Abstract

Advances in the amplification and manipulation of ultrashort laser pulses have led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device that is bandwidth- and power-scalable. The approach is based on two-dimensional (2D) patterning of quasi-phase-matching (QPM) gratings combined with optical parametric interactions involving spatially dispersed laser pulses. Our proof of principle experiment demonstrates this technique via mid-infrared optical parametric chirped pulse amplification of few-cycle pulses. Additionally, we present a detailed theoretical and numerical analysis of such 2D-QPM devices and how they can be designed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings

C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller
Opt. Express 22(8) 9627-9658 (2014)

Mid-infrared pulse generation via achromatic quasi-phase-matched OPCPA

B. W. Mayer, C. R. Phillips, L. Gallmann, and U. Keller
Opt. Express 22(17) 20798-20808 (2014)

Frequency-domain parametric downconversion for efficient broadened idler generation

Ying Li, Yuhai Liang, Dahua Dai, Jianlong Yang, Haizhe Zhong, and Dianyuan Fan
Photon. Res. 5(6) 669-675 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
    [Crossref]
  2. L. Gallmann, C. Cirelli, and U. Keller, “Attosecond science: recent highlights and future trends,” Ann. Rev. Phys. Chem. 63, 447–469 (2012).
    [Crossref]
  3. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B 4, 595–601 (1987).
    [Crossref]
  4. M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31 (1988).
    [Crossref]
  5. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
    [Crossref]
  6. S. Witte and K. Eikema, “Ultrafast optical parametric Chirped-Pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18, 296–307 (2012).
    [Crossref]
  7. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35, 4169–4171 (2010).
    [Crossref] [PubMed]
  8. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
    [Crossref] [PubMed]
  9. J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38, 5442–5445 (2013).
    [Crossref] [PubMed]
  10. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20, 23535–23541 (2012).
    [Crossref] [PubMed]
  11. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μ J pulse energy and 242 W of average power,” Opt. Lett. 39, 9–12 (2014).
    [Crossref]
  12. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys Rev. 127, 1918–1939 (1962).
    [Crossref]
  13. L. Chen, S. Wen, Y. Wang, K. You, L. Qian, and D. Fan, “Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion,” Phys. Rev. A 82, 043843 (2010).
    [Crossref]
  14. B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
    [Crossref] [PubMed]
  15. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [Crossref]
  16. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).
    [Crossref]
  17. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique 8, 180–198 (2007).
    [Crossref]
  18. C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phasematching gratings with random duty cycle errors,” J. Opt. Soc. Am. B 30, 982–993 (2013).
    [Crossref]
  19. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990).
    [Crossref]
  20. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
    [Crossref]
  21. H. Suchowski, P. R. Krogen, S.-W. Huang, F. X. Kärtner, and J. Moses, “Octave-spanning coherent mid-IR generation via adiabatic difference frequency conversion,” Opt. Express 21, 28892–28901 (2013).
    [Crossref]
  22. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91, 343–348 (2008).
    [Crossref]
  23. C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30, 1551 (2013).
    [Crossref]
  24. C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, “Femtosecond mode locking based on adiabatic excitation of quadratic solitons,” Optica 2, 667–674 (2015).
    [Crossref]
  25. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
    [Crossref] [PubMed]
  26. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
    [Crossref]
  27. M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan, “Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control,” Opt. Lett. 30, 634–636 (2005).
    [Crossref] [PubMed]
  28. C. R. Phillips, L. Gallmann, and M. M. Fejer, “Design of quasi-phasematching gratings via convex optimization,” Opt. Express 21, 10139–10159 (2013).
    [Crossref] [PubMed]
  29. C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings,” Opt. Express 22, 9627–9658 (2014).
    [Crossref] [PubMed]
  30. B. W. Mayer, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μ m,” Opt. Lett. 38, 4265–4268 (2013).
    [Crossref] [PubMed]
  31. B. W. Mayer, C. R. Phillips, L. Gallmann, and U. Keller, “Mid-infrared pulse generation via achromatic quasi-phase-matched OPCPA,” Opt. Express 22, 20798–20808 (2014).
    [Crossref] [PubMed]
  32. J. Moses, S.-W. Huang, K.-H. Hong, O. D. Mücke, E. L. F. ao Filho, A. Benedick, F. O. Ilday, A. Dergachev, J. A. Bolger, B. J. Eggleton, and F. X. Kärtner, “Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression,” Opt. Lett. 34, 1639–1641 (2009).
    [Crossref] [PubMed]
  33. Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, and N. Karpowicz, “Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μ m,” Opt. Lett. 37, 4973–4975 (2012).
    [Crossref] [PubMed]
  34. M. Hemmer, A. Thai, M. Baudisch, H. Ishizuki, T. Taira, and J. Biegert, “18-μ J energy, 160-kHz repetition rate, 250-MW peak power mid-IR OPCPA,” Chin. Opt. Lett. 11, 013202 (2013).
    [Crossref]
  35. K.-H. Hong, C.-J. Lai, J. P. Siqueira, P. Krogen, J. Moses, C.-L. Chang, G. J. Stein, L. E. Zapata, and F. X. Kärtner, “Multi-mJ, kHz, 2.1 μ m optical parametric chirped-pulse amplifier and high-flux soft x-ray high-harmonic generation,” Opt. Lett. 39, 3145–3148 (2014).
    [Crossref] [PubMed]
  36. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm× 5 mm aperture,” Opt. Lett. 30, 2918–2920 (2005).
    [Crossref] [PubMed]
  37. H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3,” Opt. Express 20, 20002–20010 (2012).
    [Crossref] [PubMed]
  38. D. S. Hum, R. K. Route, and M. M. Fejer, “Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25°-rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration,” Opt. Lett. 32, 961–963 (2007).
    [Crossref] [PubMed]
  39. J. Hirohashi, T. Taniuchi, K. Imai, and Y. Furukawa, “PP-LBGO device with 2nd-order QPM structure for 266nm generation,” in CLEO: 2015 (OSA, 2015), paper STh3H.5.
  40. C. Lynch, D. Bliss, T. Zens, A. Lin, J. Harris, P. Kuo, and M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THz generation,” J. Crystal Growth 310, 5241–5247 (2008).
    [Crossref]
  41. P. G. Schunemann, L. Mohnkern, A. Vera, X. S. Yang, A. C. Lin, J. S. Harris, V. Tassev, and M. R. Snure, “Growth of device quality orientation-patterned gallium phosphide (OPGaP) by improved hydride vapour phase epitaxy,” in CLEO: 2014 (OSA, 2014), paper STu1I.6.

