Abstract

A new optical fiber sensor based on Bloch surface wave was theoretically proposed. An omnidirectional one-dimensional photonic crystal was designed as the multilayer coated on the outer surface of the optical fiber. Taking advantages of the omnidirectional reflection band, there is only surface mode resonance in the transmission spectrum, while guided mode resonance is avoided. The performance of the designed fiber sensor was analyzed theoretically with a ray transmission model. The presented sensor has comparable sensitivity but much higher figure of merit than other fiber sensors. The resolution can reach about 10−6 RIU or even higher.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors

Esteban Gonzalez-Valencia, Rodrigo Acuna Herrera, and Pedro Torres
Opt. Express 27(6) 8236-8245 (2019)

Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing

Tianyu Tu, Fufei Pang, Shan Zhu, Jiajing Cheng, Huanhuan Liu, Jianxiang Wen, and Tingyun Wang
Opt. Express 25(8) 9019-9027 (2017)

A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals

Alberto Sinibaldi, Riccardo Rizzo, Giovanni Figliozzi, Emiliano Descrovi, Norbert Danz, Peter Munzert, Aleksei Anopchenko, and Francesco Michelotti
Opt. Express 21(20) 23331-23344 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]
  3. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484 (2009).
    [Crossref]
  4. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  5. G. Nenninger, P. Tobiška, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
    [Crossref]
  6. R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
    [Crossref]
  7. P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
    [Crossref]
  8. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
    [Crossref] [PubMed]
  9. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
    [Crossref] [PubMed]
  10. A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74(4), 045128 (2006).
    [Crossref]
  11. M. Bergmair and K. Hingerl, “Band structure and coupled surface states in one-dimensional photonic crystals,” J. Opt. A 9(9), 339–344 (2007).
    [Crossref]
  12. Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based on coupling from photonic crystal waveguide,” J. Opt. 12(9), 095709 (2010).
    [Crossref]
  13. J. Barvestani, M. Kalafi, A. Soltani-Vala, and A. Namdar, “Backward surface electromagnetic waves in semi-infinite one-dimensional photonic crystals containing left-handed materials,” Phys. Rev. A 77(1), 013805 (2008).
    [Crossref]
  14. L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23(21), 27034–27045 (2015).
    [Crossref] [PubMed]
  15. W. M. Robertson, “Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays,” J. Lightwave Technol. 17(11), 2013–2017 (1999).
    [Crossref]
  16. Y. A. Vlasov, N. Moll, and S. J. McNab, “Observation of surface states in a truncated photonic crystal slab,” Opt. Lett. 29(18), 2175–2177 (2004).
    [Crossref] [PubMed]
  17. E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
    [Crossref] [PubMed]
  18. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
    [Crossref]
  19. Y. Wan, Z. Zheng, W. Kong, X. Zhao, Y. Liu, Y. Bian, and J. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express 20(8), 8998–9003 (2012).
    [Crossref] [PubMed]
  20. F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
    [Crossref] [PubMed]
  21. D. A. Shilkin, E. V. Lyubin, I. V. Soboleva, and A. A. Fedyanin, “Direct measurements of forces induced by Bloch surface waves in a one-dimensional photonic crystal,” Opt. Lett. 40(21), 4883–4886 (2015).
    [Crossref] [PubMed]
  22. F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Ríos, “Photonic crystal sensor based on surface waves for thin-film characterization,” Opt. Lett. 27(8), 646–648 (2002).
    [Crossref] [PubMed]
  23. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
    [Crossref]
  24. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
    [Crossref]
  25. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
    [Crossref] [PubMed]
  26. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
    [Crossref] [PubMed]
  27. A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express 3(10), 2405–2410 (2012).
    [Crossref] [PubMed]
  28. R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
    [Crossref] [PubMed]
  29. W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators B Chem. 193, 467–471 (2014).
    [Crossref]
  30. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
    [Crossref]
  31. J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
    [Crossref]
  32. D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
    [Crossref]
  33. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
    [Crossref]
  34. M. Roussey, E. Descrovi, M. Häyrinen, A. Angelini, M. Kuittinen, and S. Honkanen, “One-dimensional photonic crystals with cylindrical geometry,” Opt. Express 22(22), 27236–27241 (2014).
    [Crossref] [PubMed]
  35. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
    [Crossref] [PubMed]
  36. H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010).
  37. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
    [Crossref] [PubMed]
  38. Y. Zhao, F. Pang, Y. Dong, J. Wen, Z. Chen, and T. Wang, “Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
    [Crossref] [PubMed]
  39. Y. Matsuura, A. Hongo, M. Saito, and M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6(3), 423–427 (1989).
    [Crossref]
  40. A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12(1), 87–100 (2006).
    [Crossref]
  41. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
    [Crossref] [PubMed]
  42. W. Chen, W. Han, D. Abeysinghe, R. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13(1), 015003 (2010).
    [Crossref]
  43. R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, “An all-fiber laser generating cylindrical vector beam,” Opt. Express 18(10), 10834–10838 (2011).
    [Crossref] [PubMed]
  44. B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
    [Crossref] [PubMed]
  45. Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
    [Crossref] [PubMed]

