Abstract

Tandem solar cells consisting of high bandgap cadmium telluride alloys atop crystalline silicon have potential for high efficiencies exceeding the Shockley-Queisser limit. However, experimental results have fallen well below this goal significantly because of non-ideal current matching and light trapping. In this work, we simulate cadmium zinc telluride (CZT) and crystalline silicon (c-Si) tandems as an exemplary system to show the role that a hybrid light trapping and bandgap engineering approach can play in improving performance and lowering materials costs for tandem solar cells incorporating crystalline silicon. This work consists of two steps. First, we optimize absorption in the crystalline silicon layer with front pyramidal texturing and asymmetric dielectric back gratings, which results in 121% absorption enhancement from a planar structure. Then, using this pre-optimized light trapping scheme, we model the dispersion of the CdxZn1−xTe alloys, and then adjust the bandgap to realize the best current matching for a range of CZT thicknesses. Using experimental parameters, the corresponding maximum efficiency is predicted to be 16.08 % for a total tandem cell thickness of only 2.2 μm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells

Bennett W. Schneider, Niraj N. Lal, Simeon Baker-Finch, and Thomas P. White
Opt. Express 22(S6) A1422-A1430 (2014)

High efficiency thin-film crystalline Si/Ge tandem solar cell

G. Sun, F. Chang, and R. A. Soref
Opt. Express 18(4) 3746-3753 (2010)

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
    [Crossref]
  2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23, 1–9 (2015).
    [Crossref]
  3. A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J, of Phys. D: Appl. Phys. 13, 839 (1980).
    [Crossref]
  4. D. Staebler and C. Wronski, “Reversible conductivity changes in discharge-produced amorphous si,” Appl. Phys. Lett. 31, 292–294 (1977).
    [Crossref]
  5. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
    [Crossref] [PubMed]
  6. S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
    [Crossref]
  7. N. Chander, A. Khan, P. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta, and V. K. Komarala, “Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells,” Appl. Phys. Lett. 105, 033904 (2014).
    [Crossref]
  8. J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques,” ACS Nano 9, 1955–1963 (2015).
    [Crossref] [PubMed]
  9. M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
    [Crossref]
  10. D. Xu, T. Biegala, M. Carmody, J. W. Garland, C. Grein, and S. Sivananthan, “Proposed monolithic triple-junction solar cell structures with the potential for ultrahigh efficiencies using II–VI alloys and silicon substrates,” Appl. Phys. Lett. 96, 073508 (2010).
    [Crossref]
  11. J. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
    [Crossref]
  12. M. Gloeckler, A. Fahrenbruch, and J. Sites, ”Numerical modeling of CIGS and CdTe solar cells: setting the baseline,” in Proceedings of IEEE Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 491–494.
  13. K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73, 926–931 (1993).
    [Crossref]
  14. C. Zhou, H. Chung, X. Wang, and P. Bermel, “Design of CdZnTe and crystalline silicon tandem junction solar cells,” IEEE J. Photovolt. 6, 301–308 (2016).
    [Crossref]
  15. A. Hübner, A. G. Aberle, and R. Hezel, “Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency,” Appl. Phys. Lett. 70, 1008–1010 (1997).
    [Crossref]
  16. R. Asadpour, R. V. Chavali, M. R. Khan, and M. A. Alam, “Bifacial si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (η t* 33%) solar cell,” Appl. Phys. Lett. 106, 243902 (2015).
    [Crossref]
  17. A. Tavlove and S. C. Hagness, “Computational electrodynamics: the finite-difference time-domain method,” Artech House, Norwood, MA2062 (1995).
  18. G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
    [Crossref]
  19. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201 (2010).
    [Crossref] [PubMed]
  20. D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19, A95–A107 (2011).
    [Crossref] [PubMed]
  21. A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17, 8871–8878 (2009).
    [Crossref] [PubMed]
  22. H. Chung, K.-Y. Jung, and P. Bermel, “Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells,” Opt. Mat. Express 5, 2054–2068 (2015).
    [Crossref]
  23. A. Sadao and K. Toshifumi, “Optical constants of Zn1−xCdxTe ternary alloys: Experiment and modeling,” Jpn. J. Appl. Phys 32, 3496–3501 (1993).
    [Crossref]
  24. O. Castaing, J. Benhlal, and R. Granger, “An attempt to model the dielectric function in II–VI ternary compounds and,” The European Phys. J. B-Condensed Matter and Complex Systems 7, 563–572 (1999).
    [Crossref]
  25. A. Parikh, J. Li, J. Chen, S. Marsilac, and R. Collins, ”Optical analysis of II–VI alloys and structures for tandem PV,” in Proceedings of IEEE Conference on Photovoltaic Specialist (IEEE, 2008), pp. 1–5.
  26. S.-G. Ha, J. Cho, J. Choi, H. Kim, and K.-Y. Jung, “FDTD dispersive modeling of human tissues based on quadratic complex rational function,” IEEE Trans. Antennas Propag. 61, 996–999 (2013).
    [Crossref]
  27. R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
    [Crossref]
  28. E. D. Palik, Handbook of Optical Constants of Solids: Index, vol. 3 (Access Online via Elsevier, 1998).
  29. H. Chung, K.-Y. Jung, X. Tee, and P. Bermel, “Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function,” Opt. Express 22, A818–A832 (2014).
    [Crossref] [PubMed]
  30. J. Cho, S.-G. Ha, Y. B. Park, H. Kim, and K.-Y. Jung, “On the numerical stability of finite-difference time-domain for wave propagation in dispersive media using quadratic complex rational function,” Electromagnetics 34, 625–632 (2014).
    [Crossref]
  31. Y. Jiang, M. A. Green, R. Sheng, and A. Ho-Baillie, “Room temperature optical properties of organic–inorganic lead halide perovskites,” Sol. Energy Mater. and Sol. Cells 137, 253–257 (2015).
    [Crossref]
  32. H. Duan, X. Chen, Y. Huang, X. Zhou, L. Sun, and W. Lu, “Composition-dependent electronic properties, optical transitions, and anionic relaxations of cd 1− x zn x te alloys from first principles,” Phys. Review B 76, 035209 (2007).
    [Crossref]
  33. N. Korozlu, K. Colakoglu, and E. Deligoz, “Structural, electronic, elastic and optical properties of cdxzn1− xte mixed crystals,” J. of Phys.: Condensed Matter 21, 175406 (2009).
  34. S. Johnson, S. Sen, W. Konkel, and M. Kalisher, “Optical techniques for composition measurement of bulk and thin-film cd1− yznyte,” J. of Vacuum Science & Tech. B 9, 1897–1901 (1991).
    [Crossref]
  35. S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2002).
  36. A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55, 1363–1365 (1989).
    [Crossref]
  37. D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
    [Crossref] [PubMed]
  38. G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
    [Crossref]
  39. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
    [Crossref]
  40. J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
    [Crossref]
  41. H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
    [Crossref] [PubMed]
  42. H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
    [Crossref]
  43. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
    [Crossref]
  44. J. Gjessing, E. S. Marstein, and A. Sudbø, “2d back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express 18, 5481–5495 (2010).
    [Crossref] [PubMed]
  45. S. Y. Nof, A. M. Weiner, and G. J. Cheng, Laser and Photonic Systems: Design and Integration (CRC Press, 2014).
  46. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study,” physica status solidi (a) 205, 2777–2795 (2008).
    [Crossref]
  47. H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. of Appl. Phys. 108, 044505 (2010).
    [Crossref]
  48. H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
    [Crossref]

