Abstract

The shrinkage of pixel size down to sub-2 μm in high-resolution CMOS image sensors (CISs) results in degraded efficiency and increased crosstalk. The backside illumination technology can increase the efficiency, but the crosstalk still remains an critical issue to improve the image quality of the CIS devices. In this paper, by adopting a parabolic color filter (P-CF), we demonstrate efficiency enhancement without any noticeable change in optical crosstalk of a backside illuminated 1.12 μm pixel CIS with deep-trench-isolation structure. To identify the observed results, we have investigated the effect of radius of curvature (r) of the P-CF on the efficiency and optical crosstalk of the CIS by performing an electromagnetic analysis. As the r of P-CF becomes equal to (or half) that of the microlens, the efficiencies of the B-, G-, and R-pixels increase by a factor of 14.1% (20.3%), 9.8% (15.3%), and 15.0% (15.7%) with respect to the flat CF cases without any noticeable crosstalk change. Also, as the incident angle increases up to 30°, the angular dependence of the efficiency and crosstalk significantly decreases by utilizing the P-CF in the CIS. Meanwhile, further reduction of r severely increases the optical crosstalk due to the increased diffraction effect, which has been confirmed with the simulated electric-field intensity distribution inside the devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters

Yan Yu, Qin Chen, Long Wen, Xin Hu, and Hui-Fang Zhang
Opt. Express 23(17) 21994-22003 (2015)

Optical confinement methods for continued scaling of CMOS image sensor pixels

Christian C. Fesenmaier, Yijie Huo, and Peter B. Catrysse
Opt. Express 16(25) 20457-20470 (2008)

Microlens performance limits in sub-2μm pixel CMOS image sensors

Yijie Huo, Christian C. Fesenmaier, and Peter B. Catrysse
Opt. Express 18(6) 5861-5872 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. B. Catrysse and B. A. Wandell, “Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld,” Proc. SPIE 5678, 1–13 (2005).
    [Crossref]
  2. A. J. P. Theuwissen, “CMOS Image sensors: State-of-the-art,” Solid-State Electron. 52(9), 1401–1406 (2008).
    [Crossref]
  3. I. Djité, M. Estibeau, P. Magnan, G. Rolland, S. Petit, and O. Saint-Pé, “Theoretical models of modulation transfer function, quantum efficiency, and Crosstalk for CCD and CMOS image sensors,” IEEE Trans. Electron Dev. 59(3), 729–737 (2012).
    [Crossref]
  4. Y. Huo, C. C. Fesenmaier, and P. B. Catrysse, “Microlens performance limits in sub-2µm pixel CMOS image sensors,” Opt. Express 18(6), 5861–5872 (2010).
    [Crossref] [PubMed]
  5. T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
    [Crossref]
  6. G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
    [Crossref]
  7. F. Hirigoyen, J. Vaillant, E. Huss, F. Barbier, J. Prima, F. Roy, and D. Hérault, “1.1µm Backside Imager vs. Frontside Imager: an optics-dedicated FDTD approach,” in IEEE Intl. Image Sensor Workshop (2009), pp. 1–4.
  8. N. Watanabe, I. Tsunoda, T. Takao, K. Tanaka, and T. Asano, “Fabrication of back-side illuminated complementary metal oxide semiconductor image sensor using compliant bump,” Jpn. J. Appl. Phys. 49(4), 04DB01 (2010).
    [Crossref]
  9. J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, J. Yoo, Y. Lee, B. Park, S. Jung, J. Lee, T.-H. Lee, Y. Lee, J. Jung, J.-H. Kim, T.-C. Kim, H. Cho, D. Lee, and Y. Lee, “Advanced image sensor technology for pixel scaling down toward 1.0µm,” in IEEE Electron Devices Meeting (2008), pp. 1–4.
  10. B. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. Hyun, and J. R. Paik, “Yoo, D. H. Lee, and K. Kim, “Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7µm pixel pitch,” Jpn. J. Appl. Phys. 46(4B), 2454–2457 (2007).
    [Crossref]
  11. A. Tournier, F. Leverd, L. Favennec, C. Perrot, L. Pinzelli, M. Gatefait, N. Cherault, D. Jeanjean, J.-P. Carrere, F. Hirigoyen, L. Grant, and F. Roy, “Pixel-to-pixel isolation by deep trench technology: application to CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2011), paper R5.
  12. Y. Kitamura, H. Aikawa, K. Kakehi, T. Yousyou, K. Eda, T. Minami, S. Uya, Y. Takegawa, H. Yamashita, Y. Kohyama, and T. Asami, “Suppression of crosstalk by using backside deep trench isolation for 1.12μm backside illuminated CMOS image sensor,” IEEE Electron Devices Meeting 24, 537–540 (2012).
  13. P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19(8), 1610–1620 (2002).
    [Crossref] [PubMed]
  14. H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).
  15. S. S. Kim, “Image sensor having lens type color filter and method for fabricating the same,” United States Patent 20150041939 A1 (2015).
  16. A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (ArtechHouse, 2000).
  17. L. Anzagira and E. R. Fossum, “Color filter array patterns for small-pixel image sensors with substantial cross talk,” J. Opt. Soc. Am. A 32(1), 28–34 (2015).
    [Crossref] [PubMed]
  18. http://www.daouincube.com/index.aspx .
  19. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
    [Crossref]
  20. A. Belkhir, O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, “Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 046705 (2010).
    [Crossref] [PubMed]
  21. L. Han, D. Zhou, K. Li, X. Li, and W.-P. Huang, “A rational-fraction dispersion model for efficient simulation of dispersive material in FDTD method,” J. Lightwave Technol. 30(13), 2216–2225 (2012).
    [Crossref]
  22. D.-W. Kang, H. Ahn, H. Kim, and J.-K. Lee, “Accurate transmittance analysis of liquid crystal displays using a rational fraction approach in the time domain,” Opt. Commun. 351, 155–159 (2015).
    [Crossref]

