Abstract

We propose 1D periodic, highly doped InAsSb gratings on GaSb substrates as biosensing platforms applicable for surface plasmon resonance and surface enhanced infrared absorption spectroscopies. Based on finite-difference time-domain simulations, the electric field enhancement and the sensitivity on refractive index variations are investigated for different grating geometries. The proposed, optimized system achieves sensitivities of 900 nm RIU−1. A clear red shift of the plasmon resonance as well as the enhancement of an absorption line are presented for 2 nm thin adlayers in simulations. We experimentally confirm the high sensitivity of the InAsSb grating by measurements of the wavelength shift induced by a 200 nm thin polymethylmethacrylate layer and demonstrate an enhancement of vibrational signals. A comparison to a gold grating with equivalent optical properties in the mid-infrared is performed. Our simulations and experimental results underline the interest in the alternative plasmonic material InAsSb for highly sensitive biosensors for the mid-infrared spectral range.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas

M. J. Milla, F. Barho, F. González-Posada, L. Cerutti, B. Charlot, M. Bomers, F. Neubrech, E. Tournie, and T. Taliercio
Opt. Express 25(22) 26651-26661 (2017)

Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix

Thierry Taliercio, Vilianne NTsame Guilengui, Laurent Cerutti, Jean-Baptiste Rodriguez, Franziska Barho, Maria-José Milla Rodrigo, Fernando Gonzalez-Posada, Eric Tournié, Michael Niehle, and Achim Trampert
Opt. Express 23(23) 29423-29433 (2015)

Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range

William DiPippo, Bong Jae Lee, and Keunhan Park
Opt. Express 18(18) 19396-19406 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  2. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  4. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
    [Crossref] [PubMed]
  5. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(6), 409–411 (2012).
    [Crossref]
  6. J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7676, 767306 (2010).
    [Crossref]
  7. C. M. Pradier and Y. J. Chabal, Biointerface Characterization by Advanced IR Spectroscopy (Elsevier, 2011).
  8. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
    [Crossref] [PubMed]
  9. E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
    [Crossref]
  10. I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, and E. T. Al Pryce, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
    [Crossref] [PubMed]
  11. J. Xu, L. Zhang, and H. Gong, “Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms,” Small 7(3), 371–376 (2011).
    [Crossref] [PubMed]
  12. M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, A. D’Orazio, and M. Scalora, “Experimental demonstration of plasmonic-grating-assisted optical biosensor,” Proc. SPIE 8457, 84573T (2012).
    [Crossref]
  13. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
    [Crossref]
  14. Y. Gao, Z. Xin, Q. Gan, X. Cheng, and F. J. Bartoli, “Plasmonic interferometers for label-free multiplexed sensing,” Opt. Express 21(5), 5859–5871 (2013)
    [Crossref] [PubMed]
  15. C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2(4), 497–505 (2015).
    [Crossref]
  16. C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
    [Crossref]
  17. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys 110, 043110 (2011).
    [Crossref]
  18. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys 110, 123105 (2011).
    [Crossref]
  19. R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
    [Crossref] [PubMed]
  20. L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
    [Crossref] [PubMed]
  21. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref] [PubMed]
  22. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  23. D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19(15), 14594–14603 (2011).
    [Crossref] [PubMed]
  24. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
    [Crossref] [PubMed]
  25. S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
    [Crossref] [PubMed]
  26. S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol. B 31(3), 03C121 (2013).
    [Crossref]
  27. S. Law, R. Liu, and D. Wasserman, “Doped-semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
    [Crossref]
  28. V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 161113 (2012).
    [Crossref]
  29. Calculations were performed with the commercial software Lumerical FDTD Solutions version 8.12 from Lumerical Solutions Inc.
  30. T. Taliercio, V. NTsame Guilengui, L. Cerutti, E. Tournié, and J. J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 29294–29303 (2014).
    [Crossref]
  31. D. W. Lynch and W. R. Hunter, “Gold (Au)”, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  32. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Alx Ga1−x As, and In1x Gax Asy P1y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
    [Crossref]
  33. Lumerical Solutions, IncKnowledge Base, “Sources - TFSF,” https://kb.lumerical.com/en/ref_sim_obj_sources_tfsf.html
  34. Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophoton. 9(1), 093791 (2015).
    [Crossref]
  35. G. Socrates, Infrared and Raman Characteristic Group Frequencies (John Wiley & Sons, Ltd., 2001).
  36. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
    [Crossref] [PubMed]
  37. J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169 (2015).
    [Crossref]
  38. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
    [Crossref]
  39. C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
    [Crossref] [PubMed]
  40. F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Ha, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
    [Crossref] [PubMed]
  41. L. V. Brown, X. Yang, K. Zhao, B. Y Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
    [Crossref] [PubMed]
  42. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106(46), 19227–19232 (2009).
    [Crossref] [PubMed]
  43. S. Aksu, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(10), 2511–2518 (2010).
    [Crossref] [PubMed]

