Abstract

Optical switches are key components for routing of light transmission paths in data links. Existing waveguide-based Mach-Zehnder interferometer (MZI) switches occupy a significant amount of real estate on-chip. Here we propose a compact Silicon MZI thermo-optic 2 × 2 photonic switch, consisting of two frustrated total internal reflection (TIR) trench couplers and TIR mirror-based 90° waveguide bends, forming a rectangular MZI configuration. The switch allows for reconfigurable design footprints due to selected control of the optical signal being transmitted and reflected at the 90° crosses and bends. Our analysis results show that the switch exhibits a chip size of 42 µm × 42 µm, the extinction ratio of ~14 dB, the rise and fall time of 20 μs and 16 μs, and the low switching voltage and power of 0.35 V and 26 mW, respectively. This device configuration can readily scale its pattern at the two-dimensional directions, making them attractive for Silicon photonic integrated circuits.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact InGaAsP/InP nonblocking 4 × 4 trench-coupler-based Mach–Zehnder photonic switch fabric

Ke Liu, Le Wang, Chenglong Zhang, Qingyu Ma, and Bing Qi
Appl. Opt. 57(14) 3838-3846 (2018)

High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes

Álvaro Rosa, Ana Gutiérrez, Antoine Brimont, Amadeu Griol, and Pablo Sanchis
Opt. Express 24(1) 191-198 (2016)

16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers

Liangjun Lu, Shuoyi Zhao, Linjie Zhou, Dong Li, Zuxiang Li, Minjuan Wang, Xinwan Li, and Jianping Chen
Opt. Express 24(9) 9295-9307 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20(7), 7655–7662 (2012).
    [Crossref] [PubMed]
  2. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
    [Crossref]
  3. S. Mu, K. Liu, S. Wang, C. Zhang, B. Guan, and D. Zou, “Compact InGaAsP/InP 3 × 3 multimode-interference coupler-based electro-optic switch,” Appl. Opt. 55(7), 1795–1802 (2016).
    [Crossref] [PubMed]
  4. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
    [Crossref] [PubMed]
  5. K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
    [Crossref]
  6. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).
  7. Y. Cui, K. Liu, D. L. MacFarlane, and J. B. Lee, “Thermo-optically tunable silicon photonic crystal light modulator,” Opt. Lett. 35(21), 3613–3615 (2010).
    [Crossref] [PubMed]
  8. Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
    [Crossref]
  9. K. Hassan, J. C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
    [Crossref]
  10. G. W. Cong, T. Matsukawa, T. Chiba, H. Tadokoro, M. Yanagihara, M. Ohno, H. Kawashima, H. Kuwatsuka, Y. Igarashi, M. Masahara, and H. Ishikawa, “Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch,” Opt. Express 21(6), 6889–6894 (2013).
    [Crossref] [PubMed]
  11. L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Thermooptically tuned photonic crystal waveguide Silicon-on-insulator Mach-Zehnder interferometers,” IEEE Photonics Technol. Lett. 19(5), 342–344 (2007).
    [Crossref]
  12. W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  13. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D. X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009).
    [Crossref] [PubMed]
  14. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
    [Crossref] [PubMed]
  15. Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power Silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
    [Crossref]
  16. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38(5), 733–735 (2013).
    [Crossref] [PubMed]
  17. L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a Silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 6900308 (2015).
    [Crossref]
  18. N. R. Huntoon, M. P. Christensen, D. L. MacFarlane, G. A. Evans, and C. S. Yeh, “Integrated photonic coupler based on frustrated total internal reflection,” Appl. Opt. 47(30), 5682–5690 (2008).
    [Crossref] [PubMed]
  19. Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact 90° trench-based splitter for silicon-on-insulator rib waveguides,” Opt. Express 15(25), 16712–16718 (2007).
    [Crossref] [PubMed]
  20. K. Liu, H. Huang, S. X. Mu, H. Lin, and D. L. MacFarlane, “Ultra-compact three-port trench-based photonic couplers in ion-exchanged glass waveguides,” Opt. Commun. 309, 307–312 (2013).
    [Crossref]
  21. D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
    [Crossref]
  22. M. Hermersdorf, C. Hibert, D. Grogg, and A. M. Ionescu, “High aspect ratio sub-micron trenches on Silicon-on-insulator and bulk Silicon,” Microelectron. Eng. 88(8), 2556–2558 (2011).
    [Crossref]
  23. W. M. Yim and R. J. Paff, “Thermal expansion of AlN, sapphire, and silicon,” J. Appl. Phys. 45(3), 1456–1457 (1974).
    [Crossref]
  24. Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photonics Technol. Lett. 5(7), 782–784 (1993).
    [Crossref]
  25. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
    [Crossref]

