Abstract

We present the effect of geometrical parameters, particularly shape, on optical absorption enhancement for thin film solar cells based on crystalline silicon (c-Si) and gallium arsenide (GaAs) using a rigorous coupled wave analysis (RCWA) method. It is discovered that the “sweet spot” that maximizes efficiency of solar cells exists for the design of nanophotonic surfaces. For the case of ultrathin, rod array is practical due to the effective optical resonances resulted from the optimum geometry whereas parabola array is viable for relatively thicker cells owing to the effective graded index profile. A specific value of thickness, which is the median value of other two devices tailored by rod and paraboloid, is optimized by truncated shape structure. It is therefore worth scanning the optimum shape of nanostructures in a given thickness in order to achieve high performance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of GaAs subwavelength structure (SWS) for solar cell applications

Byung-Jae Kim and Jihyun Kim
Opt. Express 19(S3) A326-A330 (2011)

Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers

Yunwon Song, Keorock Choi, Dong-Hwan Jun, and Jungwoo Oh
Opt. Express 25(20) 23862-23872 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
    [Crossref] [PubMed]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  3. S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
    [Crossref]
  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
    [Crossref]
  5. E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
    [Crossref]
  6. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [Crossref] [PubMed]
  7. X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
    [Crossref]
  8. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [Crossref] [PubMed]
  9. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
    [Crossref]
  10. X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin-film Si solar cells: Modeling, process and optimizations,” Opt. Commun. 314, 41–47 (2014).
    [Crossref]
  11. B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
    [Crossref]
  12. J. Buencuerpo, L. E. Munioz-Camuniez, M. L. Dotor, and P. A. Postigo, “Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications,” Opt. Express 20, A452–A464 (2012).
    [Crossref] [PubMed]
  13. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  14. G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
    [Crossref] [PubMed]
  15. M.-A. Tsai, P.-C. Tseng, H.-C. Chen, H.-C. Kuo, and P. Yu, “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Opt. Express 19(S1Suppl 1), A28–A34 (2011).
    [Crossref] [PubMed]
  16. F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21(23), 27587–27601 (2013).
    [Crossref] [PubMed]
  17. B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
    [Crossref] [PubMed]
  18. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
    [Crossref] [PubMed]
  19. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
    [Crossref] [PubMed]
  20. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
    [Crossref] [PubMed]
  21. A. Asadollahbaik, S. A. Boden, M. D. B. Charlton, D. N. R. Payne, S. Cox, and D. M. Bagnall, “Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation,” Opt. Express 22(S2), A402–A415 (2014).
    [Crossref] [PubMed]
  22. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
    [Crossref]
  23. J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19(S5), A1155–A1164 (2011).
    [Crossref] [PubMed]
  24. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
    [Crossref]
  25. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
    [Crossref]
  26. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985).
  27. J. B. Theeten, D. E. Aspnes, and R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49(12), 6097–6102 (1978).
    [Crossref]
  28. H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
    [Crossref] [PubMed]
  29. J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications,” Opt. Express 19(27), 26308–26317 (2011).
    [Crossref] [PubMed]
  30. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  31. X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
    [Crossref]
  32. G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
    [Crossref]
  33. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [Crossref] [PubMed]
  34. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
    [Crossref] [PubMed]
  35. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
    [Crossref] [PubMed]
  36. S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
    [Crossref] [PubMed]
  37. D. Maystre, “Theory of Wood’s Anomalies,” in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer 2012), pp.39–83.
  38. L. Rayleigh, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. Ser. 6 14(79), 60–65 (1907).
    [Crossref]
  39. A. Hessel and A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings,” Appl. Opt. 4(10), 1275 (1965).
    [Crossref]
  40. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
    [Crossref]
  41. F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore Textured-Silicon Thin Film for Photovoltaic Application,” Opt. Lett. 35(1), 40–42 (2010).
    [Crossref] [PubMed]
  42. J. Michel and L. C. Kimerling, “Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells,” IEEE Trans. Electron Dev. 54(8), 1926–1933 (2007).
    [Crossref]
  43. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  44. Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
    [Crossref] [PubMed]
  45. S. Kalem, P. Werner, B. Nilsson, V. G. Talalaev, M. Hagberg, O. Arthursson, and U. Södervall, “Controlled thinning and surface smoothening of silicon nanopillars,” Nanotechnology 20(44), 445303 (2009).
    [Crossref] [PubMed]
  46. H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(7B), 5–8 (2001).
    [Crossref]
  47. I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
    [Crossref] [PubMed]
  48. K. Han, J. Shin, W. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
    [Crossref]
  49. J.-W. Ho, Q. Wee, J. Dumond, A. Tay, and S.-J. Chua, “Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale,” Nanoscale Res. Lett. 8(1), 506 (2013).
    [Crossref] [PubMed]
  50. X. Chen, Z. Fan, Y. Xu, G. Song, and L. Chen, “Microelectronic Engineering Fabrication of biomimic GaAs subwavelength grating structures for broadband and angular-independent antireflection,” Microelectron. Eng. 88(9), 2889–2893 (2011).
    [Crossref]
  51. K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
    [Crossref]
  52. J. W. Leem, Y. M. Song, and J. S. Yu, “Six-fold hexagonal symmetric nanostructures with various periodic shapes on GaAs substrates for efficient antireflection and hydrophobic properties,” Nanotechnology 22(48), 485304 (2011).
    [Crossref] [PubMed]
  53. R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2(11), 1990–1995 (2012).
    [Crossref]
  54. H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
    [Crossref] [PubMed]
  55. S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett. 11(11), 4805–4811 (2011).
    [Crossref] [PubMed]
  56. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
    [Crossref] [PubMed]
  57. H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
    [Crossref] [PubMed]
  58. X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
    [Crossref] [PubMed]
  59. C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 33109 (2008).
    [Crossref]
  60. W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired Self-Cleaning Antireflection Coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
    [Crossref]
  61. W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
    [Crossref] [PubMed]
  62. C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
    [Crossref]
  63. K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
    [Crossref]