2015 (1)

2014 (5)

2013 (7)

2012 (5)

2010 (3)

2009 (2)

2008 (3)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91, 343–348 (2008).
[Crossref]

C. Lynch, D. Bliss, T. Zens, A. Lin, J. Harris, P. Kuo, and M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THz generation,” J. Crystal Growth 310, 5241–5247 (2008).
[Crossref]

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
[Crossref]

2007 (2)

2006 (1)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

2005 (2)

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

1998 (1)

1996 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).
[Crossref]

1990 (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990).
[Crossref]

1988 (1)

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31 (1988).
[Crossref]

1987 (1)

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys Rev. 127, 1918–1939 (1962).
[Crossref]

Afeyan, B.

Ahmed, M. A.

Andersen, T. V.

ao Filho, E. L. F.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91, 343–348 (2008).
[Crossref]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys Rev. 127, 1918–1939 (1962).
[Crossref]

Baer, C. R. E.

Baudisch, M.

Bauer, D.

Benedick, A.

Biegert, J.

Bisson, S. E.

Bliss, D.

C. Lynch, D. Bliss, T. Zens, A. Lin, J. Harris, P. Kuo, and M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THz generation,” J. Crystal Growth 310, 5241–5247 (2008).
[Crossref]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys Rev. 127, 1918–1939 (1962).
[Crossref]

Boivin, M.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Bolger, J. A.

Bosenberg, W. R.

Boyer, K.

Bulanov, S. V.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[Crossref] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).
[Crossref]

Chang, C.-L.

Chang, D.

Charbonneau-Lefort, M.

Chen, L.

L. Chen, S. Wen, Y. Wang, K. You, L. Qian, and D. Fan, “Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion,” Phys. Rev. A 82, 043843 (2010).
[Crossref]

Cirelli, C.

L. Gallmann, C. Cirelli, and U. Keller, “Attosecond science: recent highlights and future trends,” Ann. Rev. Phys. Chem. 63, 447–469 (2012).
[Crossref]

Deng, Y.

Dergachev, A.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys Rev. 127, 1918–1939 (1962).
[Crossref]

Eckardt, R. C.

Eggleton, B. J.

