Abstract

Time-resolved luminescence imaging of intracellular oxygen levels has been demonstrated based on long-lived phosphorescent signal. A phosphorescent dinuclear iridium(III) complex Ir1 has been designed and synthesized, which exhibits excellent optical properties, such as high quantum yields, large Stokes shift, high photostability and long emission lifetime. The phosphorescent intensity and lifetime of complex are very sensitive to oxygen levels. Thus, the application of Ir1 for monitoring intracellular oxygen levels has been realized successfully. Especially, utilizing the advantageous long emission lifetime of Ir1, the background fluorescence interference could be eliminated effectively by using the photoluminescence lifetime imaging and time-gated luminescence imaging techniques, improving the signal-to-noise ratios in bioimaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phosphorescent ion-paired iridium(III) complex for ratiometric and time-resolved luminescence imaging of intracellular biothiols

Shujuan Liu, Aqiang Xu, Zejing Chen, Yun Ma, Huiran Yang, Zhengjian Shi, and Qiang Zhao
Opt. Express 24(25) 28247-28255 (2016)

Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models

Dhruv Sud, Wei Zhong, David G. Beer, and Mary-Ann Mycek
Opt. Express 14(10) 4412-4426 (2006)

Using a redox-sensitive phosphorescent probe for optical evaluation of an intracellular redox environment

Shujuan Liu, Na Zhou, Zejing Chen, Huanjie Wei, Yana Zhu, Song Guo, and Qiang Zhao
Opt. Lett. 42(1) 13-16 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. L. Semenza, “Angiogenesis in ischemic and neoplastic disorders,” Annu. Rev. Med. 54(2), 17–28 (2003).
    [Crossref] [PubMed]
  2. G. L. Semenza, “Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology,” Trends Mol. Med. 7(8), 345–350 (2001).
    [Crossref] [PubMed]
  3. C. Murdoch, M. Muthana, and C. E. Lewis, “Hypoxia regulates macrophage functions in inflammation,” J. Immunol. 175(10), 6257–6263 (2005).
    [Crossref] [PubMed]
  4. A. L. Harris, “Hypoxia--a key regulatory factor in tumour growth,” Nat. Rev. Cancer 2(1), 38–47 (2002).
    [Crossref] [PubMed]
  5. P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49(23), 6449–6465 (1989).
    [PubMed]
  6. G. L. Semenza, “Oxygen sensing, homeostasis, and disease,” N. Engl. J. Med. 365(6), 537–547 (2011).
    [Crossref] [PubMed]
  7. P. Vaupel, K. Schlenger, C. Knoop, and M. Höckel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements,” Cancer Res. 51(12), 3316–3322 (1991).
    [PubMed]
  8. G. Sette, J. C. Baron, B. Mazoyer, M. Levasseur, S. Pappata, and C. Crouzel, “Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography,” Brain 112(4), 931–951 (1989).
    [Crossref] [PubMed]
  9. M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
    [Crossref] [PubMed]
  10. D. B. Papkovsky and R. I. Dmitriev, “Biological detection by optical oxygen sensing,” Chem. Soc. Rev. 42(22), 8700–8732 (2013).
    [Crossref] [PubMed]
  11. X. D. Wang and O. S. Wolfbeis, “Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications,” Chem. Soc. Rev. 43(10), 3666–3761 (2014).
    [Crossref] [PubMed]
  12. C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
    [Crossref] [PubMed]
  13. T. Yoshihara, Y. Yamaguchi, M. Hosaka, T. Takeuchi, and S. Tobita, “Ratiometric molecular sensor for monitoring oxygen levels in living cells,” Angew. Chem. Int. Ed. Engl. 51(17), 4148–4151 (2012).
    [Crossref] [PubMed]
  14. Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
    [Crossref]
  15. W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).
  16. L. Huynh, Z. Wang, J. Yang, V. Stoeva, A. Lough, I. Manners, and M. A. Winnik, “Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications,” Chem. Mater. 17(19), 4765–4773 (2005).
    [Crossref]
  17. M. S. Lowry and S. Bernhard, “Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications,” Chemistry 12(31), 7970–7977 (2006).
    [Crossref] [PubMed]
  18. S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, and T. Takeuchi, “Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals,” Cancer Res. 70(11), 4490–4498 (2010).
    [Crossref] [PubMed]
  19. L.M. Hirvonen, Z. Petrášek, A. Beeby, and K. Suhling, “Sub-μs time resolution in wide-field time-correlated single photon counting microscopy obtained from the photon event phosphor decay,” New J. Phys. 17(2), 023032 (2015).
  20. L. M. Hirvonen, F. Festy, and K. Suhling, “Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution,” Opt. Lett. 39(19), 5602–5605 (2014).
    [Crossref] [PubMed]
  21. D.-L. Ma, D. S.-H. Chan, and C.-H. Leung, “Group 9 organometallic compounds for therapeutic and bioanalytical applications,” Acc. Chem. Res. 47(12), 3614–3631 (2014).
    [Crossref] [PubMed]
  22. M. Mauro, A. Aliprandi, D. Septiadi, N. S. Kehr, and L. De Cola, “When self-assembly meets biology: luminescent platinum complexes for imaging applications,” Chem. Soc. Rev. 43(12), 4144–4166 (2014).
    [Crossref] [PubMed]
  23. K. Y. Zhang, J. Zhang, Y. Liu, S. Liu, P. Zhang, Q. Zhao, Y. Tang, and W. Huang, “Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy,” Chem. Sci. (Camb.) 6(1), 301–307 (2015).
    [Crossref]
  24. S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, “Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes,” Proc. Natl. Acad. Sci. U.S.A. 105(42), 16071–16076 (2008).
    [Crossref] [PubMed]
  25. Y. You, Y. Han, Y.-M. Lee, S. Y. Park, W. Nam, and S. J. Lippard, “Phosphorescent sensor for robust quantification of copper(II) ion,” J. Am. Chem. Soc. 133(30), 11488–11491 (2011).
    [Crossref] [PubMed]
  26. H. Woo, S. Cho, Y. Han, W.-S. Chae, D.-R. Ahn, Y. You, and W. Nam, “Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors,” J. Am. Chem. Soc. 135(12), 4771–4787 (2013).
    [Crossref] [PubMed]
  27. E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
    [Crossref] [PubMed]
  28. Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).
  29. V. I. Shcheslavskiy, A. Neubauer, R. Bukowiecki, F. Dinter, and W. Becker, “Combined fluorescence and phosphorescence lifetime imaging,” Appl. Phys. Lett. 108(9), 091111 (2016).
  30. S. Liu, H. Liang, K. Y. Zhang, Q. Zhao, X. Zhou, W. Xu, and W. Huang, “A multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia monitoring,” Chem. Commun. (Camb.) 51(37), 7943–7946 (2015).
    [Crossref] [PubMed]
  31. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
    [Crossref] [PubMed]
  32. L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
    [Crossref]
  33. X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
    [Crossref] [PubMed]

