Abstract

This paper reports a novel approach to the direct observation of Bloch surface waves, wherein a layer of fluorescent material is deposited directly on the surface of a semi-infinite periodic layered cell. A set of surface nano-gratings is used to couple pumping light to Bloch surface waves, while the sample is rotated until the pumping light meets the quasi-phase matching conditions. This study investigated the directional propagation of waves on stripe and circular one-dimensional grating structures by analyzing the dispersion relationship of the first two eigen modes. Our results demonstrate the efficacy of the proposed scheme in visualizing Bloch surface waves, which could be extended to a variety of other devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing

Tianyu Tu, Fufei Pang, Shan Zhu, Jiajing Cheng, Huanhuan Liu, Jianxiang Wen, and Tingyun Wang
Opt. Express 25(8) 9019-9027 (2017)

Experimental evidence of Bloch surface waves on photonic crystals with thin-film LiNbO3 as a top layer

Tatiana Kovalevich, Djaffar Belharet, Laurent Robert, Myun-Sik Kim, Hans Peter Herzig, Thierry Grosjean, and Maria-Pilar Bernal
Photon. Res. 5(6) 649-653 (2017)

Analysis of Bloch-surface-wave assisted diffraction-based biosensors

Marco Liscidini and J. E. Sipe
J. Opt. Soc. Am. B 26(2) 279-289 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch Waves at the Surface of a Photonic Crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
    [Crossref] [PubMed]
  2. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
    [Crossref] [PubMed]
  3. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  4. W. L. Bloss, “Surface States of a Semi-Infinite Superlattice,” Phys. Rev. B Condens. Matter 44(15), 8035–8042 (1991).
    [Crossref] [PubMed]
  5. F. Ramos-Mendieta and P. Halevi, “Electromagnetic surface modes of a dielectric superlattice: The supercell method,” J. Opt. Soc. Am. B 14(2), 370–381 (1997).
    [Crossref]
  6. M. L. Bah, A. Akjouj, E. H. El Boudouti, B. Djafari Rouhani, and L. Dobrzynski, “Surface and interface optical waves in superlattices: Transverse electric localized and resonant modes,” J. Phys.- Condens. Mat. 8(23), 4171–4188 (1996).
    [Crossref]
  7. L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23(21), 27034–27045 (2015).
    [Crossref] [PubMed]
  8. E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
    [Crossref]
  9. C. W. Hsu, B. Zhen, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
    [Crossref]
  10. C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
    [Crossref] [PubMed]
  11. N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes,” Appl. Phys. Lett. 80(19), 3491–3493 (2002).
    [Crossref]
  12. G. Lerario, A. Cannavale, D. Ballarini, L. Dominici, M. De Giorgi, M. Liscidini, D. Gerace, D. Sanvitto, and G. Gigli, “Room temperature Bloch surface wave polaritons,” Opt. Lett. 39(7), 2068–2071 (2014).
    [Crossref] [PubMed]
  13. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  14. L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
    [Crossref]
  15. M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B 32(3), 431–438 (2015).
    [Crossref]
  16. A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis, and E. Descrovi, “Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources,” ACS Photonics 1(7), 612–617 (2014).
    [Crossref]
  17. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
    [Crossref]
  18. K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
    [Crossref] [PubMed]
  19. A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173, 79–84 (2012).
    [Crossref]
  20. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
    [Crossref] [PubMed]
  21. I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56(3), 1601–1611 (1997).
    [Crossref]
  22. D. Marcuse, and American Telephone and Telegraph Company., chp.1, Theory of dielectric optical waveguides (Academic Press, Boston, 1991).

2016 (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (4)

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis, and E. Descrovi, “Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources,” ACS Photonics 1(7), 612–617 (2014).
[Crossref]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

G. Lerario, A. Cannavale, D. Ballarini, L. Dominici, M. De Giorgi, M. Liscidini, D. Gerace, D. Sanvitto, and G. Gigli, “Room temperature Bloch surface wave polaritons,” Opt. Lett. 39(7), 2068–2071 (2014).
[Crossref] [PubMed]

2013 (3)

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

2012 (2)

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173, 79–84 (2012).
[Crossref]

2010 (1)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

2002 (1)

N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes,” Appl. Phys. Lett. 80(19), 3491–3493 (2002).
[Crossref]

1998 (1)

1997 (2)

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56(3), 1601–1611 (1997).
[Crossref]

F. Ramos-Mendieta and P. Halevi, “Electromagnetic surface modes of a dielectric superlattice: The supercell method,” J. Opt. Soc. Am. B 14(2), 370–381 (1997).
[Crossref]

1996 (1)

M. L. Bah, A. Akjouj, E. H. El Boudouti, B. Djafari Rouhani, and L. Dobrzynski, “Surface and interface optical waves in superlattices: Transverse electric localized and resonant modes,” J. Phys.- Condens. Mat. 8(23), 4171–4188 (1996).
[Crossref]

1991 (2)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch Waves at the Surface of a Photonic Crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

W. L. Bloss, “Surface States of a Semi-Infinite Superlattice,” Phys. Rev. B Condens. Matter 44(15), 8035–8042 (1991).
[Crossref] [PubMed]

Akjouj, A.

