Abstract

The modal content of 7 and 19 cell Kagomé anti resonant hollow core fibers (K-ARF) with hypocycloid core surrounds is experimentally investigated through the spectral and spatial (S2) imaging technique. It is observed that the 7 and 19 cell K-ARF reported here, support 4 and 7 LP mode groups respectively, however the observation that K-ARF support few mode groups is likely to be ubiquitous to 7 and 19 cell K-ARFs. The transmission loss of the higher order modes (HOMs) was measured via S2 and a cutback method. In the 7 cell K-ARF it is found that the LP11 and LP21 modes have approximately 3.6 and 5.7 times the loss of the fundamental mode (FM), respectively. In the 19 cell it is found that the LP11 mode has approximately 2.57 times the loss of the FM, while the LP02 mode has approximately 2.62 times the loss of the FM. Additionally, bend loss in these fibers is studied for the first time using S2 to reveal the effect of bend on modal content. Our measurements demonstrate that K-ARFs support a few mode groups and indicate that the differential loss of the HOMs is not substantially higher than that of the FM, and that bending the fiber does not induce significant inter modal coupling. A study of three different input beam coupling configurations demonstrates increased HOM excitation at output and a non-Gaussian profile of the output beam if poor mode field matching is achieved.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Modal content measurements (S2) of negative curvature hollow-core photonic crystal fibers

V. Bock, M. Plötner, O. De Vries, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann
Opt. Express 25(4) 3006-3012 (2017)

Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y.Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid
Opt. Express 21(23) 28597-28608 (2013)

Hypocycloid-shaped hollow-core photonic crystal fiber Part II: Cladding effect on confinement and bend loss

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid
Opt. Express 21(23) 28609-28616 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  2. M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23(9), 11227–11241 (2015).
    [Crossref] [PubMed]
  3. C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52(22), 5430–5439 (2013).
    [Crossref] [PubMed]
  4. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
    [Crossref] [PubMed]
  5. B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
    [Crossref] [PubMed]
  6. A. Urich, R. R. J. Maier, B. J. Mangan, S. Renshaw, J. C. Knight, D. P. Hand, and J. D. Shephard, “Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre,” Opt. Express 20(6), 6677–6684 (2012).
    [Crossref] [PubMed]
  7. Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. N. Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, S. Member, and D. J. Richardson, “Multi - kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(4), 104–113 (2016).
    [Crossref]
  8. G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
    [Crossref] [PubMed]
  9. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref] [PubMed]
  10. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
    [Crossref] [PubMed]
  11. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  12. J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
    [Crossref] [PubMed]
  13. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref] [PubMed]
  14. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
    [Crossref] [PubMed]
  15. Y. Jung, V. Sleiffer, N. Baddela, M. Petrovich, J. R. Hayes, N. Wheeler, D. Gray, E. R. Numkam Fokoua, J. Wooler, N. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. Waardt, de, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, (2013), pp. 1–3.
  16. D. R. Gray, M. N. Petrovich, S. R. Sandoghchi, N. V. Wheeler, K. Naveen, G. T. Jasion, T. Bradley, D. J. Richardson, and F. Poletti, “Real - time modal analysis via wavelength - swept spatial and spectral (S 2) Imaging,” IEEE Photonics Technol. Lett. 28(9), 1034–1037 (2015).
  17. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  18. B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J.-M. Blondy, F. Gerome, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling Kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33(17), 3630–3634 (2015).
    [Crossref]
  19. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part I: cladding Arc curvature effect on confinement loss,” Opt. Express 21(23), 28609–28616 (2013).
    [Crossref] [PubMed]
  20. M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part II: cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
    [Crossref] [PubMed]
  21. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [Crossref] [PubMed]
  22. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
    [Crossref]
  23. D. R. Gray, S. R. Sandoghchi, N. V. Wheeler, N. K. Baddela, G. T. Jasion, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Accurate calibration of S2 and interferometry based multimode fiber characterization techniques,” Opt. Express 23(8), 10540–10552 (2015).
    [Crossref] [PubMed]
  24. B. Beaudou, A. Bhardwaj, T. D. Bradley, M. Alharbi, B. Debord, F. Gerome, and F. Benabid, “Macro bending losses in single-cell kagome-lattice hollow-core photonic crystal fibers,” J. Lightwave Technol. 32(7), 1370–1373 (2014).
    [Crossref]
  25. T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of low loss (70dB / km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31(16), 2752–2755 (2013).
    [Crossref]
  26. B. M. Trabold, D. Novoa, A. Abdolvand, and P. S. J. Russell, “Selective excitation of higher order modes in hollow-core PCF via prism-coupling,” Opt. Lett. 39(13), 3736–3739 (2014).
    [Crossref] [PubMed]
  27. Y. Cheng, Y. Y. Wang, J. L. Auguste, F. Gerôme, G. Humbert, J. M. Blondy, and F. Benabid, “Fabrication and characterization of ultra-large core size (>100 µm) Kagome fiber for laser power handling,” in CLEO:2011 - Laser Applications to Photonic Applications (2011), pp. 15–16.
  28. N. K. Baddela, M. N. Petrovich, Y. Jung, J. R. Hayes, N. V. Wheeler, D. R. Gray, N. Wong, F. Parmigiani, E. Numkam, J. P. Wooler, F. Poletti, and D. J. Richardson, “First Demonstration of a low loss 37-cell hollow core photonic bandgap fiber and its use for data transmission,” in CLEO:2013 - Laser Applications to Photonic Applications (2013).
  29. T. G. Euser, G. Whyte, M. Scharrer, J. S. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. S. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
    [Crossref] [PubMed]