Eidam, T.

Eikema, K.

S. Witte and K. Eikema, “Ultrafast optical parametric Chirped-Pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18, 296–307 (2012).
[Crossref]

Emaury, F.

Fan, D.

L. Chen, S. Wen, Y. Wang, K. You, L. Qian, and D. Fan, “Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion,” Phys. Rev. A 82, 043843 (2010).
[Crossref]

Fattahi, H.

Fejer, M.

C. Lynch, D. Bliss, T. Zens, A. Lin, J. Harris, P. Kuo, and M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THz generation,” J. Crystal Growth 310, 5241–5247 (2008).
[Crossref]

Fejer, M. M.

C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings,” Opt. Express 22, 9627–9658 (2014).
[Crossref] [PubMed]

B. W. Mayer, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μ m,” Opt. Lett. 38, 4265–4268 (2013).
[Crossref] [PubMed]

C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30, 1551 (2013).
[Crossref]

C. R. Phillips, L. Gallmann, and M. M. Fejer, “Design of quasi-phasematching gratings via convex optimization,” Opt. Express 21, 10139–10159 (2013).
[Crossref] [PubMed]

C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phasematching gratings with random duty cycle errors,” J. Opt. Soc. Am. B 30, 982–993 (2013).
[Crossref]

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
[Crossref]

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique 8, 180–198 (2007).
[Crossref]

D. S. Hum, R. K. Route, and M. M. Fejer, “Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25°-rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration,” Opt. Lett. 32, 961–963 (2007).
[Crossref] [PubMed]

M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan, “Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control,” Opt. Lett. 30, 634–636 (2005).
[Crossref] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[Crossref] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).
[Crossref]

Ferray, M.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31 (1988).
[Crossref]

Furukawa, Y.

J. Hirohashi, T. Taniuchi, K. Imai, and Y. Furukawa, “PP-LBGO device with 2nd-order QPM structure for 266nm generation,” in CLEO: 2015 (OSA, 2015), paper STh3H.5.

Gabler, T.

Gallmann, L.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91, 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91, 343–348 (2008).
[Crossref]

Gibson, G.

Golling, M.

Graf, T.

Gu, X.

Hanf, S.

Harris, J.

C. Lynch, D. Bliss, T. Zens, A. Lin, J. Harris, P. Kuo, and M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THz generation,” J. Crystal Growth 310, 5241–5247 (2008).
[Crossref]

Harris, J. S.

P. G. Schunemann, L. Mohnkern, A. Vera, X. S. Yang, A. C. Lin, J. S. Harris, V. Tassev, and M. R. Snure, “Growth of device quality orientation-patterned gallium phosphide (OPGaP) by improved hydride vapour phase epitaxy,” in CLEO: 2014 (OSA, 2014), paper STu1I.6.

Heckl, O. H.

Hemmer, M.

Hirohashi, J.

J. Hirohashi, T. Taniuchi, K. Imai, and Y. Furukawa, “PP-LBGO device with 2nd-order QPM structure for 266nm generation,” in CLEO: 2015 (OSA, 2015), paper STh3H.5.

Hoffmann, H. D.

Hoffmann, M.

Hong, K.-H.

Huang, S.-W.

Hum, D. S.

Ibrahim, H.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Ilday, F. O.

Imai, K.

J. Hirohashi, T. Taniuchi, K. Imai, and Y. Furukawa, “PP-LBGO device with 2nd-order QPM structure for 266nm generation,” in CLEO: 2015 (OSA, 2015), paper STh3H.5.

Ishizuki, H.

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Jara, H.

Johann, U.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).
[Crossref]

Karpowicz, N.

Kärtner, F. X.

Keller, U.

C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, “Femtosecond mode locking based on adiabatic excitation of quadratic solitons,” Optica 2, 667–674 (2015).
[Crossref]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μ J pulse energy and 242 W of average power,” Opt. Lett. 39, 9–12 (2014).
[Crossref]

B. W. Mayer, C. R. Phillips, L. Gallmann, and U. Keller, “Mid-infrared pulse generation via achromatic quasi-phase-matched OPCPA,” Opt. Express 22, 20798–20808 (2014).
[Crossref] [PubMed]

C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings,” Opt. Express 22, 9627–9658 (2014).
[Crossref] [PubMed]

B. W. Mayer, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μ m,” Opt. Lett. 38, 4265–4268 (2013).
[Crossref] [PubMed]

L. Gallmann, C. Cirelli, and U. Keller, “Attosecond science: recent highlights and future trends,” Ann. Rev. Phys. Chem. 63, 447–469 (2012).
[Crossref]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20, 23535–23541 (2012).
[Crossref] [PubMed]

Kienberger, R.

