Abstract

In recent works, a novel light-induced attractive force was predicted between two metal plates. This force arises by the interaction of surface plasmons which are excited at the metal when a transverse magnetic mode propagates through a subwavelength slit between two metal bodies. In this paper, the analytical and numerical calculations of this magnetic field are presented for the perfect metal and for gold. The amplitude and the phase transient curves between the known limiting cases of narrow and wide slits compared to the wavelength are found. The curve is shown to oscillate due to the emergence of new waveguide modes. The analytic solution for the perfect metal is in agreement with the computation for gold by means of the finite element method. The simple asymptotic formula for the light-induced attractive force is found in the limit of a narrow slit.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of higher modes on plasmonic force in a narrow slit

Alexander Tusnin and David Shapiro
OSA Continuum 1(2) 384-391 (2018)

Effects of imperfect angular adjustment on plasmonic force

L. L. Frumin, A. K. Tusnin, O. V. Belai, and D. A. Shapiro
Opt. Express 25(25) 31801-31809 (2017)

Approximate model for surface-plasmon generation at slit apertures

P. Lalanne, J. P. Hugonin, and J. C. Rodier
J. Opt. Soc. Am. A 23(7) 1608-1615 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. Chu, “Nobel lecture: The manipulation of neutral particles,” Rev. Mod. Phys. 70, 685–706 (1998).
    [Crossref]
  2. Y. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3d manipulation and force sensing,” Opt. Express 17, 13624–13638 (2009).
    [Crossref] [PubMed]
  3. C. Pacoret, R. Bowman, G. Gibson, S. Haliyo, D. Carberry, A. Bergander, S. Régnier, and M. Padgett, “Touching the microworld with force-feedback optical tweezers,” Opt. Express 17, 10259–10264 (2009).
    [Crossref] [PubMed]
  4. Y. Gong, A.-Y. Ye, Y. Wu, Y.-J. Rao, Y. Yao, and S. Xiao, “Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment,” Opt. Express 21, 16181–16190 (2013).
    [Crossref] [PubMed]
  5. V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL (Europhysics Letters) 94, 64002 (2011).
    [Crossref]
  6. V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Measurement Science and Technology 22, 094008 (2011).
    [Crossref]
  7. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
    [Crossref]
  8. B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Physical Review B 82, 115419 (2010).
    [Crossref]
  9. J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69, 026601 (2004).
    [Crossref]
  10. B. Sturman, E. Podivilov, and M. Gorkunov, “Optical properties of periodic arrays of subwavelength slits in a perfect metal,” Physical Review B 84, 205439 (2011).
    [Crossref]
  11. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902 (2007).
    [Crossref] [PubMed]
  12. S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: An adaptive FEM solver or precise simulations in nano-optics,” in “Integrated Photonics and Nanophotonics Research and Applications,” (Optical Society of America, 2008), p. ITuE4.
    [Crossref]
  13. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 114, 185–200 (1994).
    [Crossref]
  14. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
    [Crossref]

2013 (1)

2012 (1)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

2011 (3)

B. Sturman, E. Podivilov, and M. Gorkunov, “Optical properties of periodic arrays of subwavelength slits in a perfect metal,” Physical Review B 84, 205439 (2011).
[Crossref]

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL (Europhysics Letters) 94, 64002 (2011).
[Crossref]

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Measurement Science and Technology 22, 094008 (2011).
[Crossref]

2010 (1)

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Physical Review B 82, 115419 (2010).
[Crossref]

2009 (2)

2007 (1)

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902 (2007).
[Crossref] [PubMed]

2006 (1)

R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
[Crossref]

2004 (1)

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69, 026601 (2004).
[Crossref]

1998 (1)

S. Chu, “Nobel lecture: The manipulation of neutral particles,” Rev. Mod. Phys. 70, 685–706 (1998).
[Crossref]

1994 (1)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 114, 185–200 (1994).
[Crossref]

Aigouy, L.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902 (2007).
[Crossref] [PubMed]

Berenger, J.-P.

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 114, 185–200 (1994).
[Crossref]

Bergander, A.

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Bowman, R.

Bravo-Abad, J.

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69, 026601 (2004).
[Crossref]

Burger, S.

S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: An adaptive FEM solver or precise simulations in nano-optics,” in “Integrated Photonics and Nanophotonics Research and Applications,” (Optical Society of America, 2008), p. ITuE4.
[Crossref]

Carberry, D.

Chu, S.

S. Chu, “Nobel lecture: The manipulation of neutral particles,” Rev. Mod. Phys. 70, 685–706 (1998).
[Crossref]

Frumin, L.

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL (Europhysics Letters) 94, 64002 (2011).
[Crossref]

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Measurement Science and Technology 22, 094008 (2011).
[Crossref]

García-Vidal, F. J.

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69, 026601 (2004).
[Crossref]

Gibson, G.

Gong, Y.

Gordon, R.

R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
[Crossref]

Gorkunov, M.

B. Sturman, E. Podivilov, and M. Gorkunov, “Optical properties of periodic arrays of subwavelength slits in a perfect metal,” Physical Review B 84, 205439 (2011).
[Crossref]

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Physical Review B 82, 115419 (2010).
[Crossref]

Haliyo, S.

Hugonin, J. P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902 (2007).
[Crossref] [PubMed]

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Julié, G.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902 (2007).
[Crossref] [PubMed]

Lalanne, P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902 (2007).
[Crossref] [PubMed]

Liu, Y.

Martín-Moreno, L.