2016 (1)

2015 (3)

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a Silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 6900308 (2015).
[Crossref]

2014 (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).

2013 (4)

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

G. W. Cong, T. Matsukawa, T. Chiba, H. Tadokoro, M. Yanagihara, M. Ohno, H. Kawashima, H. Kuwatsuka, Y. Igarashi, M. Masahara, and H. Ishikawa, “Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch,” Opt. Express 21(6), 6889–6894 (2013).
[Crossref] [PubMed]

K. Liu, H. Huang, S. X. Mu, H. Lin, and D. L. MacFarlane, “Ultra-compact three-port trench-based photonic couplers in ion-exchanged glass waveguides,” Opt. Commun. 309, 307–312 (2013).
[Crossref]

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38(5), 733–735 (2013).
[Crossref] [PubMed]

2012 (3)

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20(7), 7655–7662 (2012).
[Crossref] [PubMed]

2011 (3)

K. Hassan, J. C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power Silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

M. Hermersdorf, C. Hibert, D. Grogg, and A. M. Ionescu, “High aspect ratio sub-micron trenches on Silicon-on-insulator and bulk Silicon,” Microelectron. Eng. 88(8), 2556–2558 (2011).
[Crossref]

2010 (3)

2009 (1)

2008 (1)

2007 (2)

Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact 90° trench-based splitter for silicon-on-insulator rib waveguides,” Opt. Express 15(25), 16712–16718 (2007).
[Crossref] [PubMed]

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Thermooptically tuned photonic crystal waveguide Silicon-on-insulator Mach-Zehnder interferometers,” IEEE Photonics Technol. Lett. 19(5), 342–344 (2007).
[Crossref]

2003 (1)

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

1993 (1)

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photonics Technol. Lett. 5(7), 782–784 (1993).
[Crossref]

1974 (1)

W. M. Yim and R. J. Paff, “Thermal expansion of AlN, sapphire, and silicon,” J. Appl. Phys. 45(3), 1456–1457 (1974).
[Crossref]

Apostolopoulos, D.

Avramopoulos, H.

Baets, R.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Baus, M.

Bergman, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Biberman, A.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Bienstman, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bozhevolnyi, S. I.

Brimont, A.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a Silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 6900308 (2015).
[Crossref]

Cai, H.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power Silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Chan, J.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Cheben, P.

Chen, R. T.

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Thermooptically tuned photonic crystal waveguide Silicon-on-insulator Mach-Zehnder interferometers,” IEEE Photonics Technol. Lett. 19(5), 342–344 (2007).
[Crossref]

Chen, X.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Thermooptically tuned photonic crystal waveguide Silicon-on-insulator Mach-Zehnder interferometers,” IEEE Photonics Technol. Lett. 19(5), 342–344 (2007).
[Crossref]

Chiba, T.

Christensen, M. P.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

N. R. Huntoon, M. P. Christensen, D. L. MacFarlane, G. A. Evans, and C. S. Yeh, “Integrated photonic coupler based on frustrated total internal reflection,” Appl. Opt. 47(30), 5682–5690 (2008).
[Crossref] [PubMed]

Claes, T.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cong, G. W.

Cui, K.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Cui, Y.

Dabkowski, M.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Delâge, A.

Densmore, A.

Dereux, A.

DeRose, C.

DeVos, K.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dumon, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Espinola, R. L.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

Evans, G. A.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

N. R. Huntoon, M. P. Christensen, D. L. MacFarlane, G. A. Evans, and C. S. Yeh, “Integrated photonic coupler based on frustrated total internal reflection,” Appl. Opt. 47(30), 5682–5690 (2008).
[Crossref] [PubMed]

Fang, Q.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power Silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Feng, X.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Giannoulis, G.