2016 (1)

C. Zhou, H. Chung, X. Wang, and P. Bermel, “Design of CdZnTe and crystalline silicon tandem junction solar cells,” IEEE J. Photovolt. 6, 301–308 (2016).
[Crossref]

2015 (6)

R. Asadpour, R. V. Chavali, M. R. Khan, and M. A. Alam, “Bifacial si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (η t* 33%) solar cell,” Appl. Phys. Lett. 106, 243902 (2015).
[Crossref]

Y. Jiang, M. A. Green, R. Sheng, and A. Ho-Baillie, “Room temperature optical properties of organic–inorganic lead halide perovskites,” Sol. Energy Mater. and Sol. Cells 137, 253–257 (2015).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23, 1–9 (2015).
[Crossref]

J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques,” ACS Nano 9, 1955–1963 (2015).
[Crossref] [PubMed]

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
[Crossref]

H. Chung, K.-Y. Jung, and P. Bermel, “Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells,” Opt. Mat. Express 5, 2054–2068 (2015).
[Crossref]

2014 (4)

J. Cho, S.-G. Ha, Y. B. Park, H. Kim, and K.-Y. Jung, “On the numerical stability of finite-difference time-domain for wave propagation in dispersive media using quadratic complex rational function,” Electromagnetics 34, 625–632 (2014).
[Crossref]

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

N. Chander, A. Khan, P. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta, and V. K. Komarala, “Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells,” Appl. Phys. Lett. 105, 033904 (2014).
[Crossref]

H. Chung, K.-Y. Jung, X. Tee, and P. Bermel, “Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function,” Opt. Express 22, A818–A832 (2014).
[Crossref] [PubMed]

2013 (3)

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

S.-G. Ha, J. Cho, J. Choi, H. Kim, and K.-Y. Jung, “FDTD dispersive modeling of human tissues based on quadratic complex rational function,” IEEE Trans. Antennas Propag. 61, 996–999 (2013).
[Crossref]

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

2012 (1)

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

2011 (2)

J. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[Crossref]

D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19, A95–A107 (2011).
[Crossref] [PubMed]

2010 (5)

J. Gjessing, E. S. Marstein, and A. Sudbø, “2d back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express 18, 5481–5495 (2010).
[Crossref] [PubMed]

M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
[Crossref]

D. Xu, T. Biegala, M. Carmody, J. W. Garland, C. Grein, and S. Sivananthan, “Proposed monolithic triple-junction solar cell structures with the potential for ultrahigh efficiencies using II–VI alloys and silicon substrates,” Appl. Phys. Lett. 96, 073508 (2010).
[Crossref]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201 (2010).
[Crossref] [PubMed]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. of Appl. Phys. 108, 044505 (2010).
[Crossref]

2009 (4)

N. Korozlu, K. Colakoglu, and E. Deligoz, “Structural, electronic, elastic and optical properties of cdxzn1− xte mixed crystals,” J. of Phys.: Condensed Matter 21, 175406 (2009).

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
[Crossref] [PubMed]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17, 8871–8878 (2009).
[Crossref] [PubMed]

2008 (2)

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study,” physica status solidi (a) 205, 2777–2795 (2008).
[Crossref]

2007 (1)

H. Duan, X. Chen, Y. Huang, X. Zhou, L. Sun, and W. Lu, “Composition-dependent electronic properties, optical transitions, and anionic relaxations of cd 1− x zn x te alloys from first principles,” Phys. Review B 76, 035209 (2007).
[Crossref]

2004 (1)

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

2003 (1)

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
[Crossref]

1999 (1)

O. Castaing, J. Benhlal, and R. Granger, “An attempt to model the dielectric function in II–VI ternary compounds and,” The European Phys. J. B-Condensed Matter and Complex Systems 7, 563–572 (1999).
[Crossref]

1997 (1)

A. Hübner, A. G. Aberle, and R. Hezel, “Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency,” Appl. Phys. Lett. 70, 1008–1010 (1997).
[Crossref]

1996 (1)

G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[Crossref]

1993 (2)

K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73, 926–931 (1993).
[Crossref]

A. Sadao and K. Toshifumi, “Optical constants of Zn1−xCdxTe ternary alloys: Experiment and modeling,” Jpn. J. Appl. Phys 32, 3496–3501 (1993).
[Crossref]

1991 (1)

S. Johnson, S. Sen, W. Konkel, and M. Kalisher, “Optical techniques for composition measurement of bulk and thin-film cd1− yznyte,” J. of Vacuum Science & Tech. B 9, 1897–1901 (1991).
[Crossref]

1989 (1)

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55, 1363–1365 (1989).
[Crossref]

1980 (1)

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J, of Phys. D: Appl. Phys. 13, 839 (1980).
[Crossref]

1977 (1)

D. Staebler and C. Wronski, “Reversible conductivity changes in discharge-produced amorphous si,” Appl. Phys. Lett. 31, 292–294 (1977).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Abate, A.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Aberle, A. G.

