Abstract

We demonstrate the first quantum dot (QD) laser on a silicon substrate with efficient coupling of light to a silicon waveguide under the QD gain region. Continuous wave operation up to 100 °C and multiwavelength operation are demonstrated, paving the way towards highly efficient CMOS-compatible, uncooled, WDM sources.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid quantum-dot microring laser on silicon

Chong Zhang, Di Liang, Geza Kurczveil, Antoine Descos, and Raymond G. Beausoleil
Optica 6(9) 1145-1151 (2019)

1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding

Sarah Uvin, Sulakshna Kumari, Andreas De Groote, Steven Verstuyft, Guy Lepage, Peter Verheyen, Joris Van Campenhout, Geert Morthier, Dries Van Thourhout, and Gunther Roelkens
Opt. Express 26(14) 18302-18309 (2018)

2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit

Ruijun Wang, Stephan Sprengel, Gerhard Boehm, Muhammad Muneeb, Roel Baets, Markus-Christian Amann, and Gunther Roelkens
Opt. Express 24(18) 21081-21089 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  2. T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” Proc. CLEO 2011, paper PDA_1.
  3. M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
    [Crossref]
  4. G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
    [Crossref]
  5. G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
    [Crossref]
  6. S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced Surface Sidewall Recombination and Diffusion in Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 18(17), 1861–1863 (2006).
    [Crossref]
  7. A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Express 15(9), 5388–5393 (2007).
    [Crossref] [PubMed]
  8. G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
    [Crossref]
  9. A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
    [Crossref]
  10. S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
    [Crossref]
  11. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  12. A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [Crossref]
  13. Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125°C,” J. Lightwave Technol. 33(6), 1223–1229 (2015).
    [Crossref]
  14. K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
    [Crossref]
  15. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
    [Crossref] [PubMed]
  16. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  17. K. Tanabe and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on SOI waveguide structures,” Proc. CLEO, 2014, paper STh1G–6.
    [Crossref]
  18. A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).
  19. D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26(4), 1560 (2008).
    [Crossref]
  20. R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
    [Crossref]
  21. A. Horth, P. Cheben, J. H. Schmid, R. Kashyap, and N. J. Quitoriano, “Ideal, constant-loss nanophotonic mode converter using a Lagrangian approach,” Opt. Express 24(6), 6680–6688 (2016).
    [Crossref] [PubMed]
  22. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, “Diode Lasers and Photonic Integrated Circuits,” 2nd edn (John Wiley & Sons, 2012).
  23. S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
    [Crossref]
  24. P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
    [Crossref]
  25. C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1502607 (2015).
  26. M. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid Silicon Laser Technology: A Thermal Perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
    [Crossref]
  27. M. A. Seyedi, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “Error-free DWDM transmission and crosstalk analysis for a silicon photonics transmitter,” Opt. Express 23(26), 32968–32976 (2015).
    [Crossref] [PubMed]
  28. E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode Interference Reflectors: A New Class of Components for Photonic Integrated Circuits,” J. Lightwave Technol. 31(18), 3055–3063 (2013).
    [Crossref]
  29. R. Broom, E. Mohn, C. Risch, and R. Salathé, “Microwave Self-Modulation of a Diode Laser Coupled to and Extended Cavity,” IEEE J. Quantum Electron. 6(6), 328–334 (1970).
    [Crossref]

2016 (2)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

A. Horth, P. Cheben, J. H. Schmid, R. Kashyap, and N. J. Quitoriano, “Ideal, constant-loss nanophotonic mode converter using a Lagrangian approach,” Opt. Express 24(6), 6680–6688 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

2013 (2)

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode Interference Reflectors: A New Class of Components for Photonic Integrated Circuits,” J. Lightwave Technol. 31(18), 3055–3063 (2013).
[Crossref]

2012 (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

2011 (2)

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

M. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid Silicon Laser Technology: A Thermal Perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

2009 (3)

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

2008 (1)

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26(4), 1560 (2008).
[Crossref]

2007 (3)

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, “Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser,” Opt. Express 15(9), 5388–5393 (2007).
[Crossref] [PubMed]

2006 (2)

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced Surface Sidewall Recombination and Diffusion in Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 18(17), 1861–1863 (2006).
[Crossref]

2004 (1)

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

2000 (1)

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

1999 (1)

P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

1970 (1)

R. Broom, E. Mohn, C. Risch, and R. Salathé, “Microwave Self-Modulation of a Diode Laser Coupled to and Extended Cavity,” IEEE J. Quantum Electron. 6(6), 328–334 (1970).
[Crossref]

Agarwal, H.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Akrout, A.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Alexander, R. R.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Allen, C. N.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

Arakawa, Y.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125°C,” J. Lightwave Technol. 33(6), 1223–1229 (2015).
[Crossref]

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

K. Tanabe and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on SOI waveguide structures,” Proc. CLEO, 2014, paper STh1G–6.
[Crossref]

Azouigui, S.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Badcock, T. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Barrios, P.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

Beausoleil, R.

Beausoleil, R. G.

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1502607 (2015).

M. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid Silicon Laser Technology: A Thermal Perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bhattacharya, P.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Bimberg, D.

Bowers, J. E.

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1502607 (2015).

A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

M. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid Silicon Laser Technology: A Thermal Perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26(4), 1560 (2008).
[Crossref]

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

Brenot, R.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Broom, R.

R. Broom, E. Mohn, C. Risch, and R. Salathé, “Microwave Self-Modulation of a Diode Laser Coupled to and Extended Cavity,” IEEE J. Quantum Electron. 6(6), 328–334 (1970).
[Crossref]

Capua, A.

Cataluna, M. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced Surface Sidewall Recombination and Diffusion in Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 18(17), 1861–1863 (2006).
[Crossref]

Cheben, P.

Chen, C.-H.

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Childs, D. T. D.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Cohen, O.

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

Cong, D.-Y.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Dagens, B.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Dalacu, D.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

Deppe, D. G.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

Dion, C.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

Duan, G.-H.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Dumitrescu, M.

P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
[Crossref]

Eisenstein, G.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Fang, A.

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

Fastenau, J. M.

A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Fathpour, S.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Fattal, D. A.

G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
[Crossref]

Fiorentino, M.

M. A. Seyedi, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “Error-free DWDM transmission and crosstalk analysis for a silicon photonics transmitter,” Opt. Express 23(26), 32968–32976 (2015).
[Crossref] [PubMed]

M. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid Silicon Laser Technology: A Thermal Perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
[Crossref]

Fischer, M.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Flynn, M. B.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced Surface Sidewall Recombination and Diffusion in Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 18(17), 1861–1863 (2006).
[Crossref]

Fujikata, J.

Gerschutz, F.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Gossard, A. C.

A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Groom, K. M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Gubenko, A. E.

G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
[Crossref]

Hatori, N.

Hogg, R. A.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Hopkinson, M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Horikawa, T.

Horth, A.

Huffaker, D. L.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

Ishida, M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Jones, R.

M. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid Silicon Laser Technology: A Thermal Perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

Kashyap, R.

Kleijn, E.

Koeth, J.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Kotlyar, M. V.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced Surface Sidewall Recombination and Diffusion in Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 18(17), 1861–1863 (2006).
[Crossref]

Kovsh, A.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Kovsh, A. R.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
[Crossref]

Kozhukhov, A. V.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Krauss, T. F.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced Surface Sidewall Recombination and Diffusion in Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 18(17), 1861–1863 (2006).
[Crossref]

Krestnikov, I.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Krestnikov, I. L.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
[Crossref]

Kuntz, M.

Kuo, Y.-H.

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

Kurczveil, G.

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1502607 (2015).

M. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid Silicon Laser Technology: A Thermal Perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

Laemmlin, M.

Lapointe, J.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

Ledentsov, N. N.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Legouezigou, O.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Leijtens, X. J. M.

Lelarge, F.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liang, D.

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1502607 (2015).

M. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid Silicon Laser Technology: A Thermal Perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26(4), 1560 (2008).
[Crossref]

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

Liu, A.

A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Liu, A. W. K.

A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liu, H.-Y.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Livshits, D. A.

G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
[Crossref]

Lubyshev, D.

A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Martinez, A.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Melanen, P.

P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
[Crossref]

Merghem, K.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Mi, Z.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Mikhelashvili, V.

Mikhrin, S. S.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Mizutani, K.

Mohn, E.

R. Broom, E. Mohn, C. Risch, and R. Salathé, “Microwave Self-Modulation of a Diode Laser Coupled to and Extended Cavity,” IEEE J. Quantum Electron. 6(6), 328–334 (1970).
[Crossref]

Moore, S. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced Surface Sidewall Recombination and Diffusion in Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 18(17), 1861–1863 (2006).
[Crossref]

Mowbray, D. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Nakamura, T.

Norman, J.

A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

O’Faolain, L.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced Surface Sidewall Recombination and Diffusion in Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 18(17), 1861–1863 (2006).
[Crossref]

Orsila, S.

P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
[Crossref]

Ortner, G.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

Pakulski, G.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

Panarello, T.

P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
[Crossref]

Paniccia, M. J.

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

Park, G.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

Park, H.

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

Pessa, M.

P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
[Crossref]

Piels, M.

M. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid Silicon Laser Technology: A Thermal Perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

Poitras, D.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

Pommereau, F.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Poole, P. J.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

Provost, J.-G.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Quitoriano, N. J.

Raday, O.

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

Rae, T.

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

Ramdane, A.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Raymond, S.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

Render, W.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

Risch, C.

R. Broom, E. Mohn, C. Risch, and R. Salathé, “Microwave Self-Modulation of a Diode Laser Coupled to and Extended Cavity,” IEEE J. Quantum Electron. 6(6), 328–334 (1970).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Royce, R. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Rozenfeld, L.

Saarinen, M.

P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
[Crossref]

Salathé, R.

R. Broom, E. Mohn, C. Risch, and R. Salathé, “Microwave Self-Modulation of a Diode Laser Coupled to and Extended Cavity,” IEEE J. Quantum Electron. 6(6), 328–334 (1970).
[Crossref]

Savolainen, P.