Griol, A.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a Silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 6900308 (2015).
[Crossref]

Grogg, D.

M. Hermersdorf, C. Hibert, D. Grogg, and A. M. Ionescu, “High aspect ratio sub-micron trenches on Silicon-on-insulator and bulk Silicon,” Microelectron. Eng. 88(8), 2556–2558 (2011).
[Crossref]

Gu, L.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Thermooptically tuned photonic crystal waveguide Silicon-on-insulator Mach-Zehnder interferometers,” IEEE Photonics Technol. Lett. 19(5), 342–344 (2007).
[Crossref]

Guan, B.

Hasama, T.

Hassan, K.

Hermersdorf, M.

M. Hermersdorf, C. Hibert, D. Grogg, and A. M. Ionescu, “High aspect ratio sub-micron trenches on Silicon-on-insulator and bulk Silicon,” Microelectron. Eng. 88(8), 2556–2558 (2011).
[Crossref]

Heyn, P. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Hibert, C.

M. Hermersdorf, C. Hibert, D. Grogg, and A. M. Ionescu, “High aspect ratio sub-micron trenches on Silicon-on-insulator and bulk Silicon,” Microelectron. Eng. 88(8), 2556–2558 (2011).
[Crossref]

Hida, Y.

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photonics Technol. Lett. 5(7), 782–784 (1993).
[Crossref]

Hosseini, A.

Huang, H.

K. Liu, H. Huang, S. X. Mu, H. Lin, and D. L. MacFarlane, “Ultra-compact three-port trench-based photonic couplers in ion-exchanged glass waveguides,” Opt. Commun. 309, 307–312 (2013).
[Crossref]

Huang, Y.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Huang, Z.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Hunt, L. R.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Huntoon, N.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Huntoon, N. R.

Igarashi, Y.

Imamura, S.

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photonics Technol. Lett. 5(7), 782–784 (1993).
[Crossref]

Ionescu, A. M.

M. Hermersdorf, C. Hibert, D. Grogg, and A. M. Ionescu, “High aspect ratio sub-micron trenches on Silicon-on-insulator and bulk Silicon,” Microelectron. Eng. 88(8), 2556–2558 (2011).
[Crossref]

Ishikawa, H.

Janz, S.

Jiang, W.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Thermooptically tuned photonic crystal waveguide Silicon-on-insulator Mach-Zehnder interferometers,” IEEE Photonics Technol. Lett. 19(5), 342–344 (2007).
[Crossref]

Kalavrouziotis, D.

Karl, M.

Kawashima, H.

Khan, S.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Kim, J. Y.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Kim, S.

Kim, T. W.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Kintaka, K.

Kirk, J. B.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Kriezis, E. E.

Kumar, A.

Kuwatsuka, H.

Kwong, D.

Kwong, D. L.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power Silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

LaFave, T. P.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Lapointe, J.

Lechago, S.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a Silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 6900308 (2015).
[Crossref]

Lee, B. G.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Lee, J. B.

Lin, H.

K. Liu, H. Huang, S. X. Mu, H. Lin, and D. L. MacFarlane, “Ultra-compact three-port trench-based photonic couplers in ion-exchanged glass waveguides,” Opt. Commun. 309, 307–312 (2013).
[Crossref]

Liow, T. Y.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power Silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Liu, F.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Liu, K.

S. Mu, K. Liu, S. Wang, C. Zhang, B. Guan, and D. Zou, “Compact InGaAsP/InP 3 × 3 multimode-interference coupler-based electro-optic switch,” Appl. Opt. 55(7), 1795–1802 (2016).
[Crossref] [PubMed]

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

K. Liu, H. Huang, S. X. Mu, H. Lin, and D. L. MacFarlane, “Ultra-compact three-port trench-based photonic couplers in ion-exchanged glass waveguides,” Opt. Commun. 309, 307–312 (2013).
[Crossref]

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Y. Cui, K. Liu, D. L. MacFarlane, and J. B. Lee, “Thermo-optically tunable silicon photonic crystal light modulator,” Opt. Lett. 35(21), 3613–3615 (2010).
[Crossref] [PubMed]

Lo, G. Q.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power Silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Ma, R.