A. Hübner, A. G. Aberle, and R. Hezel, “Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency,” Appl. Phys. Lett. 70, 1008–1010 (1997).
[Crossref]

Adachi, S.

K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73, 926–931 (1993).
[Crossref]

Alam, M. A.

R. Asadpour, R. V. Chavali, M. R. Khan, and M. A. Alam, “Bifacial si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (η t* 33%) solar cell,” Appl. Phys. Lett. 106, 243902 (2015).
[Crossref]

Albrecht, S.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Asadpour, R.

R. Asadpour, R. V. Chavali, M. R. Khan, and M. A. Alam, “Bifacial si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (η t* 33%) solar cell,” Appl. Phys. Lett. 106, 243902 (2015).
[Crossref]

Atwater, H. A.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201 (2010).
[Crossref] [PubMed]

Baena, J. P. C.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Bechmann, P.

M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
[Crossref]

Benhlal, J.

O. Castaing, J. Benhlal, and R. Granger, “An attempt to model the dielectric function in II–VI ternary compounds and,” The European Phys. J. B-Condensed Matter and Complex Systems 7, 563–572 (1999).
[Crossref]

Benick, J.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
[Crossref]

Bermel, P.

C. Zhou, H. Chung, X. Wang, and P. Bermel, “Design of CdZnTe and crystalline silicon tandem junction solar cells,” IEEE J. Photovolt. 6, 301–308 (2016).
[Crossref]

H. Chung, K.-Y. Jung, and P. Bermel, “Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells,” Opt. Mat. Express 5, 2054–2068 (2015).
[Crossref]

H. Chung, K.-Y. Jung, X. Tee, and P. Bermel, “Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function,” Opt. Express 22, A818–A832 (2014).
[Crossref] [PubMed]

Biegala, T.

J. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[Crossref]

D. Xu, T. Biegala, M. Carmody, J. W. Garland, C. Grein, and S. Sivananthan, “Proposed monolithic triple-junction solar cell structures with the potential for ultrahigh efficiencies using II–VI alloys and silicon substrates,” Appl. Phys. Lett. 96, 073508 (2010).
[Crossref]

M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
[Crossref]

Blakers, A. W.

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55, 1363–1365 (1989).
[Crossref]

Bläsi, B.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
[Crossref]

Carmody, M.

J. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[Crossref]

D. Xu, T. Biegala, M. Carmody, J. W. Garland, C. Grein, and S. Sivananthan, “Proposed monolithic triple-junction solar cell structures with the potential for ultrahigh efficiencies using II–VI alloys and silicon substrates,” Appl. Phys. Lett. 96, 073508 (2010).
[Crossref]

M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
[Crossref]

Castaing, O.

O. Castaing, J. Benhlal, and R. Granger, “An attempt to model the dielectric function in II–VI ternary compounds and,” The European Phys. J. B-Condensed Matter and Complex Systems 7, 563–572 (1999).
[Crossref]

Chander, N.

N. Chander, A. Khan, P. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta, and V. K. Komarala, “Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells,” Appl. Phys. Lett. 105, 033904 (2014).
[Crossref]

Chandrasekhar, P.

N. Chander, A. Khan, P. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta, and V. K. Komarala, “Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells,” Appl. Phys. Lett. 105, 033904 (2014).
[Crossref]

Chavali, R. V.

R. Asadpour, R. V. Chavali, M. R. Khan, and M. A. Alam, “Bifacial si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (η t* 33%) solar cell,” Appl. Phys. Lett. 106, 243902 (2015).
[Crossref]

Chen, C.

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
[Crossref]

Chen, J.

A. Parikh, J. Li, J. Chen, S. Marsilac, and R. Collins, ”Optical analysis of II–VI alloys and structures for tandem PV,” in Proceedings of IEEE Conference on Photovoltaic Specialist (IEEE, 2008), pp. 1–5.

Chen, Q.

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

Chen, X.

H. Duan, X. Chen, Y. Huang, X. Zhou, L. Sun, and W. Lu, “Composition-dependent electronic properties, optical transitions, and anionic relaxations of cd 1− x zn x te alloys from first principles,” Phys. Review B 76, 035209 (2007).
[Crossref]

Cheng, G. J.

S. Y. Nof, A. M. Weiner, and G. J. Cheng, Laser and Photonic Systems: Design and Integration (CRC Press, 2014).

Chi, L.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
[Crossref] [PubMed]

Cho, J.

J. Cho, S.-G. Ha, Y. B. Park, H. Kim, and K.-Y. Jung, “On the numerical stability of finite-difference time-domain for wave propagation in dispersive media using quadratic complex rational function,” Electromagnetics 34, 625–632 (2014).
[Crossref]

S.-G. Ha, J. Cho, J. Choi, H. Kim, and K.-Y. Jung, “FDTD dispersive modeling of human tissues based on quadratic complex rational function,” IEEE Trans. Antennas Propag. 61, 996–999 (2013).
[Crossref]

Choi, J.

S.-G. Ha, J. Cho, J. Choi, H. Kim, and K.-Y. Jung, “FDTD dispersive modeling of human tissues based on quadratic complex rational function,” IEEE Trans. Antennas Propag. 61, 996–999 (2013).
[Crossref]

Chung, H.