2016 (1)

V. I. Shcheslavskiy, A. Neubauer, R. Bukowiecki, F. Dinter, and W. Becker, “Combined fluorescence and phosphorescence lifetime imaging,” Appl. Phys. Lett. 108(9), 091111 (2016).

2015 (7)

S. Liu, H. Liang, K. Y. Zhang, Q. Zhao, X. Zhou, W. Xu, and W. Huang, “A multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia monitoring,” Chem. Commun. (Camb.) 51(37), 7943–7946 (2015).
[Crossref] [PubMed]

K. Y. Zhang, J. Zhang, Y. Liu, S. Liu, P. Zhang, Q. Zhao, Y. Tang, and W. Huang, “Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy,” Chem. Sci. (Camb.) 6(1), 301–307 (2015).
[Crossref]

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).

L.M. Hirvonen, Z. Petrášek, A. Beeby, and K. Suhling, “Sub-μs time resolution in wide-field time-correlated single photon counting microscopy obtained from the photon event phosphor decay,” New J. Phys. 17(2), 023032 (2015).

2014 (5)

D.-L. Ma, D. S.-H. Chan, and C.-H. Leung, “Group 9 organometallic compounds for therapeutic and bioanalytical applications,” Acc. Chem. Res. 47(12), 3614–3631 (2014).
[Crossref] [PubMed]

M. Mauro, A. Aliprandi, D. Septiadi, N. S. Kehr, and L. De Cola, “When self-assembly meets biology: luminescent platinum complexes for imaging applications,” Chem. Soc. Rev. 43(12), 4144–4166 (2014).
[Crossref] [PubMed]

X. D. Wang and O. S. Wolfbeis, “Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications,” Chem. Soc. Rev. 43(10), 3666–3761 (2014).
[Crossref] [PubMed]

L. M. Hirvonen, F. Festy, and K. Suhling, “Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution,” Opt. Lett. 39(19), 5602–5605 (2014).
[Crossref] [PubMed]

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

2013 (3)