2015 (7)

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2(4), 497–505 (2015).
[Crossref]

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophoton. 9(1), 093791 (2015).
[Crossref]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169 (2015).
[Crossref]

L. V. Brown, X. Yang, K. Zhao, B. Y Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

2014 (3)

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

S. Law, R. Liu, and D. Wasserman, “Doped-semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

T. Taliercio, V. NTsame Guilengui, L. Cerutti, E. Tournié, and J. J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 29294–29303 (2014).
[Crossref]

2013 (4)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol. B 31(3), 03C121 (2013).
[Crossref]

Y. Gao, Z. Xin, Q. Gan, X. Cheng, and F. J. Bartoli, “Plasmonic interferometers for label-free multiplexed sensing,” Opt. Express 21(5), 5859–5871 (2013)
[Crossref] [PubMed]

2012 (7)

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, A. D’Orazio, and M. Scalora, “Experimental demonstration of plasmonic-grating-assisted optical biosensor,” Proc. SPIE 8457, 84573T (2012).
[Crossref]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref]

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(6), 409–411 (2012).
[Crossref]

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
[Crossref] [PubMed]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 161113 (2012).
[Crossref]

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Ha, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

2011 (7)

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[Crossref] [PubMed]

D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19(15), 14594–14603 (2011).
[Crossref] [PubMed]

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, and E. T. Al Pryce, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

J. Xu, L. Zhang, and H. Gong, “Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms,” Small 7(3), 371–376 (2011).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys 110, 043110 (2011).
[Crossref]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys 110, 123105 (2011).
[Crossref]

2010 (2)

J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7676, 767306 (2010).
[Crossref]

S. Aksu, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(10), 2511–2518 (2010).
[Crossref] [PubMed]

2009 (2)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

2008 (3)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

2007 (1)

K. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
[Crossref]

1989 (1)

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Alx Ga1−x As, and In1x Gax Asy P1y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[Crossref]

Adachi, S.

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Alx Ga1−x As, and In1x Gax Asy P1y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[Crossref]

Adams, D. C.

Adato, R.

S. Aksu, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(10), 2511–2518 (2010).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Aksu, S.

S. Aksu, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(10), 2511–2518 (2010).
[Crossref] [PubMed]

Al Pryce, E. T.

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, and E. T. Al Pryce, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

S. Aksu, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(10), 2511–2518 (2010).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Artar, A.

S. Aksu, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(10), 2511–2518 (2010).
[Crossref] [PubMed]

Atwater, H. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, and E. T. Al Pryce, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, and E. T. Al Pryce, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Baldassarre, L.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Bartal, G.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

Bartoli, F. J.

Biagioni, P.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Boreman, G. D.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys 110, 123105 (2011).
[Crossref]

Braun, P. V.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref]

Brown, L. V.

L. V. Brown, X. Yang, K. Zhao, B. Y Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Buchwald, W. R.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys 110, 123105 (2011).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7676, 767306 (2010).
[Crossref]

Calandrini, E.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Cataldo, S.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref]

Cerutti, L.

T. Taliercio, V. NTsame Guilengui, L. Cerutti, E. Tournié, and J. J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 29294–29303 (2014).
[Crossref]

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 161113 (2012).
[Crossref]

Chabal, Y. J.

C. M. Pradier and Y. J. Chabal, Biointerface Characterization by Advanced IR Spectroscopy (Elsevier, 2011).

Cheng, X.

Chirumamilla, M.

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2(4), 497–505 (2015).
[Crossref]

Cleary, J. W.

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
[Crossref] [PubMed]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys 110, 123105 (2011).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7676, 767306 (2010).
[Crossref]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Cubukcu, E.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

D’Orazio, A.