2016 (1)

2015 (6)

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

D. R. Gray, S. R. Sandoghchi, N. V. Wheeler, N. K. Baddela, G. T. Jasion, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Accurate calibration of S2 and interferometry based multimode fiber characterization techniques,” Opt. Express 23(8), 10540–10552 (2015).
[Crossref] [PubMed]

M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23(9), 11227–11241 (2015).
[Crossref] [PubMed]

B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J.-M. Blondy, F. Gerome, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling Kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33(17), 3630–3634 (2015).
[Crossref]

D. R. Gray, M. N. Petrovich, S. R. Sandoghchi, N. V. Wheeler, K. Naveen, G. T. Jasion, T. Bradley, D. J. Richardson, and F. Poletti, “Real - time modal analysis via wavelength - swept spatial and spectral (S 2) Imaging,” IEEE Photonics Technol. Lett. 28(9), 1034–1037 (2015).

2014 (5)

2013 (5)

2012 (2)

2011 (1)

2009 (1)

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

2008 (3)

2006 (1)

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Abdolvand, A.

Abokhamis, M. S.

Alharbi, M.

B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J.-M. Blondy, F. Gerome, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling Kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33(17), 3630–3634 (2015).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

B. Beaudou, A. Bhardwaj, T. D. Bradley, M. Alharbi, B. Debord, F. Gerome, and F. Benabid, “Macro bending losses in single-cell kagome-lattice hollow-core photonic crystal fibers,” J. Lightwave Technol. 32(7), 1370–1373 (2014).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part II: cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of low loss (70dB / km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31(16), 2752–2755 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part I: cladding Arc curvature effect on confinement loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Amsanpally, A.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Baddela, N. K.

Bang, O.

Beaudou, B.

Belardi, W.

Benabid, F.

B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J.-M. Blondy, F. Gerome, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling Kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33(17), 3630–3634 (2015).
[Crossref]

B. Beaudou, A. Bhardwaj, T. D. Bradley, M. Alharbi, B. Debord, F. Gerome, and F. Benabid, “Macro bending losses in single-cell kagome-lattice hollow-core photonic crystal fibers,” J. Lightwave Technol. 32(7), 1370–1373 (2014).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part I: cladding Arc curvature effect on confinement loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part II: cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52(22), 5430–5439 (2013).
[Crossref] [PubMed]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of low loss (70dB / km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31(16), 2752–2755 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Bhardwaj, A.

Blondy, J.-M.

Booth, T.

Bradley, T.