2015 (2)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

2014 (3)

X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin-film Si solar cells: Modeling, process and optimizations,” Opt. Commun. 314, 41–47 (2014).
[Crossref]

A. Asadollahbaik, S. A. Boden, M. D. B. Charlton, D. N. R. Payne, S. Cox, and D. M. Bagnall, “Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation,” Opt. Express 22(S2), A402–A415 (2014).
[Crossref] [PubMed]

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[Crossref] [PubMed]

2013 (4)

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21(23), 27587–27601 (2013).
[Crossref] [PubMed]

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

J.-W. Ho, Q. Wee, J. Dumond, A. Tay, and S.-J. Chua, “Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale,” Nanoscale Res. Lett. 8(1), 506 (2013).
[Crossref] [PubMed]

2012 (8)

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2(11), 1990–1995 (2012).
[Crossref]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
[Crossref] [PubMed]

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

J. Buencuerpo, L. E. Munioz-Camuniez, M. L. Dotor, and P. A. Postigo, “Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications,” Opt. Express 20, A452–A464 (2012).
[Crossref] [PubMed]

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

2011 (12)

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications,” Opt. Express 19(27), 26308–26317 (2011).
[Crossref] [PubMed]

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19(S5), A1155–A1164 (2011).
[Crossref] [PubMed]

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

M.-A. Tsai, P.-C. Tseng, H.-C. Chen, H.-C. Kuo, and P. Yu, “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Opt. Express 19(S1Suppl 1), A28–A34 (2011).
[Crossref] [PubMed]

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett. 11(11), 4805–4811 (2011).
[Crossref] [PubMed]

X. Chen, Z. Fan, Y. Xu, G. Song, and L. Chen, “Microelectronic Engineering Fabrication of biomimic GaAs subwavelength grating structures for broadband and angular-independent antireflection,” Microelectron. Eng. 88(9), 2889–2893 (2011).
[Crossref]

K. Han, J. Shin, W. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

J. W. Leem, Y. M. Song, and J. S. Yu, “Six-fold hexagonal symmetric nanostructures with various periodic shapes on GaAs substrates for efficient antireflection and hydrophobic properties,” Nanotechnology 22(48), 485304 (2011).
[Crossref] [PubMed]

2010 (8)

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore Textured-Silicon Thin Film for Photovoltaic Application,” Opt. Lett. 35(1), 40–42 (2010).
[Crossref] [PubMed]

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
[Crossref] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

2009 (6)

