Abstract

When an electric field is applied to in-plane switching (IPS) and fringe-field switching (FFS) cells with zero rubbing angle, virtual walls are built such that the switching speed can be increased several-fold. In this study, we investigate the dependence on the interdigitated electrode structure of the electro-optical characteristics of IPS and FFS cells with zero rubbing angle. We found that when the rubbing angle is zero, the single-layered IPS electrode structure provides a higher transmittance than the double-layered FFS electrode structure because of the reduced width of dead zones at domain boundaries between interdigitated electrodes. Single-layered IPS electrodes not only minimize the transmittance decrease but also provide a shorter response time than double-layered FFS electrodes, although the operating voltage is higher and fabrication requires a more precise rubbing process. The transmittance decrease due to the zero rubbing angle in an IPS cell can be minimized using optimization of the electrode structure while retaining a short response time.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field

Tae-Hoon Choi, Jae-Hyeon Woo, Yeongyu Choi, and Tae-Hoon Yoon
Opt. Express 24(18) 20993-21000 (2016)

Interdigitated pixel electrodes with alternating tilts for fast fringe-field switching of liquid crystals

Tae-Hoon Choi, Jae-Hyeon Woo, Yeongyu Choi, and Tae-Hoon Yoon
Opt. Express 24(24) 27569-27576 (2016)

Electro-optical characteristics of a chiral hybrid in-plane switching liquid crystal mode for high brightness

Jin Seog Gwag, Kyunghwa Sohn, Young-Ki Kim, and Jae-Hoon Kim
Opt. Express 16(16) 12220-12226 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
    [Crossref]
  2. M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
    [Crossref]
  3. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
    [Crossref]
  4. D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, future of fringe-field switching liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
    [Crossref]
  5. J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S.-T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
    [Crossref]
  6. S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in-plane-switching liquid crystal display,” J. Inf. Disp. 16(1), 1–10 (2015).
    [Crossref]
  7. S. D. Brotherton, Introduction to Thin Film Transistors: Physics and Technology of TFTs. New York, NY, USA: Springer (2013).
  8. X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
    [Crossref]
  9. Z. Ge, S.-T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
    [Crossref]
  10. Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
    [Crossref]
  11. M. J. Escuti, C. C. Bowley, G. P. Crawford, and S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75(21), 3264–3266 (1999).
    [Crossref]
  12. T.-H. Choi, Y. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “Cell gap effects on electro-optic performance of a polymer-stabilized liquid crystal cell,” IEEE Photonics Technol. Lett. 28(10), 1138–1141 (2016).
    [Crossref]
  13. X. Zhou, G. Qin, Y. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
    [Crossref]
  14. H. Kim and J.-H. Lee, “Fast falling time of fringe-field-switching negative dielectric anisotropy liquid crystal achieved by inserting vertical walls,” Appl. Opt. 54(5), 1046–1050 (2015).
    [Crossref] [PubMed]
  15. T.-H. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “A liquid crystal cell with double-side protrusion electrodes for fast response and low-voltage operation,” Liq. Cryst. 43, 411–416 (2016).
  16. T. Matsushima, K. Okazaki, Y. Yang, and K. Takizawa, “New fast response time in-plane switching liquid crystal mode,” SID Int. Symp. Dig. Tech. Pap. 46, 648–651 (2015).
    [Crossref]
  17. T.-H. Choi, S.-W. Oh, Y.-J. Park, Y. Choi, and T.-H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls,” Sci. Rep. 6, 27936 (2016).
    [Crossref] [PubMed]
  18. S. Aratani, H. Klausmann, M. Oh-e, M. Ohta, K. Ashizawa, K. Yanagawa, and K. Kondo, “Complete suppression of color shift in in-plane switching mode liquid crystal displays with a multidomain structure obtained by unidirectional rubbing,” Jpn. J. Appl. Phys. 36(Part 2, No. 1A/B), L27–L29 (1997).
    [Crossref]
  19. Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37(Part 1, No. 9A), 4822–4828 (1998).
    [Crossref]

2016 (3)

T.-H. Choi, Y. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “Cell gap effects on electro-optic performance of a polymer-stabilized liquid crystal cell,” IEEE Photonics Technol. Lett. 28(10), 1138–1141 (2016).
[Crossref]

T.-H. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “A liquid crystal cell with double-side protrusion electrodes for fast response and low-voltage operation,” Liq. Cryst. 43, 411–416 (2016).

