Abstract

Optical fibers with sub-wavelength cores are promising systems for efficient nonlinear light generation. Here we reveal that the single-mode criterion represents a convenient design tool to optimize the performance of nonlinear fibers circumventing intense numerical calculations. We introduce a quasi-analytic expression for the nonlinear coefficient allowing us to investigate its behavior over a large parameter range. The study is independent of the actual value of the material nonlinearity and shows the fundamental dependencies of the nonlinear coefficient on wavelength, refractive index and core diameter, elucidated by detailed case studies of fused silica and chalcogenide tapers and hybrid fibers.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

Corrections

11 July 2016: Corrections were made to the body text.


OSA Recommended Articles
Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St.J. Russell
Opt. Express 21(9) 10969-10977 (2013)

Performance limits of single nano-object detection with optical fiber tapers

Mario Chemnitz, Matthias Zeisberger, and Markus A. Schmidt
J. Opt. Soc. Am. B 34(9) 1833-1841 (2017)

Highly nonlinear silica suspended core fibers

Liang Dong, Brian K. Thomas, and Libin Fu
Opt. Express 16(21) 16423-16430 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9, 435–451 (2015).
    [Crossref]
  2. A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
    [Crossref]
  3. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [Crossref]
  4. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
    [Crossref]
  5. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  6. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  7. F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. S. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105, 093904 (2010).
    [Crossref] [PubMed]
  8. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
    [Crossref] [PubMed]
  9. N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. Russell, “Mid-infrared supercontinuum generation in As2S3-silica nano-spike step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
    [Crossref] [PubMed]
  10. K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39, 2056–2059 (2014).
    [Crossref] [PubMed]
  11. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
    [Crossref] [PubMed]
  12. E. Lepine, Z. Yang, Y. Gueguen, J. Troles, X.-H. Zhang, B. Bureau, C. Boussard-Pledel, J.-C. Sangleboeuf, and P. Lucas, “Optical microfabrication of tapers in low-loss chalcogenide fibers,” J. Opt. Soc. Am. B 27, 966–971 (2010).
    [Crossref]
  13. M. Artiglia and G. Coppa, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
    [Crossref]
  14. K. Petermann, “Microbending loss in monomode fibres,” Electron. Lett. 12, 107–109 (1976).
    [Crossref]
  15. P. S. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
  16. G. P. Agrawal, Nonlinear Fiber Optics, 5th Ed. (Academic Press. 2013).
  17. M. Foster, K. Moll, and A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880–2887 (2004).
    [Crossref] [PubMed]
  18. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  19. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
    [Crossref] [PubMed]
  20. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [Crossref]
  21. I. Kubat, C. Agger, P. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 µ m in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
    [Crossref]
  22. S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. a. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106, 201908 (2015).
    [Crossref]
  23. C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Silver metaphosphate glass wires inside silica fibersa new approach for hybrid optical fibers,” Opt. Express 24, 3258–3267 (2016).
    [Crossref] [PubMed]
  24. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17, 21608–21614 (2009).
    [Crossref] [PubMed]
  25. S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
    [Crossref] [PubMed]
  26. S. P. Singh, V. Mishra, P. K. Datta, and S. K. Varshney, “Dispersion Engineered Capillary-Assisted Chalcogenide Optical Fiber Based Mid-IR Parametric Sources,” J. Lightwave Technol. 33, 55–61 (2015).
    [Crossref]
  27. S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31, 450–457 (2014).
    [Crossref]
  28. L. Shen, N. Healy, L. Xu, H. Y. Cheng, T. D. Day, J. H. V. Price, J. V. Badding, and A. C. Peacock, “Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared,” Opt. Lett. 39, 5721–5724 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (4)

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. a. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106, 201908 (2015).
[Crossref]

S. P. Singh, V. Mishra, P. K. Datta, and S. K. Varshney, “Dispersion Engineered Capillary-Assisted Chalcogenide Optical Fiber Based Mid-IR Parametric Sources,” J. Lightwave Technol. 33, 55–61 (2015).
[Crossref]

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9, 435–451 (2015).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

2014 (5)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39, 2056–2059 (2014).
[Crossref] [PubMed]

S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31, 450–457 (2014).
[Crossref]

L. Shen, N. Healy, L. Xu, H. Y. Cheng, T. D. Day, J. H. V. Price, J. V. Badding, and A. C. Peacock, “Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared,” Opt. Lett. 39, 5721–5724 (2014).
[Crossref] [PubMed]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
[Crossref] [PubMed]