M. L. Bah, A. Akjouj, E. H. El Boudouti, B. Djafari Rouhani, and L. Dobrzynski, “Surface and interface optical waves in superlattices: Transverse electric localized and resonant modes,” J. Phys.- Condens. Mat. 8(23), 4171–4188 (1996).
[Crossref]

Angelini, A.

A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis, and E. Descrovi, “Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources,” ACS Photonics 1(7), 612–617 (2014).
[Crossref]

Bah, M. L.

M. L. Bah, A. Akjouj, E. H. El Boudouti, B. Djafari Rouhani, and L. Dobrzynski, “Surface and interface optical waves in superlattices: Transverse electric localized and resonant modes,” J. Phys.- Condens. Mat. 8(23), 4171–4188 (1996).
[Crossref]

Ballarini, D.

Ballarini, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Barakat, E.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

Baughman, R. H.

N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes,” Appl. Phys. Lett. 80(19), 3491–3493 (2002).
[Crossref]

Bezus, E. A.

L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23(21), 27034–27045 (2015).
[Crossref] [PubMed]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Bloss, W. L.

W. L. Bloss, “Surface States of a Semi-Infinite Superlattice,” Phys. Rev. B Condens. Matter 44(15), 8035–8042 (1991).
[Crossref] [PubMed]

Boarino, L.

A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis, and E. Descrovi, “Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources,” ACS Photonics 1(7), 612–617 (2014).
[Crossref]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch Waves at the Surface of a Photonic Crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Brunazzo, D.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Bykov, D. A.

L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23(21), 27034–27045 (2015).
[Crossref] [PubMed]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Cannavale, A.

Chua, S. L.

C. W. Hsu, B. Zhen, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Danz, N.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Davis, C. C.

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56(3), 1601–1611 (1997).
[Crossref]

De Giorgi, M.

De Leo, N.

A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis, and E. Descrovi, “Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources,” ACS Photonics 1(7), 612–617 (2014).
[Crossref]

Descrovi, E.

A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis, and E. Descrovi, “Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources,” ACS Photonics 1(7), 612–617 (2014).
[Crossref]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Di Francesco, J.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

Djafari Rouhani, B.

M. L. Bah, A. Akjouj, E. H. El Boudouti, B. Djafari Rouhani, and L. Dobrzynski, “Surface and interface optical waves in superlattices: Transverse electric localized and resonant modes,” J. Phys.- Condens. Mat. 8(23), 4171–4188 (1996).
[Crossref]

Dobrzynski, L.

M. L. Bah, A. Akjouj, E. H. El Boudouti, B. Djafari Rouhani, and L. Dobrzynski, “Surface and interface optical waves in superlattices: Transverse electric localized and resonant modes,” J. Phys.- Condens. Mat. 8(23), 4171–4188 (1996).
[Crossref]

Dominici, L.

G. Lerario, A. Cannavale, D. Ballarini, L. Dominici, M. De Giorgi, M. Liscidini, D. Gerace, D. Sanvitto, and G. Gigli, “Room temperature Bloch surface wave polaritons,” Opt. Lett. 39(7), 2068–2071 (2014).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Doskolovich, L. L.

L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23(21), 27034–27045 (2015).
[Crossref] [PubMed]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Dostálek, J.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

El Boudouti, E. H.

M. L. Bah, A. Akjouj, E. H. El Boudouti, B. Djafari Rouhani, and L. Dobrzynski, “Surface and interface optical waves in superlattices: Transverse electric localized and resonant modes,” J. Phys.- Condens. Mat. 8(23), 4171–4188 (1996).
[Crossref]

Enrico, E.

A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis, and E. Descrovi, “Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources,” ACS Photonics 1(7), 612–617 (2014).
[Crossref]

Eradat, N.

N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes,” Appl. Phys. Lett. 80(19), 3491–3493 (2002).
[Crossref]

Fan, S.

Farmer, A.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173, 79–84 (2012).
[Crossref]

Fink, Y.

Friedli, A. C.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173, 79–84 (2012).
[Crossref]

Gerace, D.

Gigli, G.

Giorgis, F.

A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis, and E. Descrovi, “Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources,” ACS Photonics 1(7), 612–617 (2014).
[Crossref]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Halevi, P.

Herzig, H. P.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Hsu, C. W.

C. W. Hsu, B. Zhen, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Hvozdara, L.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
[Crossref] [PubMed]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch Waves at the Surface of a Photonic Crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

Jonas, U.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Knoll, W.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Lerario, G.

Liscidini, M.

Mait, J.

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56(3), 1601–1611 (1997).
[Crossref]

Mandracci, P.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Martin, O. J. F.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Mateescu, A.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Mazzoni, D. L.

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56(3), 1601–1611 (1997).
[Crossref]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch Waves at the Surface of a Photonic Crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Menotti, M.

Michelotti, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Munzert, P.

A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis, and E. Descrovi, “Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources,” ACS Photonics 1(7), 612–617 (2014).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Quaglio, M.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Raikh, M. E.