2015 (2)

L. Anzagira and E. R. Fossum, “Color filter array patterns for small-pixel image sensors with substantial cross talk,” J. Opt. Soc. Am. A 32(1), 28–34 (2015).
[Crossref] [PubMed]

D.-W. Kang, H. Ahn, H. Kim, and J.-K. Lee, “Accurate transmittance analysis of liquid crystal displays using a rational fraction approach in the time domain,” Opt. Commun. 351, 155–159 (2015).
[Crossref]

2012 (2)

L. Han, D. Zhou, K. Li, X. Li, and W.-P. Huang, “A rational-fraction dispersion model for efficient simulation of dispersive material in FDTD method,” J. Lightwave Technol. 30(13), 2216–2225 (2012).
[Crossref]

I. Djité, M. Estibeau, P. Magnan, G. Rolland, S. Petit, and O. Saint-Pé, “Theoretical models of modulation transfer function, quantum efficiency, and Crosstalk for CCD and CMOS image sensors,” IEEE Trans. Electron Dev. 59(3), 729–737 (2012).
[Crossref]

2010 (3)

Y. Huo, C. C. Fesenmaier, and P. B. Catrysse, “Microlens performance limits in sub-2µm pixel CMOS image sensors,” Opt. Express 18(6), 5861–5872 (2010).
[Crossref] [PubMed]

N. Watanabe, I. Tsunoda, T. Takao, K. Tanaka, and T. Asano, “Fabrication of back-side illuminated complementary metal oxide semiconductor image sensor using compliant bump,” Jpn. J. Appl. Phys. 49(4), 04DB01 (2010).
[Crossref]

A. Belkhir, O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, “Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 046705 (2010).
[Crossref] [PubMed]

2008 (1)

A. J. P. Theuwissen, “CMOS Image sensors: State-of-the-art,” Solid-State Electron. 52(9), 1401–1406 (2008).
[Crossref]

2007 (1)

B. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. Hyun, and J. R. Paik, “Yoo, D. H. Lee, and K. Kim, “Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7µm pixel pitch,” Jpn. J. Appl. Phys. 46(4B), 2454–2457 (2007).
[Crossref]

2005 (2)

P. B. Catrysse and B. A. Wandell, “Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld,” Proc. SPIE 5678, 1–13 (2005).
[Crossref]

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

2004 (1)

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

2003 (1)

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

2002 (1)

Agranov, G.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

Ahn, H.

D.-W. Kang, H. Ahn, H. Kim, and J.-K. Lee, “Accurate transmittance analysis of liquid crystal displays using a rational fraction approach in the time domain,” Opt. Commun. 351, 155–159 (2015).
[Crossref]

Ahn, J.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Anzagira, L.