2013 (4)

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. Russell, “Mid-infrared supercontinuum generation in As2S3-silica nano-spike step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
[Crossref] [PubMed]

I. Kubat, C. Agger, P. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 µ m in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
[Crossref]

2011 (1)

2010 (2)

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. S. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105, 093904 (2010).
[Crossref] [PubMed]

E. Lepine, Z. Yang, Y. Gueguen, J. Troles, X.-H. Zhang, B. Bureau, C. Boussard-Pledel, J.-C. Sangleboeuf, and P. Lucas, “Optical microfabrication of tapers in low-loss chalcogenide fibers,” J. Opt. Soc. Am. B 27, 966–971 (2010).
[Crossref]

2009 (2)

2008 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2004 (1)

2003 (1)

P. S. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).

2000 (1)

1989 (1)

M. Artiglia and G. Coppa, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
[Crossref]

1976 (1)

K. Petermann, “Microbending loss in monomode fibres,” Electron. Lett. 12, 107–109 (1976).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Abgrall, M.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Abouraddy, A. F.

Afshar V., S.

Agger, C.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th Ed. (Academic Press. 2013).

Alnis, J.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Altschul, B.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Artiglia, M.

M. Artiglia and G. Coppa, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
[Crossref]

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Badding, J. V.

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. Agger, P. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 µ m in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
[Crossref]

Baumgartl, M.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9, 435–451 (2015).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Beyer, A.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Biancalana, F.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. S. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105, 093904 (2010).
[Crossref] [PubMed]

Birks, T. A.

Boussard-Pledel, C.

Bureau, B.

Caillaud, C.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. a. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106, 201908 (2015).
[Crossref]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
[Crossref] [PubMed]

Chang, W.

Chaudhari, C.

Cheng, H. Y.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Coppa, G.

M. Artiglia and G. Coppa, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).
[Crossref]

Coulombier, Q.

Datta, P. K.

Day, T. D.

Delfyett, P. J.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Eggleton, B. J.

Ensley, T. R.

Fermann, M. E.

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Foster, M.

Fu, L.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gaeta, A.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Gottschall, T.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9, 435–451 (2015).
[Crossref]

Granzow, N.

Grosche, G.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Gueguen, Y.

Hänsch, T. W.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Hartl, I.

Healy, N.

Holzwarth, R.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Hu, H.

Jain, C.

C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Silver metaphosphate glass wires inside silica fibersa new approach for hybrid optical fibers,” Opt. Express 24, 3258–3267 (2016).
[Crossref] [PubMed]

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. a. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106, 201908 (2015).
[Crossref]

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Jauregui, C.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9, 435–451 (2015).
[Crossref]

Jiang, X.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Kito, C.

Kobelke, J.

C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Silver metaphosphate glass wires inside silica fibersa new approach for hybrid optical fibers,” Opt. Express 24, 3258–3267 (2016).
[Crossref] [PubMed]

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. a. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106, 201908 (2015).
[Crossref]

Kolachevsky, N.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. Agger, P. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 µ m in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013).
[Crossref]

Lamont, M. R. E.

Laurent, P.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Lee, K. F.

Legero, T.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Leindecker, N.

Lepine, E.

Liao, M.

Limpert, J.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9, 435–451 (2015).
[Crossref]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Lucas, P.

Mägi, E. C.

Marquez, M. P.

Matsumoto, M.

Matveev, A.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Meyer, T.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9, 435–451 (2015).
[Crossref]

Mishra, V.

Misumi, T.

Moll, K.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Monro, T. M.

Moselund, P.

Ohishi, Y.

Parthey, C. G.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Peacock, A. C.

Petermann, K.

K. Petermann, “Microbending loss in monomode fibres,” Electron. Lett. 12, 107–109 (1976).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Popp, J.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9, 435–451 (2015).
[Crossref]

Predehl, K.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Price, J. H. V.

Qin, G.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Rodrigues, B. P.

Roelens, M. A. F.

Rovera, D.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Russell, P. S.

Russell, P. S. J.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39, 2056–2059 (2014).
[Crossref] [PubMed]

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. S. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105, 093904 (2010).
[Crossref] [PubMed]

P. S. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[Crossref]

Salomon, C.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Sangleboeuf, J.-C.

Schmidt, M. A.