N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes,” Appl. Phys. Lett. 80(19), 3491–3493 (2002).
[Crossref]

Ramos-Mendieta, F.

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch Waves at the Surface of a Photonic Crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

Robertson, W. M.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173, 79–84 (2012).
[Crossref]

Sanvitto, D.

Scaltrito, L.

A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis, and E. Descrovi, “Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources,” ACS Photonics 1(7), 612–617 (2014).
[Crossref]

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Sfez, T.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Sinibaldi, A.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Sivachenko, A. Y.

N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes,” Appl. Phys. Lett. 80(19), 3491–3493 (2002).
[Crossref]

Smolyaninov, I. I.

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56(3), 1601–1611 (1997).
[Crossref]

Soifer, V. A.

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Soljacic, M.

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

Sonntag, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Toma, K.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Toma, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Vardeny, Z. V.

N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes,” Appl. Phys. Lett. 80(19), 3491–3493 (2002).
[Crossref]

Winn, J. N.

Wright, S. M.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173, 79–84 (2012).
[Crossref]

Yu, L. B.

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

Zakhidov, A. A.

N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes,” Appl. Phys. Lett. 80(19), 3491–3493 (2002).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

ACS Photonics (1)

A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis, and E. Descrovi, “Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources,” ACS Photonics 1(7), 612–617 (2014).
[Crossref]

Appl. Phys. Lett. (1)

N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes,” Appl. Phys. Lett. 80(19), 3491–3493 (2002).
[Crossref]

Biosens. Bioelectron. (1)

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostálek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys.- Condens. Mat. (1)

M. L. Bah, A. Akjouj, E. H. El Boudouti, B. Djafari Rouhani, and L. Dobrzynski, “Surface and interface optical waves in superlattices: Transverse electric localized and resonant modes,” J. Phys.- Condens. Mat. 8(23), 4171–4188 (1996).
[Crossref]

JETP Lett. (1)

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” JETP Lett. 99(2), 63–66 (2014).
[Crossref]

Light Sci. Appl. (2)

C. W. Hsu, B. Zhen, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

L. B. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3(1), e124 (2014).
[Crossref]

Nano Lett. (1)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Nature (1)

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis, “Experimental study of surface-plasmon scattering by individual surface defects,” Phys. Rev. B 56(3), 1601–1611 (1997).
[Crossref]

Phys. Rev. B Condens. Matter (2)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch Waves at the Surface of a Photonic Crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[Crossref] [PubMed]

W. L. Bloss, “Surface States of a Semi-Infinite Superlattice,” Phys. Rev. B Condens. Matter 44(15), 8035–8042 (1991).
[Crossref] [PubMed]

Sens. Actuators B Chem. (2)

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173, 79–84 (2012).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174, 292–298 (2012).
[Crossref]

Other (2)

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

D. Marcuse, and American Telephone and Telegraph Company., chp.1, Theory of dielectric optical waveguides (Academic Press, Boston, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 One-dimensional photonic substrate using a single cap layer with a thickness different from that of the periodic layers on the substrate: (a) PMMA stripe grating on substrate; (b) circular PMMA grating on substrate
Fig. 2
Fig. 2 Outward emission of rays through grating in which laser is rotated to various angles ϕ with θ set to 58°. The region within the white dashed lines includes the pattern from the stripe grating. TM-polarized laser light incidence and the measured direction of emissions are expressed as (ϕ,ψ) = (a) (56°,21.5°) (b) (38°,32.0°) (c) (27°,38.5°) (d) (18°, 42.0°) (e) (13°,40.5°) (f) (5°,40.0°) (g) momentum matching diagram.
Fig. 3
Fig. 3 Emission patterns from circular PMMA gratings on various substrates: (a) 1D PC substrate, (b) Au film substrate; (c) image intensity profile of region within white dashed line in (a) where path 1 is the first order mode of BSW and path 2 is the second order mode, with low field intensity in the fluorescent layer. Incident angle θ was set to 58°.
Fig. 4
Fig. 4 Resolved dispersion curves on various surfaces. The black squares indicate the light line in air. The red circles indicate the first mode at the interface between air and the 1D PC structure. The blue upright triangles indicate the first mode at the PMMA/1D PC interface. The pink downward triangles and the green diamonds indicate the 2nd mode at the air/1D PC and PMMA/1D PC interfaces, respectively. The center and the right most curves indicate dispersion associated with the 1st and 2nd modes of an equivalent asymmetrical slab waveguide. The “star” symbols are located at the pumping wavelength whereas the “cross” is located at 620nm, i.e., the emission wavelength.
Fig. 5
Fig. 5 Comparision between ψ formulated from vector analysis and ψ emission measured in Fig. 2.
Fig. 6
Fig. 6 H field profiles of (a) 1st mode at 532nm (b) 2nd mode at 620nm.
Fig. 7
Fig. 7 Phase matching conditions of circular gratings on 1D PC substrate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k BSW 2 = ( k 0 sinθcosϕ) 2 + ( k 0 sinθsinϕ+ m2π Λ ) 2

Metrics