Killi, A.

Klenner, A.

Kobayashi, T.

Krausz, F.

Krogen, P.

Krogen, P. R.

Kulp, T. J.

Kuo, P.

C. Lynch, D. Bliss, T. Zens, A. Lin, J. Harris, P. Kuo, and M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THz generation,” J. Crystal Growth 310, 5241–5247 (2008).
[Crossref]

L’Huillier, A.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31 (1988).
[Crossref]

Lai, C.-J.

Langrock, C.

Laramée, A.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Lebrun, G.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Légaré, F.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Li, X. F.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31 (1988).
[Crossref]

Limpert, J.

Lin, A.

C. Lynch, D. Bliss, T. Zens, A. Lin, J. Harris, P. Kuo, and M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THz generation,” J. Crystal Growth 310, 5241–5247 (2008).
[Crossref]

Lin, A. C.

P. G. Schunemann, L. Mohnkern, A. Vera, X. S. Yang, A. C. Lin, J. S. Harris, V. Tassev, and M. R. Snure, “Growth of device quality orientation-patterned gallium phosphide (OPGaP) by improved hydride vapour phase epitaxy,” in CLEO: 2014 (OSA, 2014), paper STu1I.6.

Lin, Y. W.

Lompre, L. A.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31 (1988).
[Crossref]

Luk, T. S.

Lynch, C.

C. Lynch, D. Bliss, T. Zens, A. Lin, J. Harris, P. Kuo, and M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THz generation,” J. Crystal Growth 310, 5241–5247 (2008).
[Crossref]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).
[Crossref]

Mainfray, G.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31 (1988).
[Crossref]

Mans, T.

Manus, C.

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31 (1988).
[Crossref]

Marcus, G.

Mayer, A. S.

Mayer, B. W.

McIntyre, I. A.

McPherson, A.

Metzger, T.

Mohnkern, L.

P. G. Schunemann, L. Mohnkern, A. Vera, X. S. Yang, A. C. Lin, J. S. Harris, V. Tassev, and M. R. Snure, “Growth of device quality orientation-patterned gallium phosphide (OPGaP) by improved hydride vapour phase epitaxy,” in CLEO: 2014 (OSA, 2014), paper STu1I.6.

Moses, J.

Mourou, G. A.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

Mücke, O. D.

Myers, L. E.

Negel, J.-P.

Nishihara, H.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990).
[Crossref]

Ossiander, M.

Ozaki, T.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Pelc, J. S.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys Rev. 127, 1918–1939 (1962).
[Crossref]

Pervak, V.

Phillips, C. R.

Poitras, F.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Poprawe, R.

Powers, P. E.

Qian, L.

L. Chen, S. Wen, Y. Wang, K. You, L. Qian, and D. Fan, “Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion,” Phys. Rev. A 82, 043843 (2010).
[Crossref]

Rhodes, C. K.

Route, R. K.

Russbueldt, P.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91, 343–348 (2008).
[Crossref]

Saraceno, C. J.

Schmidt, B. E.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Schreiber, T.

Schriber, C.

Schunemann, P. G.

P. G. Schunemann, L. Mohnkern, A. Vera, X. S. Yang, A. C. Lin, J. S. Harris, V. Tassev, and M. R. Snure, “Growth of device quality orientation-patterned gallium phosphide (OPGaP) by improved hydride vapour phase epitaxy,” in CLEO: 2014 (OSA, 2014), paper STu1I.6.

Schwarz, A.

Seise, E.

Siqueira, J. P.

Snure, M. R.

P. G. Schunemann, L. Mohnkern, A. Vera, X. S. Yang, A. C. Lin, J. S. Harris, V. Tassev, and M. R. Snure, “Growth of device quality orientation-patterned gallium phosphide (OPGaP) by improved hydride vapour phase epitaxy,” in CLEO: 2014 (OSA, 2014), paper STu1I.6.

Stein, G. J.

Suchowski, H.

Südmeyer, T.

Suhara, T.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990).
[Crossref]

Sutter, D.

Taira, T.

Tajima, T.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

Taniuchi, T.