Arar, O.

A. Belkhir, O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, “Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 046705 (2010).
[Crossref] [PubMed]

Asano, T.

N. Watanabe, I. Tsunoda, T. Takao, K. Tanaka, and T. Asano, “Fabrication of back-side illuminated complementary metal oxide semiconductor image sensor using compliant bump,” Jpn. J. Appl. Phys. 49(4), 04DB01 (2010).
[Crossref]

Baida, F. I.

A. Belkhir, O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, “Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 046705 (2010).
[Crossref] [PubMed]

Barbier, F.

F. Hirigoyen, J. Vaillant, E. Huss, F. Barbier, J. Prima, F. Roy, and D. Hérault, “1.1µm Backside Imager vs. Frontside Imager: an optics-dedicated FDTD approach,” in IEEE Intl. Image Sensor Workshop (2009), pp. 1–4.

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Belkhir, A.

A. Belkhir, O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, “Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 046705 (2010).
[Crossref] [PubMed]

Benabbes, S. S.

A. Belkhir, O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, “Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 046705 (2010).
[Crossref] [PubMed]

Berezin, V.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

Catrysse, P. B.

Chen, S. F.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

Chien, H. C.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

Choi, C.-Y.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Djité, I.

I. Djité, M. Estibeau, P. Magnan, G. Rolland, S. Petit, and O. Saint-Pé, “Theoretical models of modulation transfer function, quantum efficiency, and Crosstalk for CCD and CMOS image sensors,” IEEE Trans. Electron Dev. 59(3), 729–737 (2012).
[Crossref]

Estibeau, M.

I. Djité, M. Estibeau, P. Magnan, G. Rolland, S. Petit, and O. Saint-Pé, “Theoretical models of modulation transfer function, quantum efficiency, and Crosstalk for CCD and CMOS image sensors,” IEEE Trans. Electron Dev. 59(3), 729–737 (2012).
[Crossref]

Fang, Y. K.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

Fesenmaier, C. C.

Fossum, E. R.

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Han, L.

Hérault, D.

F. Hirigoyen, J. Vaillant, E. Huss, F. Barbier, J. Prima, F. Roy, and D. Hérault, “1.1µm Backside Imager vs. Frontside Imager: an optics-dedicated FDTD approach,” in IEEE Intl. Image Sensor Workshop (2009), pp. 1–4.

Hirigoyen, F.

F. Hirigoyen, J. Vaillant, E. Huss, F. Barbier, J. Prima, F. Roy, and D. Hérault, “1.1µm Backside Imager vs. Frontside Imager: an optics-dedicated FDTD approach,” in IEEE Intl. Image Sensor Workshop (2009), pp. 1–4.

Hiroshige, G.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Hsu, T. H.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

Huang, W.-P.

Huo, Y.

Huss, E.

F. Hirigoyen, J. Vaillant, E. Huss, F. Barbier, J. Prima, F. Roy, and D. Hérault, “1.1µm Backside Imager vs. Frontside Imager: an optics-dedicated FDTD approach,” in IEEE Intl. Image Sensor Workshop (2009), pp. 1–4.

Hwang, S. H.

B. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. Hyun, and J. R. Paik, “Yoo, D. H. Lee, and K. Kim, “Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7µm pixel pitch,” Jpn. J. Appl. Phys. 46(4B), 2454–2457 (2007).
[Crossref]

Hyun, K.

B. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. Hyun, and J. R. Paik, “Yoo, D. H. Lee, and K. Kim, “Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7µm pixel pitch,” Jpn. J. Appl. Phys. 46(4B), 2454–2457 (2007).
[Crossref]

Jung, H.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Jung, J.

B. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. Hyun, and J. R. Paik, “Yoo, D. H. Lee, and K. Kim, “Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7µm pixel pitch,” Jpn. J. Appl. Phys. 46(4B), 2454–2457 (2007).
[Crossref]

Jung, T.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Kang, D.-W.

D.-W. Kang, H. Ahn, H. Kim, and J.-K. Lee, “Accurate transmittance analysis of liquid crystal displays using a rational fraction approach in the time domain,” Opt. Commun. 351, 155–159 (2015).
[Crossref]

Kim, B.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Kim, D. W.

B. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. Hyun, and J. R. Paik, “Yoo, D. H. Lee, and K. Kim, “Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7µm pixel pitch,” Jpn. J. Appl. Phys. 46(4B), 2454–2457 (2007).
[Crossref]

Kim, H.

D.-W. Kang, H. Ahn, H. Kim, and J.-K. Lee, “Accurate transmittance analysis of liquid crystal displays using a rational fraction approach in the time domain,” Opt. Commun. 351, 155–159 (2015).
[Crossref]

Kim, H.-K.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Kim, J.-S.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Lamrous, O.

A. Belkhir, O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, “Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 046705 (2010).
[Crossref] [PubMed]

Lee, D.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Lee, J.-K.

D.-W. Kang, H. Ahn, H. Kim, and J.-K. Lee, “Accurate transmittance analysis of liquid crystal displays using a rational fraction approach in the time domain,” Opt. Commun. 351, 155–159 (2015).
[Crossref]

Lee, K.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Lee, Y.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Lee, Y. W.

B. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. Hyun, and J. R. Paik, “Yoo, D. H. Lee, and K. Kim, “Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7µm pixel pitch,” Jpn. J. Appl. Phys. 46(4B), 2454–2457 (2007).
[Crossref]

Li, K.

Li, X.

Lin, C. S.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

Lin, C. Y.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

Lin, J. S.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

Macias, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Magnan, P.

I. Djité, M. Estibeau, P. Magnan, G. Rolland, S. Petit, and O. Saint-Pé, “Theoretical models of modulation transfer function, quantum efficiency, and Crosstalk for CCD and CMOS image sensors,” IEEE Trans. Electron Dev. 59(3), 729–737 (2012).
[Crossref]

Moon, C.-R.

B. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. Hyun, and J. R. Paik, “Yoo, D. H. Lee, and K. Kim, “Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7µm pixel pitch,” Jpn. J. Appl. Phys. 46(4B), 2454–2457 (2007).
[Crossref]

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Paik, J. R.

B. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. Hyun, and J. R. Paik, “Yoo, D. H. Lee, and K. Kim, “Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7µm pixel pitch,” Jpn. J. Appl. Phys. 46(4B), 2454–2457 (2007).
[Crossref]

Park, B. J.

B. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. Hyun, and J. R. Paik, “Yoo, D. H. Lee, and K. Kim, “Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7µm pixel pitch,” Jpn. J. Appl. Phys. 46(4B), 2454–2457 (2007).
[Crossref]

Park, J.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

Petit, S.

I. Djité, M. Estibeau, P. Magnan, G. Rolland, S. Petit, and O. Saint-Pé, “Theoretical models of modulation transfer function, quantum efficiency, and Crosstalk for CCD and CMOS image sensors,” IEEE Trans. Electron Dev. 59(3), 729–737 (2012).
[Crossref]

Prima, J.

F. Hirigoyen, J. Vaillant, E. Huss, F. Barbier, J. Prima, F. Roy, and D. Hérault, “1.1µm Backside Imager vs. Frontside Imager: an optics-dedicated FDTD approach,” in IEEE Intl. Image Sensor Workshop (2009), pp. 1–4.

Rolland, G.

I. Djité, M. Estibeau, P. Magnan, G. Rolland, S. Petit, and O. Saint-Pé, “Theoretical models of modulation transfer function, quantum efficiency, and Crosstalk for CCD and CMOS image sensors,” IEEE Trans. Electron Dev. 59(3), 729–737 (2012).
[Crossref]

Roy, F.

F. Hirigoyen, J. Vaillant, E. Huss, F. Barbier, J. Prima, F. Roy, and D. Hérault, “1.1µm Backside Imager vs. Frontside Imager: an optics-dedicated FDTD approach,” in IEEE Intl. Image Sensor Workshop (2009), pp. 1–4.

Saint-Pé, O.

I. Djité, M. Estibeau, P. Magnan, G. Rolland, S. Petit, and O. Saint-Pé, “Theoretical models of modulation transfer function, quantum efficiency, and Crosstalk for CCD and CMOS image sensors,” IEEE Trans. Electron Dev. 59(3), 729–737 (2012).
[Crossref]

Takao, T.