C. Zhou, H. Chung, X. Wang, and P. Bermel, “Design of CdZnTe and crystalline silicon tandem junction solar cells,” IEEE J. Photovolt. 6, 301–308 (2016).
[Crossref]

H. Chung, K.-Y. Jung, and P. Bermel, “Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells,” Opt. Mat. Express 5, 2054–2068 (2015).
[Crossref]

H. Chung, K.-Y. Jung, X. Tee, and P. Bermel, “Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function,” Opt. Express 22, A818–A832 (2014).
[Crossref] [PubMed]

Chutinan, A.

Colakoglu, K.

N. Korozlu, K. Colakoglu, and E. Deligoz, “Structural, electronic, elastic and optical properties of cdxzn1− xte mixed crystals,” J. of Phys.: Condensed Matter 21, 175406 (2009).

Collins, R.

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
[Crossref]

A. Parikh, J. Li, J. Chen, S. Marsilac, and R. Collins, ”Optical analysis of II–VI alloys and structures for tandem PV,” in Proceedings of IEEE Conference on Photovoltaic Specialist (IEEE, 2008), pp. 1–5.

De Vos, A.

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J, of Phys. D: Appl. Phys. 13, 839 (1980).
[Crossref]

Deligoz, E.

N. Korozlu, K. Colakoglu, and E. Deligoz, “Structural, electronic, elastic and optical properties of cdxzn1− xte mixed crystals,” J. of Phys.: Condensed Matter 21, 175406 (2009).

Dewan, R.

Drießen, M.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
[Crossref]

Duan, H.

H. Duan, X. Chen, Y. Huang, X. Zhou, L. Sun, and W. Lu, “Composition-dependent electronic properties, optical transitions, and anionic relaxations of cd 1− x zn x te alloys from first principles,” Phys. Review B 76, 035209 (2007).
[Crossref]

Duan, H.-S.

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23, 1–9 (2015).
[Crossref]

Dutta, V.

N. Chander, A. Khan, P. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta, and V. K. Komarala, “Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells,” Appl. Phys. Lett. 105, 033904 (2014).
[Crossref]

Eisenlohr, J.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23, 1–9 (2015).
[Crossref]

Fahr, S.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study,” physica status solidi (a) 205, 2777–2795 (2008).
[Crossref]

Fahrenbruch, A.

M. Gloeckler, A. Fahrenbruch, and J. Sites, ”Numerical modeling of CIGS and CdTe solar cells: setting the baseline,” in Proceedings of IEEE Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 491–494.

Feldmann, F.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
[Crossref]

Ferlauto, A.

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
[Crossref]

Ferreira, G.

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
[Crossref]

Fujiwara, H.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

Gao, L.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
[Crossref] [PubMed]

Garland, J.

J. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[Crossref]

M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
[Crossref]

Garland, J. W.

D. Xu, T. Biegala, M. Carmody, J. W. Garland, C. Grein, and S. Sivananthan, “Proposed monolithic triple-junction solar cell structures with the potential for ultrahigh efficiencies using II–VI alloys and silicon substrates,” Appl. Phys. Lett. 96, 073508 (2010).
[Crossref]

Gilmore, C.

J. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[Crossref]

Gjessing, J.

Gloeckler, M.

M. Gloeckler, A. Fahrenbruch, and J. Sites, ”Numerical modeling of CIGS and CdTe solar cells: setting the baseline,” in Proceedings of IEEE Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 491–494.

Goldschmidt, J. C.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
[Crossref]

Granger, R.

O. Castaing, J. Benhlal, and R. Granger, “An attempt to model the dielectric function in II–VI ternary compounds and,” The European Phys. J. B-Condensed Matter and Complex Systems 7, 563–572 (1999).
[Crossref]

Grätzel, M.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23, 1–9 (2015).
[Crossref]

Y. Jiang, M. A. Green, R. Sheng, and A. Ho-Baillie, “Room temperature optical properties of organic–inorganic lead halide perovskites,” Sol. Energy Mater. and Sol. Cells 137, 253–257 (2015).
[Crossref]

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55, 1363–1365 (1989).
[Crossref]

Grein, C.

D. Xu, T. Biegala, M. Carmody, J. W. Garland, C. Grein, and S. Sivananthan, “Proposed monolithic triple-junction solar cell structures with the potential for ultrahigh efficiencies using II–VI alloys and silicon substrates,” Appl. Phys. Lett. 96, 073508 (2010).
[Crossref]

Guha, S.

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Ha, S.-G.

J. Cho, S.-G. Ha, Y. B. Park, H. Kim, and K.-Y. Jung, “On the numerical stability of finite-difference time-domain for wave propagation in dispersive media using quadratic complex rational function,” Electromagnetics 34, 625–632 (2014).
[Crossref]

S.-G. Ha, J. Cho, J. Choi, H. Kim, and K.-Y. Jung, “FDTD dispersive modeling of human tissues based on quadratic complex rational function,” IEEE Trans. Antennas Propag. 61, 996–999 (2013).
[Crossref]

Hagfeldt, A.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Hagness, S. C.

A. Tavlove and S. C. Hagness, “Computational electrodynamics: the finite-difference time-domain method,” Artech House, Norwood, MA2062 (1995).

Helgert, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study,” physica status solidi (a) 205, 2777–2795 (2008).
[Crossref]

Hermle, M.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
[Crossref]

Hezel, R.

A. Hübner, A. G. Aberle, and R. Hezel, “Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency,” Appl. Phys. Lett. 70, 1008–1010 (1997).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23, 1–9 (2015).
[Crossref]

Ho-Baillie, A.

Y. Jiang, M. A. Green, R. Sheng, and A. Ho-Baillie, “Room temperature optical properties of organic–inorganic lead halide perovskites,” Sol. Energy Mater. and Sol. Cells 137, 253–257 (2015).
[Crossref]

Hong, Z.

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

Hozuki, N.

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

Huang, C.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
[Crossref] [PubMed]

Huang, Y.