MacFarlane, D. L.

K. Liu, H. Huang, S. X. Mu, H. Lin, and D. L. MacFarlane, “Ultra-compact three-port trench-based photonic couplers in ion-exchanged glass waveguides,” Opt. Commun. 309, 307–312 (2013).
[Crossref]

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Y. Cui, K. Liu, D. L. MacFarlane, and J. B. Lee, “Thermo-optically tunable silicon photonic crystal light modulator,” Opt. Lett. 35(21), 3613–3615 (2010).
[Crossref] [PubMed]

N. R. Huntoon, M. P. Christensen, D. L. MacFarlane, G. A. Evans, and C. S. Yeh, “Integrated photonic coupler based on frustrated total internal reflection,” Appl. Opt. 47(30), 5682–5690 (2008).
[Crossref] [PubMed]

Markey, L.

Masahara, M.

Matsukawa, T.

Mu, S.

Mu, S. X.

K. Liu, H. Huang, S. X. Mu, H. Lin, and D. L. MacFarlane, “Ultra-compact three-port trench-based photonic couplers in ion-exchanged glass waveguides,” Opt. Commun. 309, 307–312 (2013).
[Crossref]

Nielson, G. N.

Nordin, G. P.

Ohno, M.

Onose, H.

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photonics Technol. Lett. 5(7), 782–784 (1993).
[Crossref]

Osgood, R. M.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

Padmaraju, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).

Paff, R. J.

W. M. Yim and R. J. Paff, “Thermal expansion of AlN, sapphire, and silicon,” J. Appl. Phys. 45(3), 1456–1457 (1974).
[Crossref]

Papaioannou, S.

Pitilakis, A.

Pleros, N.

Qian, Y.

Ramakrishna, V.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Sanchez, L.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a Silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 6900308 (2015).
[Crossref]

Sanchis, P.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a Silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 6900308 (2015).
[Crossref]

Schmid, J. H.

Selvaraja, S. K.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shoji, Y.

Song, J.

Song, J. F.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power Silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Sorger, V. J.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Stark, A. J.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Subbaraman, H.

Suda, S.

Sultana, N.

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Sun, J.

Tadokoro, H.

Tekin, T.

Thourhout, D. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Trotter, D. C.

Tsai, M. C.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

Tsilipakos, O.

Vachon, M.

Vaerenbergh, T. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vyrsokinos, K.

Wang, S.

Watts, M. R.

Weeber, J. C.

K. Hassan, J. C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Weeber, J.-C.

Xu, D. X.

Xu, X.

Yanagihara, M.

Yardley, J. T.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

Ye, C. R.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Yeh, C. S.

Yim, W. M.

W. M. Yim and R. J. Paff, “Thermal expansion of AlN, sapphire, and silicon,” J. Appl. Phys. 45(3), 1456–1457 (1974).
[Crossref]

Young, R. W.

Yu, M. B.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power Silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Zhang, C.

Zhang, D.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Zhang, W.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Zhang, X.

Zhang, Y.

Zhao, Q.

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

Zou, D.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. Hassan, J. C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

IEEE Photonics J. (2)

Q. Zhao, K. Cui, Z. Huang, X. Feng, D. Zhang, F. Liu, W. Zhang, and Y. Huang, “Compact thermo-optic switch based on tapered W1 photonic crystal waveguide,” IEEE Photonics J. 5(2), 2200606 (2013).
[Crossref]

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-power operation in a Silicon switch based on an asymmetric Mach-Zehnder interferometer,” IEEE Photonics J. 7(2), 6900308 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (5)

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power Silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Thermooptically tuned photonic crystal waveguide Silicon-on-insulator Mach-Zehnder interferometers,” IEEE Photonics Technol. Lett. 19(5), 342–344 (2007).
[Crossref]

D. L. MacFarlane, M. P. Christensen, K. Liu, T. P. LaFave, G. A. Evans, N. Sultana, T. W. Kim, J. Y. Kim, J. B. Kirk, N. Huntoon, A. J. Stark, M. Dabkowski, L. R. Hunt, and V. Ramakrishna, “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technol. Lett. 24(1), 58–60 (2012).
[Crossref]

