Li, and H.-Q. Yu, “A bio-photoelectrochemical cell with a MoS 3-modified silicon nanowire photocathode for hydrogen and electricity production,” Energy Environ. Sci. 7(9), 3033–3039 (2014).
[Crossref]

Shi, C.

G.-L. Zang, G.-P. Sheng, C. Shi, Y.-K. Wang, W.-W. Li, and H.-Q. Yu, “A bio-photoelectrochemical cell with a MoS 3-modified silicon nanowire photocathode for hydrogen and electricity production,” Energy Environ. Sci. 7(9), 3033–3039 (2014).
[Crossref]

Shi, Y.

L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).

Song, D.

Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
[Crossref]

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Song, T.

T. Song, S.-T. Lee, and B. Sun, “Silicon nanowires for photovoltaic applications: The progress and challenge,” Nano Energy 1(5), 654–673 (2012).
[Crossref]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Sun, B.

T. Song, S.-T. Lee, and B. Sun, “Silicon nanowires for photovoltaic applications: The progress and challenge,” Nano Energy 1(5), 654–673 (2012).
[Crossref]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

van de Groep, J.

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
[Crossref] [PubMed]

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
[Crossref] [PubMed]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Wang, B.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

Wang, J.

L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).

Wang, M.-Z.

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Wang, X.

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8(1), 75–97 (2013).
[Crossref]

Wang, Y.-K.

G.-L. Zang, G.-P. Sheng, C. Shi, Y.-K. Wang, W.-W. Li, and H.-Q. Yu, “A bio-photoelectrochemical cell with a MoS 3-modified silicon nanowire photocathode for hydrogen and electricity production,” Energy Environ. Sci. 7(9), 3033–3039 (2014).
[Crossref]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

Wu, C.-Y.

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Wu, Y.

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Xie, C.

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Xu, J.

L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).

Yang, C.

H. Bao, W. Zhang, L. Chen, H. Huang, C. Yang, and X. Ruan, “An investigation of the optical properties of disordered silicon nanowire mats,” J. Appl. Phys. 112(12), 124301 (2012).
[Crossref]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Yu, H.-Q.

G.-L. Zang, G.-P. Sheng, C. Shi, Y.-K. Wang, W.-W. Li, and H.-Q. Yu, “A bio-photoelectrochemical cell with a MoS 3-modified silicon nanowire photocathode for hydrogen and electricity production,” Energy Environ. Sci. 7(9), 3033–3039 (2014).
[Crossref]

Yu, L.

L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).

Yu, M.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Yu, S. H.

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Yu, Y.

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express 20(13), 13847–13856 (2012).
[Crossref] [PubMed]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Zang, G.-L.

G.-L. Zang, G.-P. Sheng, C. Shi, Y.-K. Wang, W.-W. Li, and H.-Q. Yu, “A bio-photoelectrochemical cell with a MoS 3-modified silicon nanowire photocathode for hydrogen and electricity production,” Energy Environ. Sci. 7(9), 3033–3039 (2014).
[Crossref]

Zeng, L.

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Zhang, W.

H. Bao, W. Zhang, L. Chen, H. Huang, C. Yang, and X. Ruan, “An investigation of the optical properties of disordered silicon nanowire mats,” J. Appl. Phys. 112(12), 124301 (2012).
[Crossref]

Zhao, Y.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

ACS Nano (2)

T. Coenen, J. van de Groep, and A. Polman, “Resonant modes of single silicon nanocavities excited by electron irradiation,” ACS Nano 7(2), 1689–1698 (2013).
[Crossref] [PubMed]

C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, and S. H. Yu, “Core-Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors,” ACS Nano 8(4), 4015–4022 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Energy Environ. Sci. (1)

G.-L. Zang, G.-P. Sheng, C. Shi, Y.-K. Wang, W.-W. Li, and H.-Q. Yu, “A bio-photoelectrochemical cell with a MoS 3-modified silicon nanowire photocathode for hydrogen and electricity production,” Energy Environ. Sci. 7(9), 3033–3039 (2014).
[Crossref]

J. Appl. Phys. (1)

H. Bao, W. Zhang, L. Chen, H. Huang, C. Yang, and X. Ruan, “An investigation of the optical properties of disordered silicon nanowire mats,” J. Appl. Phys. 112(12), 124301 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Energy (3)

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

T. Song, S.-T. Lee, and B. Sun, “Silicon nanowires for photovoltaic applications: The progress and challenge,” Nano Energy 1(5), 654–673 (2012).
[Crossref]

Nano Lett. (2)

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Nano Today (1)

K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, “Silicon nanowires for advanced energy conversion and storage,” Nano Today 8(1), 75–97 (2013).
[Crossref]

Nat. Mater. (5)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nature (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Li, M. Li, R. Li, P. Fu, B. Jiang, D. Song, C. Shen, Y. Zhao, and R. Huang, “Linear length-dependent light-harvesting ability of silicon nanowire,” Opt. Commun. 355, 6–9 (2015).
[Crossref]

Opt. Express (4)

Prog. Mater. Sci. (1)

J. K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Prog. Mater. Sci. 58(8), 1361–1387 (2013).
[Crossref]

Sci. Rep. (2)

L. Yu, S. Misra, J. Wang, S. Qian, M. Foldyna, J. Xu, Y. Shi, E. Johnson, and P. R. I. Cabarrocas, “Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells,” Sci. Rep. 4, 1–7 (2014).

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Other (3)

D. W. Lynch and W. Hunter, Comments on the optical constants of metals and an introduction to the data for several metals, Handbook of Optical Constants of Solids (Academic Press, 1985).

J. Geist, The index of refraction of silicon in the visible and very near IR-Silicon (Si) Revisited (1.1–3.1 eV), Handbook of Optical Constants of Solids (Academic Press, 1998).

B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” arXiv:1305.6497 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Model of the (a) Si NW and (b) Si/Ag NW; and the (c) extinction and (d) absorption efficiencies of a Si NW (diameter 70nm and length 0.5μm).
Fig. 2
Fig. 2 (a) Diameter and (b) length dependency of the resonant wavelength of Si NW.
Fig. 3
Fig. 3 Diameter dependency of the (a) intensity and (b) width of the resonance peak for the extinction efficiencies of Si NW.
Fig. 4
Fig. 4 Length dependency of the (a) intensity and (b) width of the resonance peak for the extinction efficiencies of Si NW.
Fig. 5
Fig. 5 (a) Extinction curves for the Ag/Si NWs; and the length dependency of the (b) intensity of the resonance peaks of Ag, (c) intensity of the resonance peaks of Si, (d) width of the resonance peaks of Ag, and (e) width of the resonance peaks of Si.
Fig. 6
Fig. 6 (a) Angular distribution for the scattered light without the SiNW, and (b) spatial distributions for the absorbed light within the Si NW.

Metrics