H. Duan, X. Chen, Y. Huang, X. Zhou, L. Sun, and W. Lu, “Composition-dependent electronic properties, optical transitions, and anionic relaxations of cd 1− x zn x te alloys from first principles,” Phys. Review B 76, 035209 (2007).
[Crossref]

Hübner, A.

A. Hübner, A. G. Aberle, and R. Hezel, “Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency,” Appl. Phys. Lett. 70, 1008–1010 (1997).
[Crossref]

Jellison, G.

G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[Crossref]

Jia, H.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. of Appl. Phys. 108, 044505 (2010).
[Crossref]

Jiang, Y.

Y. Jiang, M. A. Green, R. Sheng, and A. Ho-Baillie, “Room temperature optical properties of organic–inorganic lead halide perovskites,” Sol. Energy Mater. and Sol. Cells 137, 253–257 (2015).
[Crossref]

Johnson, S.

S. Johnson, S. Sen, W. Konkel, and M. Kalisher, “Optical techniques for composition measurement of bulk and thin-film cd1− yznyte,” J. of Vacuum Science & Tech. B 9, 1897–1901 (1991).
[Crossref]

Jung, K.-Y.

H. Chung, K.-Y. Jung, and P. Bermel, “Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells,” Opt. Mat. Express 5, 2054–2068 (2015).
[Crossref]

J. Cho, S.-G. Ha, Y. B. Park, H. Kim, and K.-Y. Jung, “On the numerical stability of finite-difference time-domain for wave propagation in dispersive media using quadratic complex rational function,” Electromagnetics 34, 625–632 (2014).
[Crossref]

H. Chung, K.-Y. Jung, X. Tee, and P. Bermel, “Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function,” Opt. Express 22, A818–A832 (2014).
[Crossref] [PubMed]

S.-G. Ha, J. Cho, J. Choi, H. Kim, and K.-Y. Jung, “FDTD dispersive modeling of human tissues based on quadratic complex rational function,” IEEE Trans. Antennas Propag. 61, 996–999 (2013).
[Crossref]

Kalisher, M.

S. Johnson, S. Sen, W. Konkel, and M. Kalisher, “Optical techniques for composition measurement of bulk and thin-film cd1− yznyte,” J. of Vacuum Science & Tech. B 9, 1897–1901 (1991).
[Crossref]

Kanamori, Y.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

Kegelmann, L.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Kelly, T. L.

J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques,” ACS Nano 9, 1955–1963 (2015).
[Crossref] [PubMed]

Khan, A.

N. Chander, A. Khan, P. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta, and V. K. Komarala, “Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells,” Appl. Phys. Lett. 105, 033904 (2014).
[Crossref]

Khan, M. R.

R. Asadpour, R. V. Chavali, M. R. Khan, and M. A. Alam, “Bifacial si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (η t* 33%) solar cell,” Appl. Phys. Lett. 106, 243902 (2015).
[Crossref]

Kherani, N. P.

Kim, H.

J. Cho, S.-G. Ha, Y. B. Park, H. Kim, and K.-Y. Jung, “On the numerical stability of finite-difference time-domain for wave propagation in dispersive media using quadratic complex rational function,” Electromagnetics 34, 625–632 (2014).
[Crossref]

S.-G. Ha, J. Cho, J. Choi, H. Kim, and K.-Y. Jung, “FDTD dispersive modeling of human tissues based on quadratic complex rational function,” IEEE Trans. Antennas Propag. 61, 996–999 (2013).
[Crossref]

Kluth, O.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

Knipp, D.

Kodama, R.

M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
[Crossref]

Koh, J.

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
[Crossref]

Komarala, V. K.

N. Chander, A. Khan, P. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta, and V. K. Komarala, “Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells,” Appl. Phys. Lett. 105, 033904 (2014).
[Crossref]

Kondo, M.

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. of Appl. Phys. 108, 044505 (2010).
[Crossref]

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

Konkel, W.

S. Johnson, S. Sen, W. Konkel, and M. Kalisher, “Optical techniques for composition measurement of bulk and thin-film cd1− yznyte,” J. of Vacuum Science & Tech. B 9, 1897–1901 (1991).
[Crossref]

Korozlu, N.

N. Korozlu, K. Colakoglu, and E. Deligoz, “Structural, electronic, elastic and optical properties of cdxzn1− xte mixed crystals,” J. of Phys.: Condensed Matter 21, 175406 (2009).

Korte, L.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Koval, R.

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
[Crossref]

Kroll, M.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study,” physica status solidi (a) 205, 2777–2795 (2008).
[Crossref]

Lang, F.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Lederer, F.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study,” physica status solidi (a) 205, 2777–2795 (2008).
[Crossref]

Lee, B. G.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
[Crossref]

Lee, Y.

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
[Crossref]

Li, G.

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

Li, J.

A. Parikh, J. Li, J. Chen, S. Marsilac, and R. Collins, ”Optical analysis of II–VI alloys and structures for tandem PV,” in Proceedings of IEEE Conference on Photovoltaic Specialist (IEEE, 2008), pp. 1–5.

Liu, D.

J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques,” ACS Nano 9, 1955–1963 (2015).
[Crossref] [PubMed]

Liu, Y.

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

Lu, N.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
[Crossref] [PubMed]

Lu, W.

H. Duan, X. Chen, Y. Huang, X. Zhou, L. Sun, and W. Lu, “Composition-dependent electronic properties, optical transitions, and anionic relaxations of cd 1− x zn x te alloys from first principles,” Phys. Review B 76, 035209 (2007).
[Crossref]

Luo, S.

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

Madzharov, D.

Mallick, S.

M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
[Crossref]

Margetis, J.

M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
[Crossref]

Marsilac, S.

A. Parikh, J. Li, J. Chen, S. Marsilac, and R. Collins, ”Optical analysis of II–VI alloys and structures for tandem PV,” in Proceedings of IEEE Conference on Photovoltaic Specialist (IEEE, 2008), pp. 1–5.