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

S. Kalem, P. Werner, B. Nilsson, V. G. Talalaev, M. Hagberg, O. Arthursson, and U. Södervall, “Controlled thinning and surface smoothening of silicon nanopillars,” Nanotechnology 20(44), 445303 (2009).
[Crossref] [PubMed]

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
[Crossref] [PubMed]

2008 (6)

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 33109 (2008).
[Crossref]

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired Self-Cleaning Antireflection Coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
[Crossref] [PubMed]

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[Crossref]

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

2007 (3)

J. Michel and L. C. Kimerling, “Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells,” IEEE Trans. Electron Dev. 54(8), 1926–1933 (2007).
[Crossref]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
[Crossref] [PubMed]

2006 (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

2003 (1)

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

2000 (1)

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

1999 (1)

1998 (1)

1978 (1)

J. B. Theeten, D. E. Aspnes, and R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49(12), 6097–6102 (1978).
[Crossref]

1965 (1)

1907 (1)

L. Rayleigh, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. Ser. 6 14(79), 60–65 (1907).
[Crossref]

Abbott, S.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Abramov, A.

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

Acet, M.

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Agrawal, M.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

Allsopp, D. W. E.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Anand, S.

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2(11), 1990–1995 (2012).
[Crossref]

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett. 11(11), 4805–4811 (2011).
[Crossref] [PubMed]

Anttu, N.

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2(11), 1990–1995 (2012).
[Crossref]

Arafune, K.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Arthursson, O.

S. Kalem, P. Werner, B. Nilsson, V. G. Talalaev, M. Hagberg, O. Arthursson, and U. Södervall, “Controlled thinning and surface smoothening of silicon nanopillars,” Nanotechnology 20(44), 445303 (2009).
[Crossref] [PubMed]

Asadollahbaik, A.

Asano, T.

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

Aspnes, D. E.

J. B. Theeten, D. E. Aspnes, and R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49(12), 6097–6102 (1978).
[Crossref]

Atwater, H. A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Awan, K. M.

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2(11), 1990–1995 (2012).
[Crossref]

Baek, S.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Bagnall, D. M.

Bauer, A.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Bezares, F. J.

Boden, S. A.

Broderick, L. Z.

X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin-film Si solar cells: Modeling, process and optimizations,” Opt. Commun. 314, 41–47 (2014).
[Crossref]

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

Buencuerpo, J.

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Caldwell, J. D.

Carius, R.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Carl, A.

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Chang, R. P. H.

J. B. Theeten, D. E. Aspnes, and R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49(12), 6097–6102 (1978).
[Crossref]

Charlton, M. D. B.

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Chen, H. L.

Chen, H.-C.

Chen, L.

X. Chen, Z. Fan, Y. Xu, G. Song, and L. Chen, “Microelectronic Engineering Fabrication of biomimic GaAs subwavelength grating structures for broadband and angular-independent antireflection,” Microelectron. Eng. 88(9), 2889–2893 (2011).
[Crossref]

Chen, L. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Chen, X.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

X. Chen, Z. Fan, Y. Xu, G. Song, and L. Chen, “Microelectronic Engineering Fabrication of biomimic GaAs subwavelength grating structures for broadband and angular-independent antireflection,” Microelectron. Eng. 88(9), 2889–2893 (2011).
[Crossref]

Chi, L.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Chou, S. Y.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

Chua, S.-J.

J.-W. Ho, Q. Wee, J. Dumond, A. Tay, and S.-J. Chua, “Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale,” Nanoscale Res. Lett. 8(1), 506 (2013).
[Crossref] [PubMed]

Chuang, S. Y.

Collin, S.

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[Crossref] [PubMed]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 33109 (2008).
[Crossref]

Cox, S.

Cui, Y.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 33109 (2008).
[Crossref]

Djurišic, A. B.

Dong, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

Dotor, M. L.

Drouard, E.

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

Dumond, J.

J.-W. Ho, Q. Wee, J. Dumond, A. Tay, and S.-J. Chua, “Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale,” Nanoscale Res. Lett. 8(1), 506 (2013).
[Crossref] [PubMed]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Ebraert, E.

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2(11), 1990–1995 (2012).
[Crossref]

El Daif, O.

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

El Hajjam, K.

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

Elazar, J. M.

El-Kady, M.