Bradley, T. D.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. N. Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, S. Member, and D. J. Richardson, “Multi - kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(4), 104–113 (2016).
[Crossref]

B. Beaudou, A. Bhardwaj, T. D. Bradley, M. Alharbi, B. Debord, F. Gerome, and F. Benabid, “Macro bending losses in single-cell kagome-lattice hollow-core photonic crystal fibers,” J. Lightwave Technol. 32(7), 1370–1373 (2014).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of low loss (70dB / km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31(16), 2752–2755 (2013).
[Crossref]

C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52(22), 5430–5439 (2013).
[Crossref] [PubMed]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Chen, J. S.

Chen, Y.

Corwin, K. L.

Couny, F.

Debord, B.

B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J.-M. Blondy, F. Gerome, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling Kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33(17), 3630–3634 (2015).
[Crossref]

B. Beaudou, A. Bhardwaj, T. D. Bradley, M. Alharbi, B. Debord, F. Gerome, and F. Benabid, “Macro bending losses in single-cell kagome-lattice hollow-core photonic crystal fibers,” J. Lightwave Technol. 32(7), 1370–1373 (2014).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part II: cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of low loss (70dB / km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31(16), 2752–2755 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part I: cladding Arc curvature effect on confinement loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

Dutin, C. F.

Euser, T. G.

Fini, J. M.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

Fokoua, E. N.

Fourcade-Dutin, C.

Gerome, F.

Gérôme, F.

Ghalmi, S.

Ghosh, D.

Gray, D. R.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. N. Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, S. Member, and D. J. Richardson, “Multi - kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(4), 104–113 (2016).
[Crossref]

D. R. Gray, S. R. Sandoghchi, N. V. Wheeler, N. K. Baddela, G. T. Jasion, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Accurate calibration of S2 and interferometry based multimode fiber characterization techniques,” Opt. Express 23(8), 10540–10552 (2015).
[Crossref] [PubMed]

D. R. Gray, M. N. Petrovich, S. R. Sandoghchi, N. V. Wheeler, K. Naveen, G. T. Jasion, T. Bradley, D. J. Richardson, and F. Poletti, “Real - time modal analysis via wavelength - swept spatial and spectral (S 2) Imaging,” IEEE Photonics Technol. Lett. 28(9), 1034–1037 (2015).

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Grogan, M.

Hald, J.

Hand, D. P.

Hayes, J. R.

Hoenninger, C.

Husakou, A.

Jasion, G. T.

Kaminski, C. F.

Knight, J. C.

Lægsgaard, J.

Light, P. S.

Liu, Z.

Lyngsø, J. K.

Maier, R. R. J.

Mangan, B. J.

Member, S.

Mermelstein, M. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

Michieletto, M.

Mielke, M.

Mottay, E.

Naveen, K.

D. R. Gray, M. N. Petrovich, S. R. Sandoghchi, N. V. Wheeler, K. Naveen, G. T. Jasion, T. Bradley, D. J. Richardson, and F. Poletti, “Real - time modal analysis via wavelength - swept spatial and spectral (S 2) Imaging,” IEEE Photonics Technol. Lett. 28(9), 1034–1037 (2015).

Nicholson, J. W.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[Crossref] [PubMed]

Nold, J.

Novoa, D.

Peng, X.

Petrovich, M. N.

Poletti, F.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. N. Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, S. Member, and D. J. Richardson, “Multi - kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(4), 104–113 (2016).
[Crossref]

D. R. Gray, M. N. Petrovich, S. R. Sandoghchi, N. V. Wheeler, K. Naveen, G. T. Jasion, T. Bradley, D. J. Richardson, and F. Poletti, “Real - time modal analysis via wavelength - swept spatial and spectral (S 2) Imaging,” IEEE Photonics Technol. Lett. 28(9), 1034–1037 (2015).

D. R. Gray, S. R. Sandoghchi, N. V. Wheeler, N. K. Baddela, G. T. Jasion, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Accurate calibration of S2 and interferometry based multimode fiber characterization techniques,” Opt. Express 23(8), 10540–10552 (2015).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
[Crossref] [PubMed]

Ramachandran, S.

Renshaw, S.