Marstein, E. S.

Mews, M.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Milenkovic, N.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
[Crossref]

Milne, A. M.

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55, 1363–1365 (1989).
[Crossref]

Modine, F.

G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[Crossref]

Müllerova, L.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

Munday, J. N.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201 (2010).
[Crossref] [PubMed]

Nazeeruddin, M.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Nof, S. Y.

S. Y. Nof, A. M. Weiner, and G. J. Cheng, Laser and Photonic Systems: Design and Integration (CRC Press, 2014).

Orfanidis, S. J.

S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2002).

Owens, J. M.

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids: Index, vol. 3 (Access Online via Elsevier, 1998).

Parikh, A.

A. Parikh, J. Li, J. Chen, S. Marsilac, and R. Collins, ”Optical analysis of II–VI alloys and structures for tandem PV,” in Proceedings of IEEE Conference on Photovoltaic Specialist (IEEE, 2008), pp. 1–5.

Park, Y. B.

J. Cho, S.-G. Ha, Y. B. Park, H. Kim, and K.-Y. Jung, “On the numerical stability of finite-difference time-domain for wave propagation in dispersive media using quadratic complex rational function,” Electromagnetics 34, 625–632 (2014).
[Crossref]

Pearce, J.

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
[Crossref]

Pertsch, T.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study,” physica status solidi (a) 205, 2777–2795 (2008).
[Crossref]

Poruba, A.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

Qi, D.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
[Crossref] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Rappich, J.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Rech, B.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Rockstuhl, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study,” physica status solidi (a) 205, 2777–2795 (2008).
[Crossref]

Sadao, A.

A. Sadao and K. Toshifumi, “Optical constants of Zn1−xCdxTe ternary alloys: Experiment and modeling,” Jpn. J. Appl. Phys 32, 3496–3501 (1993).
[Crossref]

Sai, H.

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. of Appl. Phys. 108, 044505 (2010).
[Crossref]

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

Saito, K.

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

Saliba, M.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Santbergen, R.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

Sato, K.

K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73, 926–931 (1993).
[Crossref]

Schlatmann, R.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Sen, S.

S. Johnson, S. Sen, W. Konkel, and M. Kalisher, “Optical techniques for composition measurement of bulk and thin-film cd1− yznyte,” J. of Vacuum Science & Tech. B 9, 1897–1901 (1991).
[Crossref]

Sheng, R.

Y. Jiang, M. A. Green, R. Sheng, and A. Ho-Baillie, “Room temperature optical properties of organic–inorganic lead halide perovskites,” Sol. Energy Mater. and Sol. Cells 137, 253–257 (2015).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Siempelkamp, B. D.

J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques,” ACS Nano 9, 1955–1963 (2015).
[Crossref] [PubMed]

Sites, J.

M. Gloeckler, A. Fahrenbruch, and J. Sites, ”Numerical modeling of CIGS and CdTe solar cells: setting the baseline,” in Proceedings of IEEE Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 491–494.

Sivananthan, S.

J. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[Crossref]

D. Xu, T. Biegala, M. Carmody, J. W. Garland, C. Grein, and S. Sivananthan, “Proposed monolithic triple-junction solar cell structures with the potential for ultrahigh efficiencies using II–VI alloys and silicon substrates,” Appl. Phys. Lett. 96, 073508 (2010).
[Crossref]

M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
[Crossref]

Sivec, L.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Smets, A. H.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

Song, T.-b.

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

Springer, J.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

Staebler, D.

D. Staebler and C. Wronski, “Reversible conductivity changes in discharge-produced amorphous si,” Appl. Phys. Lett. 31, 292–294 (1977).
[Crossref]

Steier, L.

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

Sudbø, A.

Sun, L.

H. Duan, X. Chen, Y. Huang, X. Zhou, L. Sun, and W. Lu, “Composition-dependent electronic properties, optical transitions, and anionic relaxations of cd 1− x zn x te alloys from first principles,” Phys. Review B 76, 035209 (2007).
[Crossref]

Swami, S. K.

N. Chander, A. Khan, P. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta, and V. K. Komarala, “Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells,” Appl. Phys. Lett. 105, 033904 (2014).
[Crossref]

Tan, H.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

Tavlove, A.

A. Tavlove and S. C. Hagness, “Computational electrodynamics: the finite-difference time-domain method,” Artech House, Norwood, MA2062 (1995).

Tee, X.

Thouti, E.

N. Chander, A. Khan, P. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta, and V. K. Komarala, “Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells,” Appl. Phys. Lett. 105, 033904 (2014).
[Crossref]

Toshifumi, K.

A. Sadao and K. Toshifumi, “Optical constants of Zn1−xCdxTe ternary alloys: Experiment and modeling,” Jpn. J. Appl. Phys 32, 3496–3501 (1993).
[Crossref]

Vanecek, M.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

Wang, A.

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55, 1363–1365 (1989).
[Crossref]

Wang, X.

C. Zhou, H. Chung, X. Wang, and P. Bermel, “Design of CdZnTe and crystalline silicon tandem junction solar cells,” IEEE J. Photovolt. 6, 301–308 (2016).
[Crossref]

Wang, Z.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
[Crossref] [PubMed]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23, 1–9 (2015).
[Crossref]

Weiner, A. M.

S. Y. Nof, A. M. Weiner, and G. J. Cheng, Laser and Photonic Systems: Design and Integration (CRC Press, 2014).

Wronski, C.

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
[Crossref]

D. Staebler and C. Wronski, “Reversible conductivity changes in discharge-produced amorphous si,” Appl. Phys. Lett. 31, 292–294 (1977).
[Crossref]

Xu, D.