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Fan, S.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Fan, Z.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

X. Chen, Z. Fan, Y. Xu, G. Song, and L. Chen, “Microelectronic Engineering Fabrication of biomimic GaAs subwavelength grating structures for broadband and angular-independent antireflection,” Microelectron. Eng. 88(9), 2889–2893 (2011).
[Crossref]

Fave, A.

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Fujii, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Gao, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

Gao, L.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Ge, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

Gerelli, E.

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

Glembocki, O. J.

Gomard, G.

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Guo, J.

Hadobas, K.

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Hagberg, M.

S. Kalem, P. Werner, B. Nilsson, V. G. Talalaev, M. Hagberg, O. Arthursson, and U. Södervall, “Controlled thinning and surface smoothening of silicon nanopillars,” Nanotechnology 20(44), 445303 (2009).
[Crossref] [PubMed]

Han, K.

K. Han, J. Shin, W. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

Han, K. S.

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Hane, K.

Hao, J.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Hessel, A.

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Ho, J.-W.

J.-W. Ho, Q. Wee, J. Dumond, A. Tay, and S.-J. Chua, “Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale,” Nanoscale Res. Lett. 8(1), 506 (2013).
[Crossref] [PubMed]

Ho, K. M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Hsu, C. M.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 33109 (2008).
[Crossref]

Hua, B.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

Hubbard, G.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Huffaker, D. L.

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Huh, J.-H.

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

Hung, C.-H.

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Idutsu, Y.

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

Iijima, H.

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

Jia, F.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

Jiang, B.

W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
[Crossref] [PubMed]

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired Self-Cleaning Antireflection Coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Jiang, P.

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired Self-Cleaning Antireflection Coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
[Crossref] [PubMed]

Johnson, S. G.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

Kalem, S.

S. Kalem, P. Werner, B. Nilsson, V. G. Talalaev, M. Hagberg, O. Arthursson, and U. Södervall, “Controlled thinning and surface smoothening of silicon nanopillars,” Nanotechnology 20(44), 445303 (2009).
[Crossref] [PubMed]

Kaminski, A.

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

Kanamori, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
[Crossref] [PubMed]

Kaner, R. B.

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Kang, G.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Kasica, R.

Kim, D.

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

Kim, K.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Kimerling, L. C.

X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin-film Si solar cells: Modeling, process and optimizations,” Opt. Commun. 314, 41–47 (2014).
[Crossref]

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

J. Michel and L. C. Kimerling, “Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells,” IEEE Trans. Electron Dev. 54(8), 1926–1933 (2007).
[Crossref]

Kirsch, S.

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Kumano, H.

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

Kuo, H.-C.

Kwong, D. L.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Lech, A.

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Lee, H.

K. Han, J. Shin, W. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

Lee, J.-Y.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

Lee, Y. T.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
[Crossref] [PubMed]

Leem, J. W.

Lemiti, M.

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

Leu, P. W.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
[Crossref] [PubMed]

Li, J.

F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore Textured-Silicon Thin Film for Photovoltaic Application,” Opt. Lett. 35(1), 40–42 (2010).
[Crossref] [PubMed]

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Li, X.

X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
[Crossref] [PubMed]

Li, Y.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

Lin, C. H.

Lin, Y. H.

Liu, C.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Liu, X.

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

Lo, P. G.-Q.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Long, J. P.

Lu, M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Lu, N.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Majewski, M. L.

Mallick, S. B.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

Mariani, G.

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Meng, X.

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

Michel, J.

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

J. Michel and L. C. Kimerling, “Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells,” IEEE Trans. Electron Dev. 54(8), 1926–1933 (2007).
[Crossref]

Min, W.-L.

W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
[Crossref] [PubMed]

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired Self-Cleaning Antireflection Coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Moulin, E.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Munioz-Camuniez, L. E.

Nakajima, H.

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

Naureen, S.

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2(11), 1990–1995 (2012).
[Crossref]

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett. 11(11), 4805–4811 (2011).
[Crossref] [PubMed]

Nilsson, B.

S. Kalem, P. Werner, B. Nilsson, V. G. Talalaev, M. Hagberg, O. Arthursson, and U. Södervall, “Controlled thinning and surface smoothening of silicon nanopillars,” Nanotechnology 20(44), 445303 (2009).
[Crossref] [PubMed]

Odashima, S.

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

Ohshita, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Oliner, A. A.