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69, 026601 (2004).
[Crossref]

Mathet, V.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902 (2007).
[Crossref] [PubMed]

Mortier, M.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902 (2007).
[Crossref] [PubMed]

Nesterov, V.

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL (Europhysics Letters) 94, 64002 (2011).
[Crossref]

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Measurement Science and Technology 22, 094008 (2011).
[Crossref]

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Pacoret, C.

Padgett, M.

Podivilov, E.

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL (Europhysics Letters) 94, 64002 (2011).
[Crossref]

B. Sturman, E. Podivilov, and M. Gorkunov, “Optical properties of periodic arrays of subwavelength slits in a perfect metal,” Physical Review B 84, 205439 (2011).
[Crossref]

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Physical Review B 82, 115419 (2010).
[Crossref]

Pomplun, J.

S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: An adaptive FEM solver or precise simulations in nano-optics,” in “Integrated Photonics and Nanophotonics Research and Applications,” (Optical Society of America, 2008), p. ITuE4.
[Crossref]

Rao, Y.-J.

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Régnier, S.

Schmidt, F.

S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: An adaptive FEM solver or precise simulations in nano-optics,” in “Integrated Photonics and Nanophotonics Research and Applications,” (Optical Society of America, 2008), p. ITuE4.
[Crossref]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Sturman, B.

B. Sturman, E. Podivilov, and M. Gorkunov, “Optical properties of periodic arrays of subwavelength slits in a perfect metal,” Physical Review B 84, 205439 (2011).
[Crossref]

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Physical Review B 82, 115419 (2010).
[Crossref]

Wu, Y.

Xiao, S.

Yao, Y.

Ye, A.-Y.

Yu, M.

Zschiedrich, L.

S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: An adaptive FEM solver or precise simulations in nano-optics,” in “Integrated Photonics and Nanophotonics Research and Applications,” (Optical Society of America, 2008), p. ITuE4.
[Crossref]

EPL (Europhysics Letters) (1)

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL (Europhysics Letters) 94, 64002 (2011).
[Crossref]

Journal of Computational Physics (1)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 114, 185–200 (1994).
[Crossref]

Measurement Science and Technology (1)

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Measurement Science and Technology 22, 094008 (2011).
[Crossref]

Opt. Express (3)

Phys. Rev. B (2)

R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Phys. Rev. E (1)

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69, 026601 (2004).
[Crossref]

Phys. Rev. Lett. (1)

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902 (2007).
[Crossref] [PubMed]

Physical Review B (2)

B. Sturman, E. Podivilov, and M. Gorkunov, “Optical properties of periodic arrays of subwavelength slits in a perfect metal,” Physical Review B 84, 205439 (2011).
[Crossref]

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Physical Review B 82, 115419 (2010).
[Crossref]

Rev. Mod. Phys. (1)

S. Chu, “Nobel lecture: The manipulation of neutral particles,” Rev. Mod. Phys. 70, 685–706 (1998).
[Crossref]

Other (1)

S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “JCMsuite: An adaptive FEM solver or precise simulations in nano-optics,” in “Integrated Photonics and Nanophotonics Research and Applications,” (Optical Society of America, 2008), p. ITuE4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Scheme of the slit geometry. The yellow areas denote the perfect metal.
Fig. 2
Fig. 2 Square of the normalized field amplitude |H(0, 0)|2 as a function of the dimensionless slit width a = k0l: (a) calculated by formula (10) (solid curve), by (12) (dots), and by the simple asymptotic expression (13) at small a (crosses).
Fig. 3
Fig. 3 The square of absolute value (a) and phase (b) of the normalized field H(0,0) as a function of the dimensionless slit half-width a = k0l: the perfect metal at M = 50 (solid line) and JCMsuite simulations for gold (dots).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

F = μ 0 H 0 2 | H ( 0 , 0 ) | 2 L 4 π λ | ε 1 | ε 2 ,
2 H x 2 + 2 H y 2 + k 0 2 H = 0 ,
H | x = ± ( l 0 ) = H | x = ± ( l + 0 ) , H x | x = ± l = 0 , y > 0 ; H | y = 0 = H | y = + 0 , H y | y = 0 = 0 , x 2 > l 2 .
h + ( k 0 2 β 2 ) h = 0 .
β m 2 = k 0 2 π 2 m 2 / l 2 .
H ( x , y ) = { 2 cos k 0 y + a k e i k x i ϰ k y d k , y < 0 , m = 0 c m b m h m ( x ) e i β m y , y > 0 ,
b m + m = 0 T m m b m = 2 δ m , 0 ,
T m m = l B m c m 4 π f m , k f m , k ϰ k d k , f m , k = sinc ( k l + π m ) + sinc ( k l π m ) .
H ( 0 , 0 ) = b 0 + 2 m = 1 b m .
H ( 0 , 0 ) = b 0 = 2 1 + T 00 .
b 0 + T 00 b 0 + T 01 b 1 = 2 , b 1 + T 10 b 0 + T 11 b 1 = 0 ,
H ( 0 , 0 ) = 2 1 + T 11 2 T 10 1 + T 00 + T 11 + T 00 T 11 T 01 T 10 .
T 00 = T i T , T a a 3 / 6 + , T β 1 a + β 2 a 3 + , β 1 = 0.59 0.64 ln a , β 2 = 0.11 + 0.11 ln a .
F = μ 0 H 0 2 ( 1 2 a ) L π λ | ε 1 | ε 2 , a = 2 π λ l 1 .

Metrics