2015 (3)

2014 (3)

2013 (3)

2012 (3)

2011 (2)

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, “An all-fiber laser generating cylindrical vector beam,” Opt. Express 18(10), 10834–10838 (2011).
[Crossref] [PubMed]

2010 (3)

Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based on coupling from photonic crystal waveguide,” J. Opt. 12(9), 095709 (2010).
[Crossref]

W. Chen, W. Han, D. Abeysinghe, R. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13(1), 015003 (2010).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

2009 (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484 (2009).
[Crossref]

2008 (2)

J. Barvestani, M. Kalafi, A. Soltani-Vala, and A. Namdar, “Backward surface electromagnetic waves in semi-infinite one-dimensional photonic crystals containing left-handed materials,” Phys. Rev. A 77(1), 013805 (2008).
[Crossref]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[Crossref] [PubMed]

2007 (5)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

M. Bergmair and K. Hingerl, “Band structure and coupled surface states in one-dimensional photonic crystals,” J. Opt. A 9(9), 339–344 (2007).
[Crossref]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

2006 (3)

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74(4), 045128 (2006).
[Crossref]

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12(1), 87–100 (2006).
[Crossref]

2005 (2)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

2004 (1)

2003 (2)

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (2)

2001 (1)

G. Nenninger, P. Tobiška, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[Crossref]

1999 (2)

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

1995 (1)

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
[Crossref]

1993 (1)

1991 (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

1989 (1)

1978 (1)

P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Abeysinghe, D.

W. Chen, W. Han, D. Abeysinghe, R. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13(1), 015003 (2010).
[Crossref]

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

Angelini, A.

Anopchenko, A.

Arjavalingam, G.

Ballarini, M.

A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express 3(10), 2405–2410 (2012).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Barvestani, J.

J. Barvestani, M. Kalafi, A. Soltani-Vala, and A. Namdar, “Backward surface electromagnetic waves in semi-infinite one-dimensional photonic crystals containing left-handed materials,” Phys. Rev. A 77(1), 013805 (2008).
[Crossref]

Bergmair, M.

M. Bergmair and K. Hingerl, “Band structure and coupled surface states in one-dimensional photonic crystals,” J. Opt. A 9(9), 339–344 (2007).
[Crossref]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484 (2009).
[Crossref]

Bezus, E. A.

Bian, Y.

Biener, G.

Bomzon, Z.

Brommer, K. D.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[Crossref] [PubMed]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Bykov, D. A.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Chen, L. W.

Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based on coupling from photonic crystal waveguide,” J. Opt. 12(9), 095709 (2010).
[Crossref]

Chen, W.

W. Chen, W. Han, D. Abeysinghe, R. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13(1), 015003 (2010).
[Crossref]

Chen, Z.

Cho, A.

P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Danz, N.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Descrovi, E.

M. Roussey, E. Descrovi, M. Häyrinen, A. Angelini, M. Kuittinen, and S. Honkanen, “One-dimensional photonic crystals with cylindrical geometry,” Opt. Express 22(22), 27236–27241 (2014).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express 3(10), 2405–2410 (2012).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[Crossref] [PubMed]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[Crossref]

Digregorio, G.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Dominici, L.