Orobtchouk, R.

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

Owrutsky, J. C.

Padilla, W. J.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Paetzold, U. W.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Park, H.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Payne, D. N. R.

Peretti, R.

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

Peumans, P.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

Polman, A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Postigo, P. A.

Prikhodko, S.

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Qi, D.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Rakic, A. D.

Rayleigh, L.

L. Rayleigh, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. Ser. 6 14(79), 60–65 (1907).
[Crossref]

Ren, Z.

X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
[Crossref] [PubMed]

Rendell, R. W.

Roca i Cabarrocas, P.

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

Sai, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Sanatinia, R.

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2(11), 1990–1995 (2012).
[Crossref]

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett. 11(11), 4805–4811 (2011).
[Crossref] [PubMed]

Sasaki, M.

Sasakura, H.

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

Seassal, C.

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

Sergeant, N. P.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

Shahid, N.

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett. 11(11), 4805–4811 (2011).
[Crossref] [PubMed]

Shapiro, J.

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Sheng, X.

X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin-film Si solar cells: Modeling, process and optimizations,” Opt. Commun. 314, 41–47 (2014).
[Crossref]

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

Shields, P. A.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Shin, D.

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

Shin, J.

K. Han, J. Shin, W. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

Shirey, L.

Siekmann, H.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Södervall, U.

S. Kalem, P. Werner, B. Nilsson, V. G. Talalaev, M. Hagberg, O. Arthursson, and U. Södervall, “Controlled thinning and surface smoothening of silicon nanopillars,” Nanotechnology 20(44), 445303 (2009).
[Crossref] [PubMed]

Song, G.

X. Chen, Z. Fan, Y. Xu, G. Song, and L. Chen, “Microelectronic Engineering Fabrication of biomimic GaAs subwavelength grating structures for broadband and angular-independent antireflection,” Microelectron. Eng. 88(9), 2889–2893 (2011).
[Crossref]

Song, Y. M.

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Suemune, I.

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

Sun, C.-H.

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

Sun, X.

F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore Textured-Silicon Thin Film for Photovoltaic Application,” Opt. Lett. 35(1), 40–42 (2010).
[Crossref] [PubMed]

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Talalaev, V. G.

S. Kalem, P. Werner, B. Nilsson, V. G. Talalaev, M. Hagberg, O. Arthursson, and U. Södervall, “Controlled thinning and surface smoothening of silicon nanopillars,” Nanotechnology 20(44), 445303 (2009).
[Crossref] [PubMed]

Tang, M. X.

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 33109 (2008).
[Crossref]

Tang, Y.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

Tay, A.

J.-W. Ho, Q. Wee, J. Dumond, A. Tay, and S.-J. Chua, “Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale,” Nanoscale Res. Lett. 8(1), 506 (2013).
[Crossref] [PubMed]

Theeten, J. B.

J. B. Theeten, D. E. Aspnes, and R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49(12), 6097–6102 (1978).
[Crossref]

Tian, T.

X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
[Crossref] [PubMed]

Tsai, M.-A.

Tseng, P.-C.

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Wang, B.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
[Crossref] [PubMed]

Wang, C. Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Wang, F.

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Wang, S. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Wang, T.

X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
[Crossref] [PubMed]

Wang, W. N.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Wang, X.

Wang, Y.

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Wang, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

Wang, Z. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Wassermann, E. F.

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Wee, Q.

J.-W. Ho, Q. Wee, J. Dumond, A. Tay, and S.-J. Chua, “Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale,” Nanoscale Res. Lett. 8(1), 506 (2013).
[Crossref] [PubMed]

Werner, P.

S. Kalem, P. Werner, B. Nilsson, V. G. Talalaev, M. Hagberg, O. Arthursson, and U. Södervall, “Controlled thinning and surface smoothening of silicon nanopillars,” Nanotechnology 20(44), 445303 (2009).
[Crossref] [PubMed]

Wong, P.-S.

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Wong, S. M.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Worbs, J.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Wu, W.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

Xu, H.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Xu, Y.

X. Chen, Z. Fan, Y. Xu, G. Song, and L. Chen, “Microelectronic Engineering Fabrication of biomimic GaAs subwavelength grating structures for broadband and angular-independent antireflection,” Microelectron. Eng. 88(9), 2889–2893 (2011).
[Crossref]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Yamaguchi, M.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Yang, B.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
[Crossref] [PubMed]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Ye, Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Yoon, W.