J. Hirohashi, T. Taniuchi, K. Imai, and Y. Furukawa, “PP-LBGO device with 2nd-order QPM structure for 266nm generation,” in CLEO: 2015 (OSA, 2015), paper STh3H.5.

Tassev, V.

P. G. Schunemann, L. Mohnkern, A. Vera, X. S. Yang, A. C. Lin, J. S. Harris, V. Tassev, and M. R. Snure, “Growth of device quality orientation-patterned gallium phosphide (OPGaP) by improved hydride vapour phase epitaxy,” in CLEO: 2014 (OSA, 2014), paper STu1I.6.

Thai, A.

Thiré, N.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Tünnermann, A.

Ueffing, M.

Vera, A.

P. G. Schunemann, L. Mohnkern, A. Vera, X. S. Yang, A. C. Lin, J. S. Harris, V. Tassev, and M. R. Snure, “Growth of device quality orientation-patterned gallium phosphide (OPGaP) by improved hydride vapour phase epitaxy,” in CLEO: 2014 (OSA, 2014), paper STu1I.6.

Voss, A.

Wang, Y.

L. Chen, S. Wen, Y. Wang, K. You, L. Qian, and D. Fan, “Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion,” Phys. Rev. A 82, 043843 (2010).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

Weitenberg, J.

Wen, S.

L. Chen, S. Wen, Y. Wang, K. You, L. Qian, and D. Fan, “Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion,” Phys. Rev. A 82, 043843 (2010).
[Crossref]

Wirth, C.

Witte, S.

S. Witte and K. Eikema, “Ultrafast optical parametric Chirped-Pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18, 296–307 (2012).
[Crossref]

Yang, X. S.

P. G. Schunemann, L. Mohnkern, A. Vera, X. S. Yang, A. C. Lin, J. S. Harris, V. Tassev, and M. R. Snure, “Growth of device quality orientation-patterned gallium phosphide (OPGaP) by improved hydride vapour phase epitaxy,” in CLEO: 2014 (OSA, 2014), paper STu1I.6.

You, K.

L. Chen, S. Wen, Y. Wang, K. You, L. Qian, and D. Fan, “Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion,” Phys. Rev. A 82, 043843 (2010).
[Crossref]

Zapata, L. E.

Zens, T.

C. Lynch, D. Bliss, T. Zens, A. Lin, J. Harris, P. Kuo, and M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THz generation,” J. Crystal Growth 310, 5241–5247 (2008).
[Crossref]

Ann. Rev. Phys. Chem. (1)

L. Gallmann, C. Cirelli, and U. Keller, “Attosecond science: recent highlights and future trends,” Ann. Rev. Phys. Chem. 63, 447–469 (2012).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers Opt. 91, 343–348 (2008).
[Crossref]

Chin. Opt. Lett. (1)

Comptes Rendus Physique (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique 8, 180–198 (2007).
[Crossref]

IEEE J. Quant. Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Witte and K. Eikema, “Ultrafast optical parametric Chirped-Pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18, 296–307 (2012).
[Crossref]

J. Crystal Growth (1)

C. Lynch, D. Bliss, T. Zens, A. Lin, J. Harris, P. Kuo, and M. Fejer, “Growth of mm-thick orientation-patterned GaAs for IR and THz generation,” J. Crystal Growth 310, 5241–5247 (2008).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. B (1)

M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31 (1988).
[Crossref]

Nat. Commun. (1)

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (13)

Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, and N. Karpowicz, “Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μ m,” Opt. Lett. 37, 4973–4975 (2012).
[Crossref] [PubMed]

J. Moses, S.-W. Huang, K.-H. Hong, O. D. Mücke, E. L. F. ao Filho, A. Benedick, F. O. Ilday, A. Dergachev, J. A. Bolger, B. J. Eggleton, and F. X. Kärtner, “Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression,” Opt. Lett. 34, 1639–1641 (2009).
[Crossref] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[Crossref] [PubMed]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35, 4169–4171 (2010).
[Crossref] [PubMed]

K.-H. Hong, C.-J. Lai, J. P. Siqueira, P. Krogen, J. Moses, C.-L. Chang, G. J. Stein, L. E. Zapata, and F. X. Kärtner, “Multi-mJ, kHz, 2.1 μ m optical parametric chirped-pulse amplifier and high-flux soft x-ray high-harmonic generation,” Opt. Lett. 39, 3145–3148 (2014).
[Crossref] [PubMed]