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, A. D’Orazio, and M. Scalora, “Experimental demonstration of plasmonic-grating-assisted optical biosensor,” Proc. SPIE 8457, 84573T (2012).
[Crossref]

Davids, P. S.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys 110, 043110 (2011).
[Crossref]

De Angelis, F.

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2(4), 497–505 (2015).
[Crossref]

de Ceglia, D.

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, A. D’Orazio, and M. Scalora, “Experimental demonstration of plasmonic-grating-assisted optical biosensor,” Proc. SPIE 8457, 84573T (2012).
[Crossref]

De Vittorio, M.

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, A. D’Orazio, and M. Scalora, “Experimental demonstration of plasmonic-grating-assisted optical biosensor,” Proc. SPIE 8457, 84573T (2012).
[Crossref]

Di Fabrizio, E.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Ha, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

Edwards, O.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys 110, 123105 (2011).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7676, 767306 (2010).
[Crossref]

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Frank, B.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref]

Frigerio, J.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Gallacher, K.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Gan, Q.

Gao, Y.

García De Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
[Crossref]

Gerbert, D.

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Giessen, H.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref]

Ginn, J. C.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys 110, 043110 (2011).
[Crossref]

Gong, H.

J. Xu, L. Zhang, and H. Gong, “Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms,” Small 7(3), 371–376 (2011).
[Crossref] [PubMed]

Grande, M.

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, A. D’Orazio, and M. Scalora, “Experimental demonstration of plasmonic-grating-assisted optical biosensor,” Proc. SPIE 8457, 84573T (2012).
[Crossref]

Greffet, J. J.

T. Taliercio, V. NTsame Guilengui, L. Cerutti, E. Tournié, and J. J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 29294–29303 (2014).
[Crossref]

Ha, T.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Ha, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

Halas, N. J.

L. V. Brown, X. Yang, K. Zhao, B. Y Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hamilton, T.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophoton. 9(1), 093791 (2015).
[Crossref]

Härtling, T.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Hendrickson, J.

Hengstler, D.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
[Crossref]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Huang, M.

S. Aksu, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(10), 2511–2518 (2010).
[Crossref] [PubMed]

Huck, C.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2(4), 497–505 (2015).
[Crossref]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Ha, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

Hunter, W. R.

D. W. Lynch and W. R. Hunter, “Gold (Au)”, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

Isella, G.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Jarecki, R. L.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys 110, 043110 (2011).
[Crossref]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Katzmann, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Ha, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

Kelaita, Y. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, and E. T. Al Pryce, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Law, S.

S. Law, R. Liu, and D. Wasserman, “Doped-semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol. B 31(3), 03C121 (2013).
[Crossref]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

Li, D.

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Liu, R.

S. Law, R. Liu, and D. Wasserman, “Doped-semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Lynch, D. W.

D. W. Lynch and W. R. Hunter, “Gold (Au)”, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

Malagari, S. D.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophoton. 9(1), 093791 (2015).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

Medhi, G.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys 110, 123105 (2011).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7676, 767306 (2010).
[Crossref]

N’Tsame Guilengui, V.

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 161113 (2012).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Neubrech, F.

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169 (2015).
[Crossref]

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2(4), 497–505 (2015).
[Crossref]

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Ha, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Ning, C. Z.

Nordlander, P.

L. V. Brown, X. Yang, K. Zhao, B. Y Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[Crossref] [PubMed]

NTsame Guilengui, V.

T. Taliercio, V. NTsame Guilengui, L. Cerutti, E. Tournié, and J. J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 29294–29303 (2014).
[Crossref]

Oladeji, I.

J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7676, 767306 (2010).
[Crossref]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Ortholani, M.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Park, Y.-S.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

Paul, D. J.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Peale, R. E.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys 110, 123105 (2011).
[Crossref]

J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7676, 767306 (2010).
[Crossref]

Petruzzelli, V.

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, A. D’Orazio, and M. Scalora, “Experimental demonstration of plasmonic-grating-assisted optical biosensor,” Proc. SPIE 8457, 84573T (2012).
[Crossref]

Pradier, C. M.

C. M. Pradier and Y. J. Chabal, Biointerface Characterization by Advanced IR Spectroscopy (Elsevier, 2011).

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Pryce, I. M.