K. Han, J. Shin, W. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

Yu, H.

F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore Textured-Silicon Thin Film for Photovoltaic Application,” Opt. Lett. 35(1), 40–42 (2010).
[Crossref] [PubMed]

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Yu, J. S.

Yu, M.

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

Yu, P.

Yu, Z.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

Yugami, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Zhang, B.

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Zhang, G.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Zhang, J.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
[Crossref] [PubMed]

Zhang, L.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

Zhang, R. J.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Zhang, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
[Crossref] [PubMed]

X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
[Crossref] [PubMed]

Zheng, H.

Zheng, Y. X.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Zhu, D.

X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Zhu, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

Adv. Mater. (3)

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater. 23(48), 5796–5800 (2011).
[Crossref] [PubMed]

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired Self-Cleaning Antireflection Coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

X. Sheng, S. G. Johnson, L. Z. Broderick, J. Michel, and L. C. Kimerling, “Integrated photonic structures for light trapping in thin-film Si solar cells,” Appl. Phys. Lett. 100(11), 111110 (2012).
[Crossref]

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[Crossref]

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[Crossref]

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 33109 (2008).
[Crossref]

Energy Procedia (1)

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

IEEE Trans. Electron Dev. (1)

J. Michel and L. C. Kimerling, “Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells,” IEEE Trans. Electron Dev. 54(8), 1926–1933 (2007).
[Crossref]

J. Appl. Phys. (1)

J. B. Theeten, D. E. Aspnes, and R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49(12), 6097–6102 (1978).
[Crossref]

J. Opt. (1)

G. Gomard, X. Meng, E. Drouard, K. El Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt. 14(2), 024011 (2012).
[Crossref]

J. Vac. Sci. Technol. B (1)

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A), 3333–3336 (2007).
[Crossref]

Langmuir (2)

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir 26(12), 9842–9847 (2010).
[Crossref] [PubMed]

X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25(13), 7375–7382 (2009).
[Crossref] [PubMed]

Microelectron. Eng. (1)

X. Chen, Z. Fan, Y. Xu, G. Song, and L. Chen, “Microelectronic Engineering Fabrication of biomimic GaAs subwavelength grating structures for broadband and angular-independent antireflection,” Microelectron. Eng. 88(9), 2889–2893 (2011).
[Crossref]

MRS Bull. (1)

S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull. 36(6), 453–460 (2011).
[Crossref]

Nano Energy (1)

B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2(5), 951–957 (2013).
[Crossref]

Nano Lett. (6)

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

G. Mariani, Y. Wang, P.-S. Wong, A. Lech, C.-H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, “High optical quality InP-based nanopillars fabricated by a top-down approach,” Nano Lett. 11(11), 4805–4811 (2011).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

J.-W. Ho, Q. Wee, J. Dumond, A. Tay, and S.-J. Chua, “Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale,” Nanoscale Res. Lett. 8(1), 506 (2013).
[Crossref] [PubMed]

Nanotechnology (5)

K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

J. W. Leem, Y. M. Song, and J. S. Yu, “Six-fold hexagonal symmetric nanostructures with various periodic shapes on GaAs substrates for efficient antireflection and hydrophobic properties,” Nanotechnology 22(48), 485304 (2011).
[Crossref] [PubMed]

S. Kalem, P. Werner, B. Nilsson, V. G. Talalaev, M. Hagberg, O. Arthursson, and U. Södervall, “Controlled thinning and surface smoothening of silicon nanopillars,” Nanotechnology 20(44), 445303 (2009).
[Crossref] [PubMed]

I. Suemune, H. Nakajima, X. Liu, S. Odashima, T. Asano, H. Iijima, J.-H. Huh, Y. Idutsu, H. Sasakura, and H. Kumano, “Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source,” Nanotechnology 24(45), 455205 (2013).
[Crossref] [PubMed]

W.-L. Min, P. Jiang, and B. Jiang, “Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures,” Nanotechnology 19(47), 475604 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Sheng, L. Z. Broderick, and L. C. Kimerling, “Photonic crystal structures for light trapping in thin-film Si solar cells: Modeling, process and optimizations,” Opt. Commun. 314, 41–47 (2014).
[Crossref]