J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38, 5442–5445 (2013).
[Crossref] [PubMed]

C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μ J pulse energy and 242 W of average power,” Opt. Lett. 39, 9–12 (2014).
[Crossref]

B. W. Mayer, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Sub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μ m,” Opt. Lett. 38, 4265–4268 (2013).
[Crossref] [PubMed]

P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[Crossref]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[Crossref] [PubMed]

M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan, “Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control,” Opt. Lett. 30, 634–636 (2005).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm× 5 mm aperture,” Opt. Lett. 30, 2918–2920 (2005).
[Crossref] [PubMed]

D. S. Hum, R. K. Route, and M. M. Fejer, “Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25°-rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration,” Opt. Lett. 32, 961–963 (2007).
[Crossref] [PubMed]

Optica (1)

Phys Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys Rev. 127, 1918–1939 (1962).
[Crossref]

Phys. Rev. A (1)

L. Chen, S. Wen, Y. Wang, K. You, L. Qian, and D. Fan, “Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion,” Phys. Rev. A 82, 043843 (2010).
[Crossref]

Rev. Mod. Phys. (2)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[Crossref]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

Other (2)

J. Hirohashi, T. Taniuchi, K. Imai, and Y. Furukawa, “PP-LBGO device with 2nd-order QPM structure for 266nm generation,” in CLEO: 2015 (OSA, 2015), paper STh3H.5.

P. G. Schunemann, L. Mohnkern, A. Vera, X. S. Yang, A. C. Lin, J. S. Harris, V. Tassev, and M. R. Snure, “Growth of device quality orientation-patterned gallium phosphide (OPGaP) by improved hydride vapour phase epitaxy,” in CLEO: 2014 (OSA, 2014), paper STu1I.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of 2D-QPM concept for frequency-domain optical parametric processes. (a) Schematic of the relevant experimental configuration, with a spatially chirped ultrashort pulse incident on a two dimensionally patterned QPM (2D-QPM) medium designed to individually address the different spectral components of the pulse. (b) Idler wavelength versus transverse position in a 4-f pulse shaper setup (grating frequency 75 lines/mm, f=200 mm). The QPM period is calculated assuming a 1064-nm pump for the OPA process. (c) Example pump intensity profile across transverse position, and corresponding effective length to achieve a flat small-signal gain profile. (d) QPM period (in μm) obtained by combining (b) and (c), together with a smooth variation of the period along the longitudinal direction. (e) A selection of ferroelectric domain profiles (every 1/20th domain) for the QPM period mapping described by (d). (f) Absolute QPM phase ϕQPM at the input position z = 0 corresponding to part (e). (g) Stretched image of the fabricated QPM grating in the 1-mm-thick MgO:LiNbO3 crystal used for our experiments. The image was constructed via a series of microscope images of the +z facet of the crystal along the transverse direction. The surface was etched to reveal the ferroelectric domain inversions.

Fig. 2
Fig. 2

Modeling of frequency domain optical parametric amplification (FOPA) in a 2D-QPM medium. (a) Plane- and continuous-wave interaction in a longitudinally-varying QPM grating, showing the procedure used to switch off the parametric amplification after a certain distance through the crystal. (b) A series of simulations like (a), showing the evolution of the pump along z as a function of transverse position x. At each transverse position, we perform a separate plane- and continuous wave simulation, with the pump intensity and effective length according to Fig. 1(c). (c) Full spatiotemporal simulation of the FOPA process. The figure shows the output electric field envelopes of the pump and idler for the transverse position x = 0. (d) Evolution of the normalized pump fluence through the crystal as a function of transverse position. (e) Output idler spectra for three cases: the 2D-QPM grating pattern introduced here; a simpler “fanout” 2D pattern with no longitudinal variation in Kg; and the simplest case of a standard periodic grating. (f) Group delay spectra for the signal and idler, assuming the 2D-QPM grating pattern. For case 2, the pattern is flipped with respect to the longitudinal coordinate, changing the phase mask seen by the idler wave (derived in Appendix B) but not changing the gain.

Fig. 3
Fig. 3

Schematic of OPCPA front-end based on aperiodic quasi-phase-matching gratings.