T.-H. Choi, S.-W. Oh, Y.-J. Park, Y. Choi, and T.-H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls,” Sci. Rep. 6, 27936 (2016).
[Crossref] [PubMed]

2015 (3)

X. Zhou, G. Qin, Y. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
[Crossref]

H. Kim and J.-H. Lee, “Fast falling time of fringe-field-switching negative dielectric anisotropy liquid crystal achieved by inserting vertical walls,” Appl. Opt. 54(5), 1046–1050 (2015).
[Crossref] [PubMed]

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in-plane-switching liquid crystal display,” J. Inf. Disp. 16(1), 1–10 (2015).
[Crossref]

2014 (1)

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, future of fringe-field switching liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

2011 (1)

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

2008 (2)

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S.-T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Z. Ge, S.-T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

2007 (1)

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

1999 (1)

M. J. Escuti, C. C. Bowley, G. P. Crawford, and S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75(21), 3264–3266 (1999).
[Crossref]

1998 (2)

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37(Part 1, No. 9A), 4822–4828 (1998).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

1997 (1)

S. Aratani, H. Klausmann, M. Oh-e, M. Ohta, K. Ashizawa, K. Yanagawa, and K. Kondo, “Complete suppression of color shift in in-plane switching mode liquid crystal displays with a multidomain structure obtained by unidirectional rubbing,” Jpn. J. Appl. Phys. 36(Part 2, No. 1A/B), L27–L29 (1997).
[Crossref]

1996 (1)

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

1995 (1)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Ahn, S. H.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, future of fringe-field switching liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

Ahn, Y. J.

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S.-T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Aratani, S.

S. Aratani, H. Klausmann, M. Oh-e, M. Ohta, K. Ashizawa, K. Yanagawa, and K. Kondo, “Complete suppression of color shift in in-plane switching mode liquid crystal displays with a multidomain structure obtained by unidirectional rubbing,” Jpn. J. Appl. Phys. 36(Part 2, No. 1A/B), L27–L29 (1997).
[Crossref]

Ashizawa, K.

S. Aratani, H. Klausmann, M. Oh-e, M. Ohta, K. Ashizawa, K. Yanagawa, and K. Kondo, “Complete suppression of color shift in in-plane switching mode liquid crystal displays with a multidomain structure obtained by unidirectional rubbing,” Jpn. J. Appl. Phys. 36(Part 2, No. 1A/B), L27–L29 (1997).
[Crossref]

Bowley, C. C.

M. J. Escuti, C. C. Bowley, G. P. Crawford, and S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75(21), 3264–3266 (1999).
[Crossref]

Chen, Y.

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Choi, T.-H.

T.-H. Choi, Y. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “Cell gap effects on electro-optic performance of a polymer-stabilized liquid crystal cell,” IEEE Photonics Technol. Lett. 28(10), 1138–1141 (2016).
[Crossref]

T.-H. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “A liquid crystal cell with double-side protrusion electrodes for fast response and low-voltage operation,” Liq. Cryst. 43, 411–416 (2016).

T.-H. Choi, S.-W. Oh, Y.-J. Park, Y. Choi, and T.-H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls,” Sci. Rep. 6, 27936 (2016).
[Crossref] [PubMed]

Choi, Y.

T.-H. Choi, S.-W. Oh, Y.-J. Park, Y. Choi, and T.-H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls,” Sci. Rep. 6, 27936 (2016).
[Crossref] [PubMed]

T.-H. Choi, Y. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “Cell gap effects on electro-optic performance of a polymer-stabilized liquid crystal cell,” IEEE Photonics Technol. Lett. 28(10), 1138–1141 (2016).
[Crossref]

Crawford, G. P.

M. J. Escuti, C. C. Bowley, G. P. Crawford, and S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75(21), 3264–3266 (1999).
[Crossref]

Dong, Y.

X. Zhou, G. Qin, Y. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
[Crossref]

Escuti, M. J.

M. J. Escuti, C. C. Bowley, G. P. Crawford, and S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75(21), 3264–3266 (1999).
[Crossref]

Ge, Z.

Z. Ge, S.-T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

Jung, J. H.

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S.-T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Kim, A.-K.

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in-plane-switching liquid crystal display,” J. Inf. Disp. 16(1), 1–10 (2015).
[Crossref]

Kim, D. E.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, future of fringe-field switching liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

Kim, D. H.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, future of fringe-field switching liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

Kim, H.

Kim, H. Y.

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S.-T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Kim, J.-W.

T.-H. Choi, Y. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “Cell gap effects on electro-optic performance of a polymer-stabilized liquid crystal cell,” IEEE Photonics Technol. Lett. 28(10), 1138–1141 (2016).
[Crossref]

T.-H. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “A liquid crystal cell with double-side protrusion electrodes for fast response and low-voltage operation,” Liq. Cryst. 43, 411–416 (2016).

Kim, S. S.

Z. Ge, S.-T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

Kimura, S.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37(Part 1, No. 9A), 4822–4828 (1998).
[Crossref]

Klausmann, H.