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, and E. T. Al Pryce, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Pucci, A.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2(4), 497–505 (2015).
[Crossref]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Ha, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Rodriguez, J.-B.

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 161113 (2012).
[Crossref]

Rosenberg, A.

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

Sakat, E.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Samarelli, A.

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

Scalora, M.

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, A. D’Orazio, and M. Scalora, “Experimental demonstration of plasmonic-grating-assisted optical biosensor,” Proc. SPIE 8457, 84573T (2012).
[Crossref]

Sendner, M.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shahzad, M.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys 110, 123105 (2011).
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Shaner, E. A.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys 110, 043110 (2011).
[Crossref]

Socrates, G.

G. Socrates, Infrared and Raman Characteristic Group Frequencies (John Wiley & Sons, Ltd., 2001).

Soref, R.

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
[Crossref] [PubMed]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys 110, 123105 (2011).
[Crossref]

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(6), 409–411 (2012).
[Crossref]

Stomeo, T.

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, A. D’Orazio, and M. Scalora, “Experimental demonstration of plasmonic-grating-assisted optical biosensor,” Proc. SPIE 8457, 84573T (2012).
[Crossref]

Taliercio, T.

T. Taliercio, V. NTsame Guilengui, L. Cerutti, E. Tournié, and J. J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 29294–29303 (2014).
[Crossref]

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 161113 (2012).
[Crossref]

Taylor, A. M.

Toma, A.

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169 (2015).
[Crossref]

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2(4), 497–505 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Ha, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

Tournie, E.

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 161113 (2012).
[Crossref]

Tournié, E.

T. Taliercio, V. NTsame Guilengui, L. Cerutti, E. Tournié, and J. J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 29294–29303 (2014).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

K. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Vincenti, M. A.

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, A. D’Orazio, and M. Scalora, “Experimental demonstration of plasmonic-grating-assisted optical biosensor,” Proc. SPIE 8457, 84573T (2012).
[Crossref]

Vogt, J.

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2(4), 497–505 (2015).
[Crossref]

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Wasserman, D.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophoton. 9(1), 093791 (2015).
[Crossref]

S. Law, R. Liu, and D. Wasserman, “Doped-semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol. B 31(3), 03C121 (2013).
[Crossref]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

Weber, D.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Ha, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

Willets, K.

K. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Xin, Z.

Xu, J.

J. Xu, L. Zhang, and H. Gong, “Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms,” Small 7(3), 371–376 (2011).
[Crossref] [PubMed]

Yang, X.

L. V. Brown, X. Yang, K. Zhao, B. Y Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Yanik, A. A.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
[Crossref]

Yu, L.

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol. B 31(3), 03C121 (2013).
[Crossref]

Zhang, C.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref]

Zhang, L.

J. Xu, L. Zhang, and H. Gong, “Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms,” Small 7(3), 371–376 (2011).
[Crossref] [PubMed]

Zhang, S.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

Zhang, X.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

Zhao, J.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, K.

L. V. Brown, X. Yang, K. Zhao, B. Y Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zheng, B. Y

L. V. Brown, X. Yang, K. Zhao, B. Y Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zhong, Y.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophoton. 9(1), 093791 (2015).
[Crossref]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[Crossref] [PubMed]

ACS Nano (4)

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, and E. T. Al Pryce, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Ha, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012).
[Crossref] [PubMed]

ACS Photonics (2)

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2(4), 497–505 (2015).
[Crossref]

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Appl. Phys. Lett. (2)

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

V. N’Tsame Guilengui, L. Cerutti, J.-B. Rodriguez, E. Tournie, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101, 161113 (2012).
[Crossref]

Chem. Rev. (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

J. Appl. Phys (2)

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys 110, 043110 (2011).
[Crossref]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys 110, 123105 (2011).
[Crossref]

J. Appl. Phys. (1)

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Alx Ga1−x As, and In1x Gax Asy P1y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[Crossref]

J. Nanophoton. (1)

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophoton. 9(1), 093791 (2015).
[Crossref]

J. Vac. Sci. Technol. B (2)

S. Law, L. Yu, and D. Wasserman, “Epitaxial growth of engineered metals for mid-infrared plasmonics,” J. Vac. Sci. Technol. B 31(3), 03C121 (2013).
[Crossref]