C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Silver metaphosphate glass wires inside silica fibersa new approach for hybrid optical fibers,” Opt. Express 24, 3258–3267 (2016).
[Crossref] [PubMed]

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. a. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106, 201908 (2015).
[Crossref]

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39, 2056–2059 (2014).
[Crossref] [PubMed]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
[Crossref] [PubMed]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. Russell, “Mid-infrared supercontinuum generation in As2S3-silica nano-spike step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
[Crossref] [PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
[Crossref] [PubMed]

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. S. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105, 093904 (2010).
[Crossref] [PubMed]

Schmitt, M.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9, 435–451 (2015).
[Crossref]

Schnatz, H.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Schunemann, P. G.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Shabahang, S.

Shen, L.

Singh, S. P.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Stark, S.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. S. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105, 093904 (2010).
[Crossref] [PubMed]

Stark, S. P.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Suzuki, T.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tani, F.

Tao, G.

Terra, O.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Toupin, P.

Tran, T. X.

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. S. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105, 093904 (2010).
[Crossref] [PubMed]

Travers, J. C.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
[Crossref] [PubMed]

Troles, J.

Tünnermann, A.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9, 435–451 (2015).
[Crossref]

Tverjanovich, A. S.

Udem, T.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Uebel, P.

Varshney, S. K.

Vodopyanov, K. L.

Wadsworth, W. J.

Wang, L.

Wang, S.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. a. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106, 201908 (2015).
[Crossref]

Weyers, S.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Wieduwilt, T.

Wilken, T.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Wondraczek, K.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. a. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106, 201908 (2015).
[Crossref]

Wondraczek, L.

Wong, G. K. L.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Xie, S.

Xu, L.

Yan, X.

Yang, Z.

Yeom, D.-I.

Zhang, X.-H.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Appl. Phys. Lett. (1)

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. a. Schmidt, “Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106, 201908 (2015).
[Crossref]

Electron. Lett. (1)

K. Petermann, “Microbending loss in monomode fibres,” Electron. Lett. 12, 107–109 (1976).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (3)

Laser Photonics Rev. (1)

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9, 435–451 (2015).
[Crossref]

Nat. Photonics (3)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint’ region from 2µ m to 13µ m using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. S. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett. 105, 093904 (2010).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (1)

P. S. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 5th Ed. (Academic Press. 2013).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cross sections and schematics of two nonlinear fiber structures discussed here: fiber taper in air and high RI-contrast step-index fiber. (b) Distributions of the Poynting vector (λ0 = 1.55 µm) of a SiO2 taper structure for four different core diameters (the number on the top of the images indicate the core diameter). The white circle indicates the core section.
Fig. 2
Fig. 2 Core contribution factor A (Foster definition, Eq. (5) and (7)) of the fundamental mode HE11 as function of core diameter and core RI in case of a fiber taper in air (ncl = 1) for wavelengths (a) 800 nm and (b) 1550 nm. SMC: single-mode criterion (V = 2.405); A max n c o : maximal core contribution at a fixed value of n (Foster: A max n c o , Agrawal: A max A , n c o , Afshar: A max V , n c o ); MFD min n c o : minimal mode field diameter at fixed nco (from Eq. (2)). The white horizontal lines indicate the material RIs of four selected core glasses: fused silica (SiO2), lead-based SF6, tellurite (TeO2) and chalcogenide glass (As2S3).
Fig. 3
Fig. 3 Nonlinear coefficient (Foster definition, Eq. (5)) of a fiber taper in air as function of wavelength and core diameter for two representative glasses: (a) silica (SiO2), (b) chalcogenide (As2S3). The color bar on the top refers to the decadic logarithms of γ. ZDW: zero dispersion wavelength, AD, ND: anomalous and normal dispersion, SMC: single mode criterion.
Fig. 4
Fig. 4 (a) Core contribution factor A as function of core diameter and core-cladding RI difference Δn in case of a step-index fiber with fused silica cladding (ncl = 1.444 at λ0 = 1.55 µm). SMC: single mode criterion; A max Δ n : maximal core contribution at a fixed value of Δn (Foster: A max n c o , Agrawal: A max A , n c o , Afshar: A max V , n c o ); MFD min Δ n : minimum mode field diameter at fixed Δn; white patterned area: domain in which the cladding contribution dominates (B > A). The horizontal gray lines indicate the material RIs of three selected core glasses: lead-based SF6, tellurite (TeO2) and chalcogenide glass (As2S3). (b) Nonlinear coefficient of a hybrid step-index fiber (As2S3 core, SiO2 cladding) as a function of wavelength and core diameter. ZDW: zero dispersion wavelength; γ max λ : maximum nonlinear coefficient per fixed wavelength. The colorbar refers to values based on the Foster definition (Eq. (5)).
Fig. 5
Fig. 5 Relation between core and cladding contribution A/B as function of the core diameter and the refractive index difference between core and cladding Δn = nconcl. This calculation was done for a fixed wavelength at 1.55 µm and fused silica as cladding material (ncl = 1.444). Every value below log A B = 5 is clipped to remain sufficient image contrast. SMC: single-mode criterion; white solid lines: isolines for log A B = ± 2 ; gray horizontal lines: refractive indices for three selected core materials: lead-based SF6, tellurite-based (TeO2), and chalcogenide glass (As2S3).