N. Watanabe, I. Tsunoda, T. Takao, K. Tanaka, and T. Asano, “Fabrication of back-side illuminated complementary metal oxide semiconductor image sensor using compliant bump,” Jpn. J. Appl. Phys. 49(4), 04DB01 (2010).
[Crossref]

Tanaka, K.

N. Watanabe, I. Tsunoda, T. Takao, K. Tanaka, and T. Asano, “Fabrication of back-side illuminated complementary metal oxide semiconductor image sensor using compliant bump,” Jpn. J. Appl. Phys. 49(4), 04DB01 (2010).
[Crossref]

Theuwissen, A. J. P.

A. J. P. Theuwissen, “CMOS Image sensors: State-of-the-art,” Solid-State Electron. 52(9), 1401–1406 (2008).
[Crossref]

Tsai, R. H.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

Tseng, C. H.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

Tsunoda, I.

N. Watanabe, I. Tsunoda, T. Takao, K. Tanaka, and T. Asano, “Fabrication of back-side illuminated complementary metal oxide semiconductor image sensor using compliant bump,” Jpn. J. Appl. Phys. 49(4), 04DB01 (2010).
[Crossref]

Vaillant, J.

F. Hirigoyen, J. Vaillant, E. Huss, F. Barbier, J. Prima, F. Roy, and D. Hérault, “1.1µm Backside Imager vs. Frontside Imager: an optics-dedicated FDTD approach,” in IEEE Intl. Image Sensor Workshop (2009), pp. 1–4.

Vial, A.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Wandell, B. A.

P. B. Catrysse and B. A. Wandell, “Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld,” Proc. SPIE 5678, 1–13 (2005).
[Crossref]

P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19(8), 1610–1620 (2002).
[Crossref] [PubMed]

Wang, C. S.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

Watanabe, N.

N. Watanabe, I. Tsunoda, T. Takao, K. Tanaka, and T. Asano, “Fabrication of back-side illuminated complementary metal oxide semiconductor image sensor using compliant bump,” Jpn. J. Appl. Phys. 49(4), 04DB01 (2010).
[Crossref]

Wuu, S. G.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

Yaung, D. N.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

Zhou, D.

IEEE Electron Device Lett. (1)

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, J. S. Lin, and C. S. Wang, “Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor,” IEEE Electron Device Lett. 25(1), 22–24 (2004).
[Crossref]

IEEE Trans. Electron Dev. (2)

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Dev. 50(1), 4–11 (2003).
[Crossref]

I. Djité, M. Estibeau, P. Magnan, G. Rolland, S. Petit, and O. Saint-Pé, “Theoretical models of modulation transfer function, quantum efficiency, and Crosstalk for CCD and CMOS image sensors,” IEEE Trans. Electron Dev. 59(3), 729–737 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (2)

N. Watanabe, I. Tsunoda, T. Takao, K. Tanaka, and T. Asano, “Fabrication of back-side illuminated complementary metal oxide semiconductor image sensor using compliant bump,” Jpn. J. Appl. Phys. 49(4), 04DB01 (2010).
[Crossref]

B. J. Park, J. Jung, C.-R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. Hyun, and J. R. Paik, “Yoo, D. H. Lee, and K. Kim, “Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7µm pixel pitch,” Jpn. J. Appl. Phys. 46(4B), 2454–2457 (2007).
[Crossref]

Opt. Commun. (1)

D.-W. Kang, H. Ahn, H. Kim, and J.-K. Lee, “Accurate transmittance analysis of liquid crystal displays using a rational fraction approach in the time domain,” Opt. Commun. 351, 155–159 (2015).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Belkhir, O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, “Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4), 046705 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

P. B. Catrysse and B. A. Wandell, “Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld,” Proc. SPIE 5678, 1–13 (2005).
[Crossref]

Solid-State Electron. (1)

A. J. P. Theuwissen, “CMOS Image sensors: State-of-the-art,” Solid-State Electron. 52(9), 1401–1406 (2008).
[Crossref]

Other (8)

A. Tournier, F. Leverd, L. Favennec, C. Perrot, L. Pinzelli, M. Gatefait, N. Cherault, D. Jeanjean, J.-P. Carrere, F. Hirigoyen, L. Grant, and F. Roy, “Pixel-to-pixel isolation by deep trench technology: application to CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2011), paper R5.