P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
[Crossref]

Schmid, J. H.

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Seyedi, M. A.

Shchekin, O. B.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

Shen, A.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Smit, M. K.

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Snyder, A.

A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Sugawara, M.

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Sysak, M.

M. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid Silicon Laser Technology: A Thermal Perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

Sysak, M. N.

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

Tanabe, K.

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

K. Tanabe and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on SOI waveguide structures,” Proc. CLEO, 2014, paper STh1G–6.
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Toivonen, M.

P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
[Crossref]

Urino, Y.

Usami, M.

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

Usuki, T.

Van Dijk, F.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Vilokkinen, V.

P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
[Crossref]

Watanabe, K.

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

Wojcik, G. L.

G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Yamada, K.

Yamamoto, T.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Yin, D.

G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
[Crossref]

Zhang, C.

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1502607 (2015).

A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Zou, Q.

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

Appl. Phys. Express (1)

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

Appl. Phys. Lett. (3)

A. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006).
[Crossref]

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 µm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

IEEE J. Quantum Electron. (3)

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic Study of the Effects of Modulation p-Doping on 1.3-μm Quantum-Dot Lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

R. Broom, E. Mohn, C. Risch, and R. Salathé, “Microwave Self-Modulation of a Diode Laser Coupled to and Extended Cavity,” IEEE J. Quantum Electron. 6(6), 328–334 (1970).
[Crossref]

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “Thermal management of hybrid silicon ring lasers for high temperature operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1502607 (2015).

M. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid Silicon Laser Technology: A Thermal Perspective,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1490–1498 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (4)

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate Error-Free Transmission of Eight Channels at 10 Gb/s Using Comb Generation in a Quantum-Dash-Based Mode-Locked Laser,” IEEE Photonics Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, “Temperature Dependence of Dynamic Properties and Tolerance to Optical Feedback of High-Speed 1.3-μm DFB Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 23(9), 582–584 (2011).
[Crossref]

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced Surface Sidewall Recombination and Diffusion in Quantum-Dot Lasers,” IEEE Photonics Technol. Lett. 18(17), 1861–1863 (2006).
[Crossref]

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

J. Electron. Mater. (1)

P. Savolainen, M. Toivonen, S. Orsila, M. Saarinen, P. Melanen, V. Vilokkinen, M. Dumitrescu, T. Panarello, and M. Pessa, “AlGaInAs/InP strained-layer quantum well lasers at 1.3 μm grown by solid source molecular beam epitaxy,” J. Electron. Mater. 28(8), 980–985 (1999).
[Crossref]

J. Lightwave Technol. (2)

J. Vac. Sci. Technol. B (1)

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26(4), 1560 (2008).
[Crossref]

Mater. Today (1)

A. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Mater. Today 10(7–8), 28–35 (2007).

Nat. Photonics (2)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

Opt. Express (3)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

Other (4)

K. Tanabe and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on SOI waveguide structures,” Proc. CLEO, 2014, paper STh1G–6.
[Crossref]

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum dot lasers,” Proc. CLEO 2011, paper PDA_1.

G. L. Wojcik, D. Yin, A. R. Kovsh, A. E. Gubenko, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, D. A. Fattal, M. Fiorentino, and R. G. Beausoleil, “A single comb laser source for short reach WDM interconnects,” Proc. SPIE Photonics West, 2009, paper 72300M.
[Crossref]

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, “Diode Lasers and Photonic Integrated Circuits,” 2nd edn (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Device cross-sectional diagram. (b) Scanning electron micrograph of a polished cross section. The tapers were polished off in oder to show the gain region. The air trench between the rib waveguide and the silicon cladding is filled with polishing residue. Fundamental mode calculation for (c) 1.8- and (d) 0.7-μm-wide silicon waveguide underneath a 6-μm-wide III-V mesa. (e) Schematic diagram of the taper design. Only the waveguiding layers are shown, while the metal layers have been omitted for clarity. For the devices under investigation, Lt1 = 120 μm, and Lt2 = 72 μm and the laser cavity is formed by polishing the passive silicon waveguide facets.
Fig. 2
Fig. 2 (a) LI and (b) threshold current data as a function of stage temperature. Lasers were measured on a temperature controlled stage using a DC current source and an integrating sphere. The integrating sphere measured the light out of one facet.
Fig. 3
Fig. 3 (a) Optical spectra below and above threshold. (b) Optical spectrum in linear scale at 114 mA. (c) Optical spectrum at 100 °C. No lasing from the excited state is observed. Near field image of the polished laser facet with the laser (d) turned off and (e) on.
Fig. 4
Fig. 4 (a) Threshold current density as a function of QD confinement for identical lasers from two different dies. Lgain = 2 mm, Lcavity = 3 mm, wmesa = 6 μm. (b) Threshold current density as a function of mesa width. Lgain = 1.4 mm, Lcavity = 2 mm, ΓQD = 55%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T 0 = ( d( ln( I th ) ) dT ) 1

Metrics