S. Law, R. Liu, and D. Wasserman, “Doped-semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

Nano Lett. (5)

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortholani, and P. Biagioni, “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett. 15(11), 7225–7231 (2015).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[Crossref] [PubMed]

S. Aksu, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(10), 2511–2518 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(6), 409–411 (2012).
[Crossref]

Opt. Express (5)

Phys. Chem. Chem. Phys. (1)

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169 (2015).
[Crossref]

Phys. Rev. Lett. (1)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

PNAS (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Proc. SPIE (2)

J. W. Cleary, G. Medhi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7676, 767306 (2010).
[Crossref]

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, A. D’Orazio, and M. Scalora, “Experimental demonstration of plasmonic-grating-assisted optical biosensor,” Proc. SPIE 8457, 84573T (2012).
[Crossref]

Science (1)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Sensors and Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
[Crossref]

Small (1)

J. Xu, L. Zhang, and H. Gong, “Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms,” Small 7(3), 371–376 (2011).
[Crossref] [PubMed]

Other (5)

C. M. Pradier and Y. J. Chabal, Biointerface Characterization by Advanced IR Spectroscopy (Elsevier, 2011).

D. W. Lynch and W. R. Hunter, “Gold (Au)”, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

Calculations were performed with the commercial software Lumerical FDTD Solutions version 8.12 from Lumerical Solutions Inc.