Y. Kitamura, H. Aikawa, K. Kakehi, T. Yousyou, K. Eda, T. Minami, S. Uya, Y. Takegawa, H. Yamashita, Y. Kohyama, and T. Asami, “Suppression of crosstalk by using backside deep trench isolation for 1.12μm backside illuminated CMOS image sensor,” IEEE Electron Devices Meeting 24, 537–540 (2012).

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, J. Yoo, Y. Lee, B. Park, S. Jung, J. Lee, T.-H. Lee, Y. Lee, J. Jung, J.-H. Kim, T.-C. Kim, H. Cho, D. Lee, and Y. Lee, “Advanced image sensor technology for pixel scaling down toward 1.0µm,” in IEEE Electron Devices Meeting (2008), pp. 1–4.

F. Hirigoyen, J. Vaillant, E. Huss, F. Barbier, J. Prima, F. Roy, and D. Hérault, “1.1µm Backside Imager vs. Frontside Imager: an optics-dedicated FDTD approach,” in IEEE Intl. Image Sensor Workshop (2009), pp. 1–4.

H.-K. Kim, B. Kim, J.-S. Kim, J. Park, Y. Lee, T. Jung, K. Lee, H. Jung, C.-R. Moon, J. Ahn, G. Hiroshige, C.-Y. Choi, and D. Lee, “Development of lensed color filter technology for higher SNR and lower crosstalk CMOS image sensor,” in IEEE Intl. Image Sensor Workshop (2013).

S. S. Kim, “Image sensor having lens type color filter and method for fabricating the same,” United States Patent 20150041939 A1 (2015).

A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (ArtechHouse, 2000).

http://www.daouincube.com/index.aspx .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics of a backside illuminated 1.12 μm pixel CMOS image sensor with DTI structure. The 3D views of (a) the flat G- and B-pixels and (b) their cross-section view in x-z plane compared to those of the pixels with P-CFs with r of 1 μm (R = 1), 0.5 μm (R = 0.25), and 0.25 μm (R = 0.25). The 3D views of (b) the flat G- and R-pixels and (d) their cross-section view in comparison with those of the pixels with P-CFs.
Fig. 2
Fig. 2 Plots of optical efficiency of the pixels employing the P-CF with r of 1 μm (R = 1), 0.5 μm (R = 0.5), 0.25 μm (R = 0.25) in comparison with the flat CF case for a light with an incidence angle of (a) 0°, (b) 15°, and (c) 30°. Here, CF_GB (or CF_GR) represents the efficiency of the adjacent G- and B –pixel (or the adjacent G- and R-pixel).
Fig. 3
Fig. 3 Plots of (a) efficiency variation and (b) crosstalk change as a function of the incidence angle for each B-, G-, and R–pixel adopting the P-CF with different values of r such as 1 μm (R = 1), 0.5 μm (R = 0.5), and 0.25 μm (R = 0.25), in comparison with the pixel with the flat CF.
Fig. 4
Fig. 4 Plots of (a) average efficiency and (b) crosstalk change over incidence angles depending on different shapes of the CFs: Flat CF, P-CF with r of 1 μm (R = 1), 0.5 μm (R = 0.5), and 0.25 μm (R = 0.25).
Fig. 5
Fig. 5 Cross-sectional |E|2 field distribution normalized to the incident field for the G-and B-pixels with the flat CF or the P-CFs with different values of r such as 1 μm (R = 1), 0.5 μm (R = 0.5), and 0.25 μm (R = 0.25) by varying the incidence angle from (a) 0°, (b) 15°, and (c) 30°. The field distributions were calculated for a light with a wavelength of 550 nm.
Fig. 6
Fig. 6 Cross-sectional |E|2 field distribution normalized to the incident field for the G-and R-pixels with the flat CF or the P-CFs with different values of r such as 1 μm (R = 1), 0.5 μm (R = 0.5), and 0.25 μm (R = 0.25) by varying the incidence angle from (a) 0°, (b) 15°, and (c) 30°. The field distributions were calculatedfor a light with a wavelength of 550 nm.

Tables (1)

Tables Icon

Table 1 Real (n) and imaginary (k) parts of the complex refractive indices of the materials.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε= ε + p=1 P ω p 2 i γ p ' ω ω 0p 2 i γ p ω ω 2 .

Metrics