Opt. Express (7)

J. Buencuerpo, L. E. Munioz-Camuniez, M. L. Dotor, and P. A. Postigo, “Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications,” Opt. Express 20, A452–A464 (2012).
[Crossref] [PubMed]

M.-A. Tsai, P.-C. Tseng, H.-C. Chen, H.-C. Kuo, and P. Yu, “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Opt. Express 19(S1Suppl 1), A28–A34 (2011).
[Crossref] [PubMed]

F. J. Bezares, J. P. Long, O. J. Glembocki, J. Guo, R. W. Rendell, R. Kasica, L. Shirey, J. C. Owrutsky, and J. D. Caldwell, “Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays,” Opt. Express 21(23), 27587–27601 (2013).
[Crossref] [PubMed]

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications,” Opt. Express 19(27), 26308–26317 (2011).
[Crossref] [PubMed]

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19(S5), A1155–A1164 (2011).
[Crossref] [PubMed]

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
[Crossref] [PubMed]

A. Asadollahbaik, S. A. Boden, M. D. B. Charlton, D. N. R. Payne, S. Cox, and D. M. Bagnall, “Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation,” Opt. Express 22(S2), A402–A415 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (1)

R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express 2(11), 1990–1995 (2012).
[Crossref]

Philos. Mag. Ser. 6 (1)

L. Rayleigh, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. Ser. 6 14(79), 60–65 (1907).
[Crossref]

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Rep. Prog. Phys. (1)

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015).
[Crossref] [PubMed]

Small (2)

H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008).
[Crossref] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011).
[Crossref]

K. Han, J. Shin, W. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[Crossref]

Other (3)

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40(7B), 5–8 (2001).
[Crossref]

D. Maystre, “Theory of Wood’s Anomalies,” in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer 2012), pp.39–83.

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic view of thin-film c-Si solar cells (a) with rod array and characteristic parameters and (c) parabola array. (b) Contour maps of the integrated absorption as a function of the period of the rod arrays and their FF with various cell thicknesses. (d) Calculated effective refractive indice of the parabola arrays with three different FFs corresponding to the height. (e) Contour map of the variation of surface reflectance as a function of wavelength for the parabola structure and its height.
Fig. 2
Fig. 2 Simulated cell efficiencies versus height and period contour plots for cell thicknesses of (a) 200 nm, (b) 500 nm, (c) 800 nm and (d) 1.1 μm with rod and parabola array structures.
Fig. 3
Fig. 3 Simulated surface reflection spectra from structures with flat (black), Rod- (green) and Parabola-shaped (red), for cell thicknesses of (a) 200 nm, (b) 500 nm and (c) 800 nm with mentioned height and period. Electric field distributions of the structures (d), (e) at the wavelength of 600 nm and (f), (g) 710 nm shown in [Figs. 3(a) and 3(c)] as the circle symbols.
Fig. 4
Fig. 4 (a) Geometrical transformation process of nanostructure shape by varying parabolic ratio. (b) Contour map of the variation of absorption efficiency as a function of wavelength for the thin-film c-Si solar cell and its parabolic ratio (Only absorption efficiency above 40% are plotted). (c) Calculated cell efficiency of the c-Si solar cell (red) and averaged absorption efficiency (green) over the range of wavelength 800-900 nm depicted as a white rectangular in Fig. 4(c) as a function of the parabolic ratio. Inset: Schematic view of a PR50% patterned thin-film c-Si solar cell.
Fig. 5
Fig. 5 (a) Absorption efficiency in function of the wavelength and height of the c-Si thin films with three different light-trapping structures (Only absorption efficiency above 40% are plotted). (b) Calculated cell efficiency of the structures as a function the height. (c) Cell efficiencies versus height and period contour plots for cell thickness of 500 nm with varying the shape of nanostructures.
Fig. 6
Fig. 6 Simulated cell efficiencies for GaAs versus height and period contour plots for cell thicknesses of (a) 200 nm, (b) 350 nm and (c) 500 nm with three different light trapping structures.

Tables (1)

Tables Icon

Table 1 Fabrication methods of rod, paraboloid, and truncated structure

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η=JscVocΓf/Pin
Tapered order (TO) = (Parabolic ratio) 1.5
f(z)=1 ( 1z ) 1 2 ×TO

Metrics