Richardson, D. J.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. N. Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, S. Member, and D. J. Richardson, “Multi - kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(4), 104–113 (2016).
[Crossref]

D. R. Gray, M. N. Petrovich, S. R. Sandoghchi, N. V. Wheeler, K. Naveen, G. T. Jasion, T. Bradley, D. J. Richardson, and F. Poletti, “Real - time modal analysis via wavelength - swept spatial and spectral (S 2) Imaging,” IEEE Photonics Technol. Lett. 28(9), 1034–1037 (2015).

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

D. R. Gray, S. R. Sandoghchi, N. V. Wheeler, N. K. Baddela, G. T. Jasion, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Accurate calibration of S2 and interferometry based multimode fiber characterization techniques,” Opt. Express 23(8), 10540–10552 (2015).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
[Crossref] [PubMed]

Roberts, P. J.

Russell, P. S.

Russell, P. S. J.

B. M. Trabold, D. Novoa, A. Abdolvand, and P. S. J. Russell, “Selective excitation of higher order modes in hollow-core PCF via prism-coupling,” Opt. Lett. 39(13), 3736–3739 (2014).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Sandoghchi, S. R.

Scharrer, M.

Shephard, J. D.

Shrimpton, J. S.

Slavík, R.

Trabold, B. M.

Triches, M.

Urich, A.

van Brakel, A.

Vincetti, L.

Wang, C.

Wang, Y.

Wang, Y. Y.

Washburn, B. R.

Wheeler, N. V.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. N. Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, S. Member, and D. J. Richardson, “Multi - kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(4), 104–113 (2016).
[Crossref]

D. R. Gray, M. N. Petrovich, S. R. Sandoghchi, N. V. Wheeler, K. Naveen, G. T. Jasion, T. Bradley, D. J. Richardson, and F. Poletti, “Real - time modal analysis via wavelength - swept spatial and spectral (S 2) Imaging,” IEEE Photonics Technol. Lett. 28(9), 1034–1037 (2015).

D. R. Gray, S. R. Sandoghchi, N. V. Wheeler, N. K. Baddela, G. T. Jasion, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Accurate calibration of S2 and interferometry based multimode fiber characterization techniques,” Opt. Express 23(8), 10540–10552 (2015).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52(22), 5430–5439 (2013).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

Whyte, G.

Yablon, A. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. R. Gray, M. N. Petrovich, S. R. Sandoghchi, N. V. Wheeler, K. Naveen, G. T. Jasion, T. Bradley, D. J. Richardson, and F. Poletti, “Real - time modal analysis via wavelength - swept spatial and spectral (S 2) Imaging,” IEEE Photonics Technol. Lett. 28(9), 1034–1037 (2015).

J. Lightwave Technol. (4)

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Opt. Express (12)

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[Crossref] [PubMed]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. S. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part I: cladding Arc curvature effect on confinement loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber part II: cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

A. Urich, R. R. J. Maier, B. J. Mangan, S. Renshaw, J. C. Knight, D. P. Hand, and J. D. Shephard, “Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre,” Opt. Express 20(6), 6677–6684 (2012).
[Crossref] [PubMed]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

D. R. Gray, S. R. Sandoghchi, N. V. Wheeler, N. K. Baddela, G. T. Jasion, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Accurate calibration of S2 and interferometry based multimode fiber characterization techniques,” Opt. Express 23(8), 10540–10552 (2015).
[Crossref] [PubMed]

M. Triches, M. Michieletto, J. Hald, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers,” Opt. Express 23(9), 11227–11241 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Other (3)

Y. Jung, V. Sleiffer, N. Baddela, M. Petrovich, J. R. Hayes, N. Wheeler, D. Gray, E. R. Numkam Fokoua, J. Wooler, N. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. Waardt, de, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, (2013), pp. 1–3.

Y. Cheng, Y. Y. Wang, J. L. Auguste, F. Gerôme, G. Humbert, J. M. Blondy, and F. Benabid, “Fabrication and characterization of ultra-large core size (>100 µm) Kagome fiber for laser power handling,” in CLEO:2011 - Laser Applications to Photonic Applications (2011), pp. 15–16.