Fig. 4
Fig. 4

Experimental setup and results. (a) Schematic of the experimental FOPA setup. (b) Input and output spectra; the output spectrum is normalized, while the seed spectrum is scaled so that it is visible on the same scale. (c) Measured and retrieved SHG-FROG spectrograms. FROG error: 0.005, using a 512 × 512 grid. (d) Reconstructed pulse profile. (e) Reconstructed spectrum and phase.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ϕ Q P M ( x , z ) = ϕ Q P M ( x , 0 ) + 0 z K g ( x , z ) d z ,
τ e f f ( λ ) λ c Δ x Δ λ w i n ( λ ) f ,
ϕ s ( ν ) ϕ i ( ν p ν ) + ϕ Q P M ( x i ( ν p ν ) , 0 ) k s ( ν ) L ,
E ˜ ( x , y , z , ν ) = A ( ν ) e i ( ϕ s w ( ν ) + k ( ν ) z ) B x ( x , z ; ν ) B y ( y , z ; ν ) ,
E ˜ F P ( x , y , 0 , ν ) = ν i c f A ( ν ) exp [ ( ϕ s w ( ν ) ) ] × B ¯ x [ ν c f ( x x 0 ( ν ) ) , 0 ; ν ] B ¯ y [ ν c f y , 0 ; ν ]
E F P ( x , y , t ) e 2 π i ( ν 0 ( x ) + u ) t i ( ϕ s w ( ν 0 ( x ) + u ) ) ν 0 ( x ) i c f A ( ν 0 ( x ) ) × B ¯ x [ ν 0 ( x ) c f ( x x 0 ( ν 0 ( x ) + u ) ) , 0 ; ν 0 ( x ) ] × B ¯ y [ ν 0 ( x ) c f y , 0 ; ν 0 ( x ) ] d u .
E F P ( x , y , t ) e 2 π i ν 0 ( x ) t e i ϕ s w ( ν 0 ( x ) ) ν 0 ( x ) i c f A ( ν 0 ( x ) ) B ¯ y [ ν 0 ( x ) c f y , 0 ; ν 0 ( x ) ] × e 2 π i ( t τ g , s w ( ν 0 ( x ) ) ) u B ¯ x [ ν 0 ( x ) c f d x 0 d ν u , 0 ; ν 0 ( x ) ] d u .
E F P ( x , y , t ) i e 2 π i ν 0 ( x ) t e i ϕ s w ( ν 0 ( x ) ) | d ν 0 d x | A ( ν 0 ( x ) ) × B ¯ y [ ν 0 ( x ) c f y , 0 ; ν 0 ( x ) ] × B x [ d ν 0 d x c f ν 0 ( x ) ( t τ g , s w ( ν 0 ( x ) ) ) , 0 ; ν 0 ( x ) ] .
B x [ w x ( ν 0 ( x ) ) t τ g , s w ( ν 0 ( x ) ) τ e f f ( ν 0 ( x ) ) , 0 ; ν 0 ( x ) ] ,
τ e f f ( ν ) = 1 ν Δ x Δ λ w x ( ν ) f .
E F P , g w ( x , y , t ) ~ i κ { i e 2 π i ν 0 ( x ) t e i ϕ s w ( ν 0 ( x ) ) i k ( ν 0 ( x ) ) z p m ( ν 0 ( x ) ) × B ¯ y [ ν 0 ( x ) c f y , 0 ; ν 0 ( x ) ] | d ν 0 d x | A ( ν 0 ( x ) ) × B x [ d ν 0 d x c f ν 0 ( x ) ( t τ g , s w ( ν 0 ( x ) ) ) , 0 ; ν 0 ( x ) ] } * × { B pump ( x , y ) A pump ( t ) e 2 π i ν p t e i k ( ν p ) z p m ( ν 0 ( x ) ) } × e i k ( ν p ν 0 ( x ) ) ( L z p m ( ν 0 ( x ) ) e i ϕ Q P M ( x , z p m ( ν 0 ( x ) ) )
ϕ g w ( ν p ν ) = ϕ p ( x 0 ( ν ) ) ϕ s w ( ν ) ϕ Q P M ( x 0 ( ν ) , z p m ( ν ) ) + ( k ( ν p ) k ( ν ) ) z p m ( ν ) + k ( ν p ν ) ( L z p m ( ν p ) ) .
ϕ g w ( ν p ν ) = ϕ p ( x 0 ( ν ) ) ϕ s w ( ν ) + k ( ν p ν ) L ϕ Q P M ( x 0 ( ν ) , 0 ) + 0 z p m ( ν ) Δ k e f f ( ν , z ) d z

Metrics