Dong, Y.

Dorofeenko, A. V.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74(4), 045128 (2006).
[Crossref]

Doskolovich, L. L.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Erokhin, S. G.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74(4), 045128 (2006).
[Crossref]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Fedyanin, A. A.

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Frascella, F.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[Crossref]

Gaspar-Armenta, J.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Geobaldo, F.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[Crossref]

Giorgis, F.

Granovsky, A. B.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74(4), 045128 (2006).
[Crossref]

Gu, C.

Gupta, B. D.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12(1), 87–100 (2006).
[Crossref]

Han, W.

W. Chen, W. Han, D. Abeysinghe, R. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13(1), 015003 (2010).
[Crossref]

Hasman, E.

Häyrinen, M.

Hingerl, K.

M. Bergmair and K. Hingerl, “Band structure and coupled surface states in one-dimensional photonic crystals,” J. Opt. A 9(9), 339–344 (2007).
[Crossref]

Homola, J.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

G. Nenninger, P. Tobiška, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
[Crossref]

Hongo, A.

Honkanen, S.

Hsu, Y. C.

Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based on coupling from photonic crystal waveguide,” J. Opt. 12(9), 095709 (2010).
[Crossref]

Inoue, M.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74(4), 045128 (2006).
[Crossref]

Jha, R.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Jiang, Y. X.

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[Crossref] [PubMed]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Kalafi, M.

J. Barvestani, M. Kalafi, A. Soltani-Vala, and A. Namdar, “Backward surface electromagnetic waves in semi-infinite one-dimensional photonic crystals containing left-handed materials,” Phys. Rev. A 77(1), 013805 (2008).
[Crossref]

Kleiner, V.

Kong, W.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators B Chem. 193, 467–471 (2014).
[Crossref]

Y. Wan, Z. Zheng, W. Kong, X. Zhao, Y. Liu, Y. Bian, and J. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express 20(8), 8998–9003 (2012).
[Crossref] [PubMed]

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

Kuittinen, M.

Li, S.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators B Chem. 193, 467–471 (2014).
[Crossref]

Li, Z. Y.

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[Crossref] [PubMed]

Lin, L. L.

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[Crossref] [PubMed]

Lisyansky, A. A.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74(4), 045128 (2006).
[Crossref]

Liu, B. H.

Liu, J.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators B Chem. 193, 467–471 (2014).
[Crossref]

Y. Wan, Z. Zheng, W. Kong, X. Zhao, Y. Liu, Y. Bian, and J. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express 20(8), 8998–9003 (2012).
[Crossref] [PubMed]

Liu, Y.

Lopez-Ríos, T.

Lyubin, E. V.

Maillart, E.

Mandracci, P.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Matsuura, Y.

McNab, S. J.

Meade, R. D.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[Crossref] [PubMed]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Merzlikin, A. M.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74(4), 045128 (2006).
[Crossref]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Michelotti, F.

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, and F. Michelotti, “Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors,” Biomed. Opt. Express 3(10), 2405–2410 (2012).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[Crossref] [PubMed]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[Crossref]

Ming, H.

Miyagi, M.

Moll, N.

Monzón-Hernández, D.

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

Munzert, P.

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Musi, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Namdar, A.

J. Barvestani, M. Kalafi, A. Soltani-Vala, and A. Namdar, “Backward surface electromagnetic waves in semi-infinite one-dimensional photonic crystals containing left-handed materials,” Phys. Rev. A 77(1), 013805 (2008).
[Crossref]

Nelson, R.

W. Chen, W. Han, D. Abeysinghe, R. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13(1), 015003 (2010).
[Crossref]

Nenninger, G.

G. Nenninger, P. Tobiška, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[Crossref]

Paeder, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Pang, F.

Ramos-Mendieta, F.

Rappe, A. M.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[Crossref] [PubMed]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Regalado, L. E.

Rivolo, P.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

Rizzo, R.

Robertson, W. M.