D. Xu, T. Biegala, M. Carmody, J. W. Garland, C. Grein, and S. Sivananthan, “Proposed monolithic triple-junction solar cell structures with the potential for ultrahigh efficiencies using II–VI alloys and silicon substrates,” Appl. Phys. Lett. 96, 073508 (2010).
[Crossref]

M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
[Crossref]

Xu, H.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
[Crossref] [PubMed]

Xu, M.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
[Crossref] [PubMed]

Yan, B.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Yang, B.

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
[Crossref] [PubMed]

Yang, J.

J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques,” ACS Nano 9, 1955–1963 (2015).
[Crossref] [PubMed]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Yang, Y.

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

You, J.

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

Yue, G.

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

Zeman, M.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

Zhao, J.

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55, 1363–1365 (1989).
[Crossref]

Zhou, C.

C. Zhou, H. Chung, X. Wang, and P. Bermel, “Design of CdZnTe and crystalline silicon tandem junction solar cells,” IEEE J. Photovolt. 6, 301–308 (2016).
[Crossref]

Zhou, H.

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

Zhou, X.

H. Duan, X. Chen, Y. Huang, X. Zhou, L. Sun, and W. Lu, “Composition-dependent electronic properties, optical transitions, and anionic relaxations of cd 1− x zn x te alloys from first principles,” Phys. Review B 76, 035209 (2007).
[Crossref]

Zukotynski, S.

ACS Nano (1)

J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques,” ACS Nano 9, 1955–1963 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (12)

M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. Garland, and S. Sivananthan, “Single-crystal II–VI on si single-junction and tandem solar cells,” Appl. Phys. Lett. 96, 153502 (2010).
[Crossref]

D. Xu, T. Biegala, M. Carmody, J. W. Garland, C. Grein, and S. Sivananthan, “Proposed monolithic triple-junction solar cell structures with the potential for ultrahigh efficiencies using II–VI alloys and silicon substrates,” Appl. Phys. Lett. 96, 073508 (2010).
[Crossref]

D. Staebler and C. Wronski, “Reversible conductivity changes in discharge-produced amorphous si,” Appl. Phys. Lett. 31, 292–294 (1977).
[Crossref]

N. Chander, A. Khan, P. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta, and V. K. Komarala, “Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells,” Appl. Phys. Lett. 105, 033904 (2014).
[Crossref]

A. Hübner, A. G. Aberle, and R. Hezel, “Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency,” Appl. Phys. Lett. 70, 1008–1010 (1997).
[Crossref]

R. Asadpour, R. V. Chavali, M. R. Khan, and M. A. Alam, “Bifacial si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (η t* 33%) solar cell,” Appl. Phys. Lett. 106, 243902 (2015).
[Crossref]

G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[Crossref]

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55, 1363–1365 (1989).
[Crossref]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[Crossref]

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008).
[Crossref]

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013).
[Crossref]

Electromagnetics (1)

J. Cho, S.-G. Ha, Y. B. Park, H. Kim, and K.-Y. Jung, “On the numerical stability of finite-difference time-domain for wave propagation in dispersive media using quadratic complex rational function,” Electromagnetics 34, 625–632 (2014).
[Crossref]

IEEE J. Photovolt. (1)

C. Zhou, H. Chung, X. Wang, and P. Bermel, “Design of CdZnTe and crystalline silicon tandem junction solar cells,” IEEE J. Photovolt. 6, 301–308 (2016).
[Crossref]

IEEE Trans. Antennas Propag. (1)

S.-G. Ha, J. Cho, J. Choi, H. Kim, and K.-Y. Jung, “FDTD dispersive modeling of human tissues based on quadratic complex rational function,” IEEE Trans. Antennas Propag. 61, 996–999 (2013).
[Crossref]

J, of Phys. D: Appl. Phys. (1)

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J, of Phys. D: Appl. Phys. 13, 839 (1980).
[Crossref]

J. Appl. Phys. (4)

K. Sato and S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73, 926–931 (1993).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

J. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[Crossref]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[Crossref]

J. of Appl. Phys. (1)

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. of Appl. Phys. 108, 044505 (2010).
[Crossref]

J. of Phys.: Condensed Matter (1)

N. Korozlu, K. Colakoglu, and E. Deligoz, “Structural, electronic, elastic and optical properties of cdxzn1− xte mixed crystals,” J. of Phys.: Condensed Matter 21, 175406 (2009).

J. of Vacuum Science & Tech. B (1)

S. Johnson, S. Sen, W. Konkel, and M. Kalisher, “Optical techniques for composition measurement of bulk and thin-film cd1− yznyte,” J. of Vacuum Science & Tech. B 9, 1897–1901 (1991).
[Crossref]

Jpn. J. Appl. Phys (1)

A. Sadao and K. Toshifumi, “Optical constants of Zn1−xCdxTe ternary alloys: Experiment and modeling,” Jpn. J. Appl. Phys 32, 3496–3501 (1993).
[Crossref]

Langmuir (1)

D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, “Simple approach to wafer-scale self-cleaning antireflective silicon surfaces,” Langmuir 25, 7769–7772 (2009).
[Crossref] [PubMed]

Nano Lett. (2)

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref] [PubMed]

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195–2201 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Mat. Express (1)

H. Chung, K.-Y. Jung, and P. Bermel, “Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells,” Opt. Mat. Express 5, 2054–2068 (2015).
[Crossref]

Phys. Review B (1)

H. Duan, X. Chen, Y. Huang, X. Zhou, L. Sun, and W. Lu, “Composition-dependent electronic properties, optical transitions, and anionic relaxations of cd 1− x zn x te alloys from first principles,” Phys. Review B 76, 035209 (2007).
[Crossref]

physica status solidi (a) (1)

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study,” physica status solidi (a) 205, 2777–2795 (2008).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt. Res. Appl. 23, 1–9 (2015).
[Crossref]

Science (1)

H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref] [PubMed]

Sol. Energy Mater. and Sol. Cells (2)

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. and Sol. Cells 142, 60–65 (2015).
[Crossref]