Tables (2)

Tables Icon

Table 1 Spatially dependent functions and constants

Tables Icon

Table 2 Spatially independent constants. Am - modal amplitudes, R - core radius, nco,cl -refractive core/cladding index, β - propagation constant

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

γ = k 0 n 2 / A eff
M F D 2 = 8 S z r 3 d r d φ S z r d r d φ
γ A = k 0 n 2 | e | 4 r d r d φ ( n 2 | e | 2 r d r d φ ) .
γ V = k 0 ε 0 3 μ 0 n 2 n 2 [ 2 | e | 4 + | e 2 | 2 ] r d r d φ | S z r d r d φ | 2
γ = k 0 n 2 S z 2 r d r d φ ( S z r d r d φ ) 2 = k 0 n 2 c o c o S z 2 r d r d φ + n 2 c l c l S z 2 r d r d φ ( S z r d r d φ ) 2
S z = C 1 G m 1 2 ( q ) + C 2 G m + 1 2 ( q ) + C 3 G m 1 ( q ) G m + 1 ( q ) cos ( 2 m φ )
γ = k 0 n 2 c o N c o + n 2 c l N c l ( D c o + D c l ) 2 = A n 2 c o + B n 2 c l = n 2 c o ( A + x B )
with A = k 0 N c o ( D c o + D c l ) 2 and B = k 0 N c l ( D c o + D c l ) 2
N = 2 π d r r [ C 1 2 G m 1 4 ( q ) + C 2 2 G m + 1 4 ( q ) + ( 1 2 C 3 2 + 2 C 1 C 2 ) G m 1 2 ( q ) G m + 1 2 ( q ) ] ,
D = 2 π d r r [ C 1 G m 1 2 ( q ) + C 2 G m + 1 2 ( q ) ] .
d opt = 2 R opt = 0.754 λ 0 ( n c o 2 n c l 2 ) 1 / 2 .
γ = A n 2 c o for log A B > 2
γ = B n 2 c l for log A B < 2 .
S z = C 1 G m 1 2 ( q ) + C 2 G m + 1 2 ( q ) + C 3 G m 1 ( q ) G m + 1 ( q ) cos ( 2 m φ ) .
γ F = k 0 n 2 S z 2 r d r d φ ( S z r d r d φ ) 2 = 2 π λ n 2 c o N c o + n 2 c l N c l ( D c o + D c l ) 2
with N = 0 2 π d φ d r r S z 2 ,
D = 0 2 π d φ d r r S z .
D = 2 π d r r ( C 1 G m 1 2 ( q ) + C 2 G m + 1 2 ( q ) )
= 2 π [ C 1 r 2 2 ( G m 1 2 ( q ) G m ( q ) G m 2 ( q ) ) ] + 2 π [ C 2 r 2 2 ( G m + 1 2 ( q ) G m ( q ) G m + 2 ( q ) ) ] .
D c o = π R 2 [ C 1 c o ( J m 1 2 ( U ) J m ( U ) J m 2 ( U ) ) + C 2 c o ( J m + 1 2 ( U ) J m ( U ) J m + 2 ( U ) ) ] ,
D c l = π R 2 [ C 1 c l ( K m 1 2 ( W ) K m ( W ) K m 2 ( W ) ) C 2 c l ( K m + 1 2 ( W ) K m ( W ) K m + 2 ( W ) ) ] .
S z 2 = C 1 2 G m 1 4 + C 2 2 G m + 1 4 + ( C 3 2 cos 2 ( 2 m φ ) + 2 C 1 C 2 ) G m 1 2 G m + 1 2 + ( 2 C 2 C 3 G m + 1 3 G m 1 + 2 C 1 C 2 G m 1 3 G m + 1 ) cos ( 2 m φ ) .