Roussey, M.

Saito, M.

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Sciacca, B.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[Crossref]

Sharma, A. K.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12(1), 87–100 (2006).
[Crossref]

Shi, Y. W.

Shilkin, D. A.

Shinn, M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[Crossref]

Sinibaldi, A.

Slavík, R.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Soboleva, I. V.

Soltani-Vala, A.

J. Barvestani, M. Kalafi, A. Soltani-Vala, and A. Namdar, “Backward surface electromagnetic waves in semi-infinite one-dimensional photonic crystals containing left-handed materials,” Phys. Rev. A 77(1), 013805 (2008).
[Crossref]

Sonntag, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Summonte, C.

Tang, X. L.

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Tobiška, P.

G. Nenninger, P. Tobiška, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[Crossref]

Villa, F.

Villatoro, J.

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

Vinogradov, A. P.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74(4), 045128 (2006).
[Crossref]

Vlasov, Y. A.

Wächter, C.

Wan, Y.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators B Chem. 193, 467–471 (2014).
[Crossref]

Y. Wan, Z. Zheng, W. Kong, X. Zhao, Y. Liu, Y. Bian, and J. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express 20(8), 8998–9003 (2012).
[Crossref] [PubMed]

Wang, A.

Wang, T.

Wen, J.

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Xu, L.

Yariv, A.

P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Yee, S.

G. Nenninger, P. Tobiška, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yeh, P.

P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Zhan, Q.

W. Chen, W. Han, D. Abeysinghe, R. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13(1), 015003 (2010).
[Crossref]

Zhao, X.

Zhao, Y.

Zheng, R.

Zheng, Z.

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators B Chem. 193, 467–471 (2014).
[Crossref]

Y. Wan, Z. Zheng, W. Kong, X. Zhao, Y. Liu, Y. Bian, and J. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express 20(8), 8998–9003 (2012).
[Crossref] [PubMed]

Zhu, X. S.

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484 (2009).
[Crossref]

Anal. Chem. (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett. 99(4), 043302 (2011).
[Crossref]

P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Biomed. Opt. Express (1)

IEEE Sens. J. (1)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (2)

Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based on coupling from photonic crystal waveguide,” J. Opt. 12(9), 095709 (2010).
[Crossref]

W. Chen, W. Han, D. Abeysinghe, R. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13(1), 015003 (2010).
[Crossref]

J. Opt. A (1)

M. Bergmair and K. Hingerl, “Band structure and coupled surface states in one-dimensional photonic crystals,” J. Opt. A 9(9), 339–344 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (8)

L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23(21), 27034–27045 (2015).
[Crossref] [PubMed]

M. Roussey, E. Descrovi, M. Häyrinen, A. Angelini, M. Kuittinen, and S. Honkanen, “One-dimensional photonic crystals with cylindrical geometry,” Opt. Express 22(22), 27236–27241 (2014).
[Crossref] [PubMed]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved Bloch surface wave biosensors,” Opt. Express 22(19), 23202–23214 (2014).
[Crossref] [PubMed]

Y. Wan, Z. Zheng, W. Kong, X. Zhao, Y. Liu, Y. Bian, and J. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express 20(8), 8998–9003 (2012).
[Crossref] [PubMed]

Y. Zhao, F. Pang, Y. Dong, J. Wen, Z. Chen, and T. Wang, “Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
[Crossref] [PubMed]

R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, “An all-fiber laser generating cylindrical vector beam,” Opt. Express 18(10), 10834–10838 (2011).
[Crossref] [PubMed]

B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12(1), 87–100 (2006).
[Crossref]

Opt. Lett. (8)

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[Crossref] [PubMed]

Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

D. A. Shilkin, E. V. Lyubin, I. V. Soboleva, and A. A. Fedyanin, “Direct measurements of forces induced by Bloch surface waves in a one-dimensional photonic crystal,” Opt. Lett. 40(21), 4883–4886 (2015).
[Crossref] [PubMed]

F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Ríos, “Photonic crystal sensor based on surface waves for thin-film characterization,” Opt. Lett. 27(8), 646–648 (2002).
[Crossref] [PubMed]