G. Socrates, Infrared and Raman Characteristic Group Frequencies (John Wiley & Sons, Ltd., 2001).

Lumerical Solutions, IncKnowledge Base, “Sources - TFSF,” https://kb.lumerical.com/en/ref_sim_obj_sources_tfsf.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic illustration of the simulation set-up and the geometry of the grating. The ribbon thickness t and width w are variable. The pitch Λ is set to 500 nm. The modeled unit cell of the periodic structure is indicated by the dashed line surrounding the ribbon in the middle. The broad-band light source is placed above the plasmonic resonator structure. The incident waves, indicated by the wave vector k , propagate in negative x-direction. The electric field vector E oscillates along the y-direction. (b) Schematic of the grating embedded in bulk material. This model was used to investigate the LSPR wavelength shift. (c) Schematic of the grating topped with a SAM applied to investigate the sensitivity on refractive index variations within the close proximity of the resonators.
Fig. 2
Fig. 2 (a) Reflectance spectra of 100 nm thick InAsSb gratings on GaSb substrate for several ribbon widths w. The pitch Λ is 500 nm. (b) Electric field profile associated to the mode at high wavelength. Note that the color map scale is reduced to 20 in order to determine how the electric field enhancement decreases with distance from the structure. (c) Electric field profile associated to the mode close to 6 µm. The field profiles have been calculated with a narrow mesh, revealing therefore high electric field values thanks to the fine resolution around the corners of the resonator. (d) Resonance wavelength λR as a function of the geometrical parameters (ribbon width w and thickness t) of the InAsSb grating. The chosen working wavelength of 10 µm is indicated by the dashed line. Several geometric configurations close to the dashed line provide resonance maxima near 10 µm. (e) Averaged values of the electric field Eavg at 10 µm (normalized to the incident field strength E0), within an area of 50 nm × 50 nm centered at the ribbon’s corner towards the substrate, obtained for different geometric configurations of the InAsSb grating. The geometries corresponding to the resonant structures close to the dashed horizontal line in (d) are located on the black line. To establish the numerous data points, the mesh size was larger than for the exemplary field profiles shown in (b) and (c) due to computing power constraints.
Fig. 3
Fig. 3 (a) Reflectance spectra of an exemplary InAsSb grating (ribbon thickness 100 nm, ribbon width 260 nm) embedded in dispersionless material of varying thickness d, as shown in the inset. The material has a refractive index of n =1.61. (b) Resonance wavelength λR as a function of the layer thickness d of the embedding material for three structures of different geometry as indicated in the graph. The dashed lines correspond to exponential decay fits and serve as guide to the eye to highlight the saturation of the wavelength shift with increasing material thickness.
Fig. 4
Fig. 4 Sensitivity S (black dots, left ordinate) and figure of merit FOM (red triangles, right ordinate) for the resonant structures. Values were obtained for plasmonic resonators embedded in 1 µm of dispersionless material with n = 1.61. Sensitivity values of (900 ± 20) nm RIU−1 were reached for all structures. The FOM drops slightly which is mainly caused by the increasing FWHM of the LSPR with increasing resonator size as shown exemplary for the smallest and the largest investigated structure in the inset.
Fig. 5
Fig. 5 (a) Overview reflectance spectrum of one selected resonator geometry of 100 nm thickness and 260 nm ribbon width. (b) Reflectance spectra of the InAsSb grating (black dotted curve) and the InAsSb grating covered by a 2 nm SAM with constant refractive index n = 1.61 (red dashed curve). The vertical dashed lines indicate the maximum reflectance position of the SPR peak. The wavelength difference between the two vertical lines is Δλ = 45 nm as labeled. (c) Reflectance spectra of the InAsSb grating, an unstuctured InAsSb layer and a GaSb substrate covered by an absorbing 2 nm SAM. The material was modeled as a Lorentz oscillator material with an absorption line at 10 µm. In each case, the reflectance of the model with constant refractive index is shown as well, but the spectra overlap greatly apart from the range around 10 µm.
Fig. 6
Fig. 6 (a) Scattering maximum of isolated, 100 nm thick gold ribbons as a function of their width. A linear fit was performed (dotted lines). (b) Reflectance spectra of gold gratings on GaSb substrate with 1.6 µm wide ribbons and different pitches Λ. The different diffraction orders are highlighted in the graph: solid lines mark the diffraction orders from the gold-grating GaSb interface, dashed lines the diffraction orders from the air-gold grating interface, beginning with the first order at highest wavelength. For Λ = 2.8 µm, the first order diffraction from the lower interface has been tuned to be in resonance with the scattering maximum of the ribbons.
Fig. 7
Fig. 7 (a) Scattering spectra of a single InAsSb ribbon on GaSb substrate with and without a 2 nm thin layer with refractive index n = 1.61. A wavelength shift of (34 nm ± 5) nm is introduced by the refractive index change as indicated by the dashed, vertical lines. (b) Scattering spectra of a single gold ribbon on GaSb substrate with and without the monolayer. (c) Electric field profile at 10 µm for the single InAsSb ribbon (left side) and the single gold resonator (right side) on GaSb substrate. The InAsSb resonator allows for high densification, as shown by the spatial extensions, while leading to a one order of magnitude higher electric field strength. (d) Cut through the field profile 1 nm above the substrate-resonator interface (x = 1 nm). The side wall of the resonator has been placed at the position y = 0 in order to compare the evanescent field of the semiconductor and the gold resonator.
Fig. 8
Fig. 8 (a) SEM image of the InAsSb grating. (b) SEM image of the gold grating. The scale bars are 4 µm in (a) and (b). (c) Experimental reflectance spectra of an optimized structure with and without a 200 nm thick layer of PMMA A4 photoresist. The experimentally observed red shift of 480 nm (±70 nm) is indicated by the dashed vertical lines. (d) Experimental reflectance spectra of a gold grating (Λ = 2.6 µm, t = 100 nm, w = 1.88 µm) with and without a 200 nm thick layer of PMMA A4 photoresist.
Fig. 9
Fig. 9 Left y-axis: Experimental absorption spectrum of PMMA on a smooth gold surface measured under grazing incidence (black line). Absorption features of interest are indicated by dashed lines. Right y-axis: Experimental reflectance spectra of the InAsSb grating covered with PMMA photoresist. The most intense absorption features in the spectral range can be observed in both polarization while the weaker ones at 10.1 µm (990 cm−1) and 10.35 µm (966 cm−1) are sufficiently enhanced by the plasmonic grating when the LSPR is excited under ‖ polarization but not under ⊥ polarization. The dashed lines indicate the absorption lines at 7.87 µm (1271 cm−1), 8.02 µm (1246.9 cm−1), 8.36 µm (1196.2 cm−1), 8.67 µm (1153 cm−1), 10.1 µm (990 cm−1) and 10.35 µm (966 cm−1).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ω p = N e 2 ε 0 ε m e * ,
ε ( ω ) = ε ( 1 ω p 2 ω ( i γ + ω ) ) ,
ε ( ω ) = ε + ε Lor ω 0 2 ω 0 2 2 i δ 0 ω ω 2 ,
S = Δ λ r Δ n
FOM = S FWHM .
S d * = Δ λ r ( d ) Δ n ,

Metrics