N = 2 π d r r [ C 1 2 G m 1 4 ( q ) + C 2 2 G m + 1 4 ( q ) + ( 1 2 C 3 2 + 2 C 1 C 2 ) G m 1 2 ( q ) G m + 1 2 ( q ) ] .
γ A = k 0 n 2 | e | 4 r d r d φ ( | e | 2 r d r d φ ) 2 = 2 π λ 0 n 2 c o N A , c o + n 2 A , c l N c l ( D A , c o + D A , c l ) 2
with N A = 0 2 π d φ d r r | e | 4 ,
D A = 0 2 π d φ d r r | e | 2 .
| e | 2 = | e r ( r ) | 2 { cos 2 ( m φ ) sin 2 ( m φ ) + | e φ ( r ) | 2 { sin 2 ( m φ ) for m even cos 2 ( m φ ) for m odd
| e | 4 = 2 | e r ( r ) | 2 | e φ ( r ) | 2 sin 2 ( m φ ) cos 2 ( m φ ) + | e r ( r ) | 4 { cos 4 ( m φ ) sin 4 ( m φ ) + | e φ ( r ) | 4 { sin 4 ( m φ ) for m even cos 4 ( m φ ) for m odd .
D A = 2 π d r r ( C 1 G m 1 2 ( q ) + C 2 G m + 1 2 ( q ) )
= π [ C 1 r 2 ( G m 1 2 ( q ) G m ( q ) G m 2 ( q ) ) ] + π [ C 2 r 2 ( G m + 1 2 ( q ) G m ( q ) G m + 2 ( q ) ) ] .
N A = 2 π d r r [ C 1 2 G m 1 4 ( q ) + C 2 2 G m + 1 4 ( q ) + 4 C 1 C 2 G m 1 2 ( q ) G m + 1 2 ( q ) ] .
γ V = k 0 ε 0 3 μ 0 n 2 n 2 [ 2 | e | 4 + | e 2 | 2 ] r d r d φ | S z r d r d φ | 2 = 2 π ε 0 2 μ 0 λ n c o 2 n 2 c o N V , c o + n c l 2 n 2 c l N V , c l ( D c o + D c l ) 2
with N V = 2 π d r r [ 2 | e | 4 + | e 2 | 2 ] ,
2 | e | 4 + | e 2 | 2 + 3 | e | 4 + 3 | e z | 4 { cos 4 ( m φ ) sin 4 ( m φ ) + 2 | e z | 2 e φ 2 sin 2 ( m φ ) cos 2 ( m φ ) + 2 | e z | 2 e r 2 { cos 4 ( m φ ) for m even sin 4 ( m φ ) for m odd
N V = 3 N A + 2 π d r r [ 9 8 C 3 2 G m 4 ( q ) + C 3 G m 2 ( q ) ( C 1 G m + 1 2 ( q ) + C 2 G m 1 2 ( q ) ± C 1 C 2 G m + 1 ( q ) G m 1 ( q ) ) ]
N V = 3 N A + 2 π d r r [ 3 C 3 2 G 0 4 ( q ) + 2 C 1 C 3 G 0 2 ( q ) G 1 2 ( q ) ] .
M F D 2 = 8 N ¯ c o + N ¯ c l D c o + D c l with N ¯ = 0 2 π d φ d r r 3 S z ,
N ¯ = 2 π d r r 3 ( C 1 G m 1 2 ( q ) + C 2 G m + 1 2 ( q ) ) .
Z m ( x ) = d x x 3 G m ( x ) 2 = 1 3 x 2 ( ± m ( m 1 ) + 1 3 x 2 ) G m ( x ) 2 + 1 3 x 2 ( m 2 1 ± 1 3 x 2 ) G m + 1 ( x ) 2 + 1 3 x ( 2 m ( 1 m 2 ) ± ( 1 m ) x 2 ) G m ( x ) G m + 1 ( x ) ,
N ¯ c o = 2 π R 4 U 4 ( C 1 [ Z m 1 c o ( U ) Z m 1 c o ( 0 ) ] + C 2 [ Z m + 1 c o ( U ) Z m + 1 c o ( 0 ) ] ) ,
N ¯ c l = 2 π R 4 W 4 ( C 1 Z m 1 c l ( W ) + C 2 Z m + 1 c l ( W ) ) ,

Metrics