S. Aratani, H. Klausmann, M. Oh-e, M. Ohta, K. Ashizawa, K. Yanagawa, and K. Kondo, “Complete suppression of color shift in in-plane switching mode liquid crystal displays with a multidomain structure obtained by unidirectional rubbing,” Jpn. J. Appl. Phys. 36(Part 2, No. 1A/B), L27–L29 (1997).
[Crossref]

Kondo, K.

S. Aratani, H. Klausmann, M. Oh-e, M. Ohta, K. Ashizawa, K. Yanagawa, and K. Kondo, “Complete suppression of color shift in in-plane switching mode liquid crystal displays with a multidomain structure obtained by unidirectional rubbing,” Jpn. J. Appl. Phys. 36(Part 2, No. 1A/B), L27–L29 (1997).
[Crossref]

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Kusafuka, K.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37(Part 1, No. 9A), 4822–4828 (1998).
[Crossref]

Lee, J.-H.

Lee, S. H.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, future of fringe-field switching liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S.-T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Z. Ge, S.-T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S. L.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Liang, X.

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Lim, Y. J.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, future of fringe-field switching liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

Lu, R.

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S.-T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Nie, X.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Oh, S.-W.

T.-H. Choi, S.-W. Oh, Y.-J. Park, Y. Choi, and T.-H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls,” Sci. Rep. 6, 27936 (2016).
[Crossref] [PubMed]

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in-plane-switching liquid crystal display,” J. Inf. Disp. 16(1), 1–10 (2015).
[Crossref]

Oh-e, M.

S. Aratani, H. Klausmann, M. Oh-e, M. Ohta, K. Ashizawa, K. Yanagawa, and K. Kondo, “Complete suppression of color shift in in-plane switching mode liquid crystal displays with a multidomain structure obtained by unidirectional rubbing,” Jpn. J. Appl. Phys. 36(Part 2, No. 1A/B), L27–L29 (1997).
[Crossref]

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Ohta, M.

S. Aratani, H. Klausmann, M. Oh-e, M. Ohta, K. Ashizawa, K. Yanagawa, and K. Kondo, “Complete suppression of color shift in in-plane switching mode liquid crystal displays with a multidomain structure obtained by unidirectional rubbing,” Jpn. J. Appl. Phys. 36(Part 2, No. 1A/B), L27–L29 (1997).
[Crossref]

Park, B. W.

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in-plane-switching liquid crystal display,” J. Inf. Disp. 16(1), 1–10 (2015).
[Crossref]

Park, J. W.

Z. Ge, S.-T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S.-T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Park, Y.-J.

T.-H. Choi, S.-W. Oh, Y.-J. Park, Y. Choi, and T.-H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls,” Sci. Rep. 6, 27936 (2016).
[Crossref] [PubMed]

T.-H. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “A liquid crystal cell with double-side protrusion electrodes for fast response and low-voltage operation,” Liq. Cryst. 43, 411–416 (2016).

T.-H. Choi, Y. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “Cell gap effects on electro-optic performance of a polymer-stabilized liquid crystal cell,” IEEE Photonics Technol. Lett. 28(10), 1138–1141 (2016).
[Crossref]

Qin, G.

X. Zhou, G. Qin, Y. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
[Crossref]

Ren, H.

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, future of fringe-field switching liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

Saitoh, Y.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37(Part 1, No. 9A), 4822–4828 (1998).
[Crossref]

Shimizu, H.

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37(Part 1, No. 9A), 4822–4828 (1998).
[Crossref]

Sun, J.

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Tang, H.

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Wu, S.-T.

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Z. Ge, S.-T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S.-T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Wu, T. X.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Xianyu, H.

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Yanagawa, K.

S. Aratani, H. Klausmann, M. Oh-e, M. Ohta, K. Ashizawa, K. Yanagawa, and K. Kondo, “Complete suppression of color shift in in-plane switching mode liquid crystal displays with a multidomain structure obtained by unidirectional rubbing,” Jpn. J. Appl. Phys. 36(Part 2, No. 1A/B), L27–L29 (1997).
[Crossref]

Yang, D.-K.

X. Zhou, G. Qin, Y. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
[Crossref]

Yoon, T.-H.

T.-H. Choi, Y. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “Cell gap effects on electro-optic performance of a polymer-stabilized liquid crystal cell,” IEEE Photonics Technol. Lett. 28(10), 1138–1141 (2016).
[Crossref]

T.-H. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “A liquid crystal cell with double-side protrusion electrodes for fast response and low-voltage operation,” Liq. Cryst. 43, 411–416 (2016).

T.-H. Choi, S.-W. Oh, Y.-J. Park, Y. Choi, and T.-H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls,” Sci. Rep. 6, 27936 (2016).
[Crossref] [PubMed]

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in-plane-switching liquid crystal display,” J. Inf. Disp. 16(1), 1–10 (2015).
[Crossref]

Zhou, X.