Y. Jiang, M. A. Green, R. Sheng, and A. Ho-Baillie, “Room temperature optical properties of organic–inorganic lead halide perovskites,” Sol. Energy Mater. and Sol. Cells 137, 253–257 (2015).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

R. Collins, A. Ferlauto, G. Ferreira, C. Chen, J. Koh, R. Koval, Y. Lee, J. Pearce, and C. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).
[Crossref]

The European Phys. J. B-Condensed Matter and Complex Systems (1)

O. Castaing, J. Benhlal, and R. Granger, “An attempt to model the dielectric function in II–VI ternary compounds and,” The European Phys. J. B-Condensed Matter and Complex Systems 7, 563–572 (1999).
[Crossref]

Other (7)

A. Parikh, J. Li, J. Chen, S. Marsilac, and R. Collins, ”Optical analysis of II–VI alloys and structures for tandem PV,” in Proceedings of IEEE Conference on Photovoltaic Specialist (IEEE, 2008), pp. 1–5.

E. D. Palik, Handbook of Optical Constants of Solids: Index, vol. 3 (Access Online via Elsevier, 1998).

S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2002).

S. Y. Nof, A. M. Weiner, and G. J. Cheng, Laser and Photonic Systems: Design and Integration (CRC Press, 2014).

S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science (2016).
[Crossref]

M. Gloeckler, A. Fahrenbruch, and J. Sites, ”Numerical modeling of CIGS and CdTe solar cells: setting the baseline,” in Proceedings of IEEE Conference on Photovoltaic Energy Conversion (IEEE, 2003), pp. 491–494.

A. Tavlove and S. C. Hagness, “Computational electrodynamics: the finite-difference time-domain method,” Artech House, Norwood, MA2062 (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Cross section of a CZT/Si tandem solar cell. It has a front periodic pyramidal texturing, conformally applied to ITO, CZT and c-Si. At the back reflector, an asymmetric grating is applied to enhance light absorption. The electromagnetic flux monitors were placed to calculate the top and bottom junction absorption.

Fig. 3
Fig. 3

Absorption profile in the 1000-nm-thick dielectric slab of CdTe alloys. The circular symbols indicate absorption spectrum obtained analytically [29], using measurements of the dielectric function, while the lines represent absorption calculated by FDTD. The excellent match between the two over most of the spectrum indicates the quality of the dispersion model.

Fig. 4
Fig. 4

(a) Average Jph for various number of pyramids in thin-film c-Si cells. Jph for 45.0° pyramids increases for up to two pyramids and then it plateaus while Jph for 54.7° plateaus from the single pyramid case. Standard errors are calculated for 5 simulation trials. The inset figure shows a cross-section of the simulation geometry (b) Absorption spectra for four representative cases.

Fig. 5
Fig. 5

(a) Single pyramidal surface. (b) The optimum multiple pyramids case. (c) Spatial Fourier transforms of a single pyramid. It shows a broader mode with a smaller center peak. (d) Fourier transform of optimized multiple pyramids. It has the strongest center mode with well-distributed local modes.

Fig. 6
Fig. 6

(a) Contour plot showing Jph of c-Si versus heights of two pyramids (h1, h2) for front-surface texturing of c-Si within the computational cell. Due to the symmetric design, the optimal performance (Jph = 20.62 mA/cm2) is predicted when h1 = 500 nm and h2 = 400 nm or vice versa. Filtering effect by CZT layer lowers c-Si Jph from the single junction Jph. (b) Contour plot showing Jph of CZT versus heights of two pyramids (h1, h2) (c) 2-D slice of the electric field intensity squared at λ = 1000 nm for the optimum cell.

Fig. 7
Fig. 7

(a) 3-D FDTD simulation results for various grating asymmetric angles. The maximum angle is restricted to 45° to satisfy an aspect ratio of 1. For higher wavelengths (800 nm–1100 nm), strong absorption modes are observed at 850 nm, 930 nm, 1060 nm. These three modes overlap strongly near the 20° grating angle, resulting in the highest Jph. (b) Jph for various grating angles. It linearly increases with increasing angle and it plateaus up to 25°, and then decreases. The inset shows a 3-D asymmetric grating structure.

Fig. 8
Fig. 8

Refractive index dependency of asymmetric grating. Jph was obtained in a 3-D FDTD simulation with different refractive index of the asymmetric gratings. (a) Absorption spectrum for varying refractive index. (b) Jph for various refractive index. Jph plateaus up to n = 1.5, and then decrease linearly. The inset shows a simulation structure.

Fig. 9
Fig. 9

(a) Contour plot showing Jph of c-Si versus grating thickness (t) and periodicity (p) values (in nm) within the computational cell. Note that the pre-optimized front texturing obtained from Fig. 6 is applied in this optimization. The optimum point (Jph = 23.47 mA/cm2) is predicted to occur when grating thickness (t) = 200 nm and periodicity (p) = 800 nm. The inset shows the surface of the asymmetric gratings. (b) Contour plot showing Jph of CZT versus grating thickness (t) and periodicity (p) values (in nm). (c) 2-D slice of Electric field intensity at λ = 1000 nm in the optimum cell. Compared to Fig. 6(b), the dual-side light trapping cell has strongly guided mode.

Fig. 10
Fig. 10

(a) Contour plot showing Jph of c-Si versus height of pyramid and CZT thickness. (b) Contour plot showing Jph of Cd0.6Zn0.4Te versus height of pyramid and Cd0.6Zn0.4Te thickness. (c) The matched current density. The dashed line indicates the current-matching condition.

Fig. 11
Fig. 11

(a) Contour plot showing the matched Jph of the tandem cell versus both thickness of CdxZn1−xTe layer and proportion of Cadmium (x). The maximum Jph is 18.37 mA/cm2 when x = 0.58 and CZT thickness = 400 nm. (b) Partial absorption for the optimum point found in (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J ph = 300 nm 1100 nm d λ [ e λ h c d I d λ A ( λ ) ] ,

Metrics