Y. A. Vlasov, N. Moll, and S. J. McNab, “Observation of surface states in a truncated photonic crystal slab,” Opt. Lett. 29(18), 2175–2177 (2004).
[Crossref] [PubMed]

E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008).
[Crossref] [PubMed]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[Crossref] [PubMed]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Phys. Rev. A (1)

J. Barvestani, M. Kalafi, A. Soltani-Vala, and A. Namdar, “Backward surface electromagnetic waves in semi-infinite one-dimensional photonic crystals containing left-handed materials,” Phys. Rev. A 77(1), 013805 (2008).
[Crossref]

Phys. Rev. B (1)

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74(4), 045128 (2006).
[Crossref]

Phys. Rev. B Condens. Matter (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[Crossref] [PubMed]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Sens. Actuators B Chem. (8)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators B Chem. 193, 467–471 (2014).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
[Crossref]

D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B Chem. 115(1), 227–231 (2006).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

G. Nenninger, P. Tobiška, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[Crossref]

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

Other (1)

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of 1DPC structure for exciting BSW.
Fig. 2
Fig. 2 Band structure of 1DPC. The left side represents PPL, while the right side represents SPL. (a) Band diagram presented in ω-β relationship. The slanted black line stands for the light line in the prism with refractive index n0 = 1.445. The red line stands for the critical condition for producing ORB. The blue line stands for the Brewster line, which crosses the intersection point of the boundaries of band gap of PPL. The gray areas refer to the energy band. (b) While n0 = 1.445, the band gap varies with the angle of incidence. The gray areas refer to band gaps, and the black area denotes ORB. (c) Same as above, except for n0 = 1.837, which is the critical condition. The range of ORB reduces to zero in this circumstance. (d) Same as above, except for n0 = 2.135, which is the case of the Brewster line. Band gap of PPL vanishes as the incident angle increases to 90°.
Fig. 3
Fig. 3 Reflection spectrum of designed 1DPC. Blue and red lines represent the reflectance of SPL and PPL, respectively.
Fig. 4
Fig. 4 Thickness of cap layer affecting the resonant condition of BSW. (a) Reflectance of SPL varying with thickness of cap layer. (b) Reflectance of PPL varying with thickness of cap layer.
Fig. 5
Fig. 5 Schematic and ray transmission model of designed fiber sensor.
Fig. 6
Fig. 6 Spectrum of designed fiber sensor.
Fig. 7
Fig. 7 Detectibility of resonant dips for SPL and PPL. (a) Influence of divergence angle on FWHM and minimunm transmittance, with period number set as six. (b) Influence of number of periods on FWHM and minimum transmittance, with divergance angle equalling 3°. Blue and red lines stand for SPL and PPL, while circles and triangles denote FWHM and minimum transmittance, respectively.
Fig. 8
Fig. 8 Dependence of RW on RI of sensed medium for both SPL and PPL. The two inset graphs indicate the transmission spectrum under the corresponding sensed medium.
Fig. 9
Fig. 9 Predicted detection spectrum under transmittance-RI relationship. The inset graph shows the wavelength spectrum at corresponding points.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

cospd=cos κ 1 d 1 cos κ 2 d 2 1 2 ( η 1 η 2 + η 2 η 1 )sin κ 1 d 1 sin κ 2 d 2 .
| cos κ 1 d 1 cos κ 2 d 2 1 2 ( η 1 η 2 + η 2 η 1 )sin κ 1 d 1 sin κ 2 d 2 |>1.
M i =[ cos κ i d i isin κ i d i η i i η i sin κ i d i cos κ i d i ].
M= M i = ( M 1 M 2 ) N M C .
r= ( M 11 + M 21 η m ) η 0 ( M 21 + M 22 η m ) ( M 11 + M 21 η m ) η 0 +( M 21 + M 22 η m ) .
P In ( φ )= P 0 exp( φ 2 φ 0 2 ),
P Out = P In ( φ ) R N ( φ ),
T= 0 π 2 P Out ( φ ) dφ 0 π 2 P In ( φ )dφ .

Metrics