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photonics Technol. Lett. 5(7), 782–784 (1993).
[Crossref]

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

J. Appl. Phys. (1)

W. M. Yim and R. J. Paff, “Thermal expansion of AlN, sapphire, and silicon,” J. Appl. Phys. 45(3), 1456–1457 (1974).
[Crossref]

Laser Photonics Rev. (2)

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Microelectron. Eng. (1)

M. Hermersdorf, C. Hibert, D. Grogg, and A. M. Ionescu, “High aspect ratio sub-micron trenches on Silicon-on-insulator and bulk Silicon,” Microelectron. Eng. 88(8), 2556–2558 (2011).
[Crossref]

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4–5), 269–281 (2014).

Opt. Commun. (1)

K. Liu, H. Huang, S. X. Mu, H. Lin, and D. L. MacFarlane, “Ultra-compact three-port trench-based photonic couplers in ion-exchanged glass waveguides,” Opt. Commun. 309, 307–312 (2013).
[Crossref]

Opt. Express (6)

Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact 90° trench-based splitter for silicon-on-insulator rib waveguides,” Opt. Express 15(25), 16712–16718 (2007).
[Crossref] [PubMed]

G. W. Cong, T. Matsukawa, T. Chiba, H. Tadokoro, M. Yanagihara, M. Ohno, H. Kawashima, H. Kuwatsuka, Y. Igarashi, M. Masahara, and H. Ishikawa, “Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch,” Opt. Express 21(6), 6889–6894 (2013).
[Crossref] [PubMed]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20(7), 7655–7662 (2012).
[Crossref] [PubMed]

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

A. Densmore, S. Janz, R. Ma, J. H. Schmid, D. X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009).
[Crossref] [PubMed]

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Three dimensional (3D) schematic structure of a trench-coupler based rectangular Mach-Zehnder 2 × 2 thermo-optic switch on a SOI platform. The two couplers are located at the intersection of input and output ports, respectively. The 90° waveguide bends are formed by etching of TIR mirrors at the corners of the L-shape interferometric arms. (b) Cross-sectional view of the phase-shift arm (left side), showing a geometry of the single-mode SOI ridge waveguide with a large cross-section, an oxide cladding layer, and a metal heater on the top. The ridge waveguide has an etching depth of 1 µm, the total height of tSi = 2 µm, and the ridge width of W = 2 μm, respectively. A typical TE fundamental mode intensity profile in the corresponding cross-section of the ridge waveguide at 1550 nm wavelength (right side). (c) Scanning electron microscopy image of a trench-coupler, exhibiting a ~120 nm wide trench at the “+” intersection of two ridge waveguides.
Fig. 2
Fig. 2 (a) Temperature distribution profile on the L-shape Al heater surface at various applied voltages by FEM simulation. (b) Maximum index change of the phase-shift waveguide arm as a function of temperature on the metal heater surface. (c) Temperature distribution, and (d) index change profiles on the cross-section of the phase-shift waveguide arm, respectively.
Fig. 3
Fig. 3 Thermal response of the L-shape phase-shift arm at the different thickness of top dielectric SiO2 layer by using a finite element method. h is defined by the thickness of the top SiO2 layer between the metal heater and the ridge waveguide [Fig. 1(b)].
Fig. 4
Fig. 4 Simulated switching characteristics of (a) optical transmission, and (b) extinction ratio dependency on drive voltages applied on the heater by a 3D-FDTD method. TE polarized light is launched into the input port 1 at a wavelength of 1550 nm.

Tables (1)

Tables Icon

Table 1 Performance comparison of Silicon-based MZI thermo-optic switches

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 2 π λ ( n T ) Δ T L H ( 1 + α L Δ T ) ,
P π = λ κ S i O 2 ( W H t S i O 2 _ t o p + 0.88 ) | n T | ,
f c u t o f f = 1 π λ ρ ε t h ( P π A ) | n T | ,
F O M = E R ( d B ) A R P π ( W ) I L ( d B ) .

Metrics