X. Zhou, G. Qin, Y. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
[Crossref]

Zumer, S.

M. J. Escuti, C. C. Bowley, G. P. Crawford, and S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75(21), 3264–3266 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. J. Escuti, C. C. Bowley, G. P. Crawford, and S. Zumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Appl. Phys. Lett. 75(21), 3264–3266 (1999).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–625 (1996).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

J. W. Park, Y. J. Ahn, J. H. Jung, S. H. Lee, R. Lu, H. Y. Kim, and S.-T. Wu, “Liquid crystal display using combined fringe and in-plane electric fields,” Appl. Phys. Lett. 93(8), 081103 (2008).
[Crossref]

Z. Ge, S.-T. Wu, S. S. Kim, J. W. Park, and S. H. Lee, “Thin cell fringe-field-switching liquid crystal display with a chiral dopant,” Appl. Phys. Lett. 92(18), 181109 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T.-H. Choi, Y. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “Cell gap effects on electro-optic performance of a polymer-stabilized liquid crystal cell,” IEEE Photonics Technol. Lett. 28(10), 1138–1141 (2016).
[Crossref]

J. Appl. Phys. (1)

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

J. Disp. Technol. (1)

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

J. Inf. Disp. (2)

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in-plane-switching liquid crystal display,” J. Inf. Disp. 16(1), 1–10 (2015).
[Crossref]

D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, “Past, present, future of fringe-field switching liquid crystal display,” J. Inf. Disp. 15(2), 99–106 (2014).
[Crossref]

J. Soc. Inf. Disp. (1)

X. Zhou, G. Qin, Y. Dong, and D.-K. Yang, “Fast switching and high-contrast polymer-stabilized IPS liquid crystal display,” J. Soc. Inf. Disp. 23(7), 333–338 (2015).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Aratani, H. Klausmann, M. Oh-e, M. Ohta, K. Ashizawa, K. Yanagawa, and K. Kondo, “Complete suppression of color shift in in-plane switching mode liquid crystal displays with a multidomain structure obtained by unidirectional rubbing,” Jpn. J. Appl. Phys. 36(Part 2, No. 1A/B), L27–L29 (1997).
[Crossref]

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display,” Jpn. J. Appl. Phys. 37(Part 1, No. 9A), 4822–4828 (1998).
[Crossref]

Liq. Cryst. (1)

T.-H. Choi, Y.-J. Park, J.-W. Kim, and T.-H. Yoon, “A liquid crystal cell with double-side protrusion electrodes for fast response and low-voltage operation,” Liq. Cryst. 43, 411–416 (2016).

Sci. Rep. (1)

T.-H. Choi, S.-W. Oh, Y.-J. Park, Y. Choi, and T.-H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls,” Sci. Rep. 6, 27936 (2016).
[Crossref] [PubMed]

Other (2)

T. Matsushima, K. Okazaki, Y. Yang, and K. Takizawa, “New fast response time in-plane switching liquid crystal mode,” SID Int. Symp. Dig. Tech. Pap. 46, 648–651 (2015).
[Crossref]

S. D. Brotherton, Introduction to Thin Film Transistors: Physics and Technology of TFTs. New York, NY, USA: Springer (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Cross-sectional views of electrode structures with equipotential lines. (a) Double-layered and (b) single-layered electrodes.
Fig. 2
Fig. 2 Measured transmittances as functions of the applied voltage of the fabricated IPS and FFS cells with either α = 10° or 0°.
Fig. 3
Fig. 3 Measured optical switching behaviors of the fabricated cells.
Fig. 4
Fig. 4 (a) Calculated transmittance distributions of IPS and FFS cells with α = 0° and (b) twist angle distributions at three different electrode positions.
Fig. 5
Fig. 5 Transmittance distributions, elastic energy profiles and LC director orientations of (a) FFS and (b) IPS cells.
Fig. 6
Fig. 6 Polarizing optical microscopy images of (a) FFS and (b) IPS cells.
Fig. 7
Fig. 7 (a) Transmittance, operating voltage, and (b) response times as functions of spacing L between interdigitated electrodes. The width W of interdigitated electrodes was fixed at 2 µm.
Fig. 8
Fig. 8 (a) Transmittance, operating voltage, and (b) response times as functions of L/W. The pitch L + W of interdigitated electrodes was fixed at 7 µm.
Fig. 9
Fig. 9 Iso-contrast contour plots of biaxial film-compensated (a) chevron-type IPS cell and (b) IPS cell with α = 0°. The chevron-shaped electrode has a bending angle of 10°.
Fig. 10
Fig. 10 Calculated maximum acceptable rubbing angle vs. the pretilt angle in FFS and IPS cells with α = 0°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ off γ [ K 22 ( π d ) 2 + K 11 ( π D ) 2 ]

Metrics