N. K. Baddela, M. N. Petrovich, Y. Jung, J. R. Hayes, N. V. Wheeler, D. R. Gray, N. Wong, F. Parmigiani, E. Numkam, J. P. Wooler, F. Poletti, and D. J. Richardson, “First Demonstration of a low loss 37-cell hollow core photonic bandgap fiber and its use for data transmission,” in CLEO:2013 - Laser Applications to Photonic Applications (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 5 m Transmission (blue) and measured cutback loss curves (green) of a) 7 cell K-ARF and b) 19 cell K-ARF. Insets are SEMs of the transverse fiber structure. Bend loss for c) the 7 cell K-ARF and d) the 19 cell K-ARF. OSA resolution = 10 nm for all measurements.
Fig. 2
Fig. 2 Spatial and spectral (S2) imaging setup. TLS: Tunable Laser Source, SMF: Single Mode Fiber, HWP: Half-wave plate, PBS: Polarizing beam splitter, CCD: InGaAs camera, Lenses shown by double headed arrows.
Fig. 3
Fig. 3 S2 analysis of the 7 cell K-ARF. a) Differential group delay and relative power of higher order modes (MPI), inset: beam profile summed across all wavelengths, b) Experimental S2 mode intensity and phase profiles, and c) Spectrogram measurement across 110 nm wide range covered by our source (1520-1630 nm).
Fig. 4
Fig. 4 a) DGD of 7 cell K-ARF with a 5 cm full coil at the output (blue) loosely coiled (green) and a 5 cm bend at the input (red). Inset: beam profile summed over all wavelengths for each bending configuration. b) S2 mode profiles for a straight and a 5cm coil at the input.
Fig. 5
Fig. 5 a) Length-dependent DGD curves for 31.5 (red), 10 (green) and 5 m (blue) of 7 cell K-ARF (fixed launch conditions). Inset: beam profiles summed over all wavelengths for each cutback length. b) MPI of LP11 and LP21 HOMs as a function of fiber length. Error bars are the standard deviation of three S2 measurements at each fiber length (repeat cleaves). c) S2 mode profiles at the different cutback lengths. Note that the orientation of the modes in the images changes because after each cut the fiber is repositioned at a slightly different orientation on the output coupling v-groove
Fig. 6
Fig. 6 a) DGD curves for free space lens launch (red), butt coupling with SMF-28 (green) and LMA-35 (blue) through 21 m of 7 cell K-ARF. Inset: beam profiles summed over all wavelengths for each launch condition. b) S2 mode profiles for the three different coupling conditions.
Fig. 7
Fig. 7 S2 results of the 19 cell K-ARF a) DGD curve for 30 m of 19 K-ARF, inset: beam profile summed across all wavelengths, b) S2 mode intensity and phase profiles propagating in 19 cell K-ARF, c) Spectrogram of the HOM content in 19 cell K-ARF.
Fig. 8
Fig. 8 a) DGD curves for 30 m of 19 cell K-ARF with 5 cm diameter bend at input (red), output (blue), and effectively straight (green). Inset: beam profile summed over all wavelengths for each bending configuration. b) S2 mode profiles in a straight fiber and with 5 cm diameter bend at input.
Fig. 9
Fig. 9 a) DGD curves for 31.5 m (red), 10 m (green) and 5 m (blue) lengths of 19 cell K-ARF. Inset: beam profiles summed over all wavelengths for each cutback length. b) MPI corrected for fiber transmission loss for the LP11 (red) and LP02 (blue) modes at different cutback lengths. Error bars are the standard deviation of three measurements at each length, c) S2 mode profiles at cutback positions.
Fig. 10
Fig. 10 a) DGD curves for free space lens launch (red), butt coupling to SMF-28 (green) and LMA-35 (blue) through 25.5 m of 19 cell K-ARF. Inset: beam profiles summed over all wavelengths for each launch condition. b) S2 mode profiles for the three different coupling conditions.

Tables (1)

Tables Icon

Table 1 Mode dependent loss in 7 and 19 cell core K-ARF.

Metrics