H. Woo, S. Cho, Y. Han, W.-S. Chae, D.-R. Ahn, Y. You, and W. Nam, “Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors,” J. Am. Chem. Soc. 135(12), 4771–4787 (2013).
[Crossref] [PubMed]

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

D. B. Papkovsky and R. I. Dmitriev, “Biological detection by optical oxygen sensing,” Chem. Soc. Rev. 42(22), 8700–8732 (2013).
[Crossref] [PubMed]

2012 (1)

T. Yoshihara, Y. Yamaguchi, M. Hosaka, T. Takeuchi, and S. Tobita, “Ratiometric molecular sensor for monitoring oxygen levels in living cells,” Angew. Chem. Int. Ed. Engl. 51(17), 4148–4151 (2012).
[Crossref] [PubMed]

2011 (2)

G. L. Semenza, “Oxygen sensing, homeostasis, and disease,” N. Engl. J. Med. 365(6), 537–547 (2011).
[Crossref] [PubMed]

Y. You, Y. Han, Y.-M. Lee, S. Y. Park, W. Nam, and S. J. Lippard, “Phosphorescent sensor for robust quantification of copper(II) ion,” J. Am. Chem. Soc. 133(30), 11488–11491 (2011).
[Crossref] [PubMed]

2010 (1)

S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, and T. Takeuchi, “Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals,” Cancer Res. 70(11), 4490–4498 (2010).
[Crossref] [PubMed]

2009 (1)

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

2008 (1)

S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, “Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes,” Proc. Natl. Acad. Sci. U.S.A. 105(42), 16071–16076 (2008).
[Crossref] [PubMed]

2007 (1)

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

2006 (1)

M. S. Lowry and S. Bernhard, “Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications,” Chemistry 12(31), 7970–7977 (2006).
[Crossref] [PubMed]

2005 (2)

L. Huynh, Z. Wang, J. Yang, V. Stoeva, A. Lough, I. Manners, and M. A. Winnik, “Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications,” Chem. Mater. 17(19), 4765–4773 (2005).
[Crossref]

C. Murdoch, M. Muthana, and C. E. Lewis, “Hypoxia regulates macrophage functions in inflammation,” J. Immunol. 175(10), 6257–6263 (2005).
[Crossref] [PubMed]

2003 (1)

G. L. Semenza, “Angiogenesis in ischemic and neoplastic disorders,” Annu. Rev. Med. 54(2), 17–28 (2003).
[Crossref] [PubMed]

2002 (1)

A. L. Harris, “Hypoxia--a key regulatory factor in tumour growth,” Nat. Rev. Cancer 2(1), 38–47 (2002).
[Crossref] [PubMed]

2001 (1)

G. L. Semenza, “Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology,” Trends Mol. Med. 7(8), 345–350 (2001).
[Crossref] [PubMed]

1991 (1)

P. Vaupel, K. Schlenger, C. Knoop, and M. Höckel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements,” Cancer Res. 51(12), 3316–3322 (1991).
[PubMed]

1989 (2)

G. Sette, J. C. Baron, B. Mazoyer, M. Levasseur, S. Pappata, and C. Crouzel, “Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography,” Brain 112(4), 931–951 (1989).
[Crossref] [PubMed]

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49(23), 6449–6465 (1989).
[PubMed]

1983 (1)

T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
[Crossref] [PubMed]

Ahn, D.-R.

H. Woo, S. Cho, Y. Han, W.-S. Chae, D.-R. Ahn, Y. You, and W. Nam, “Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors,” J. Am. Chem. Soc. 135(12), 4771–4787 (2013).
[Crossref] [PubMed]

Aliprandi, A.

M. Mauro, A. Aliprandi, D. Septiadi, N. S. Kehr, and L. De Cola, “When self-assembly meets biology: luminescent platinum complexes for imaging applications,” Chem. Soc. Rev. 43(12), 4144–4166 (2014).
[Crossref] [PubMed]

An, D.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Baggaley, E.

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

Baron, J. C.

G. Sette, J. C. Baron, B. Mazoyer, M. Levasseur, S. Pappata, and C. Crouzel, “Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography,” Brain 112(4), 931–951 (1989).
[Crossref] [PubMed]

Becker, W.

V. I. Shcheslavskiy, A. Neubauer, R. Bukowiecki, F. Dinter, and W. Becker, “Combined fluorescence and phosphorescence lifetime imaging,” Appl. Phys. Lett. 108(9), 091111 (2016).

Beeby, A.

L.M. Hirvonen, Z. Petrášek, A. Beeby, and K. Suhling, “Sub-μs time resolution in wide-field time-correlated single photon counting microscopy obtained from the photon event phosphor decay,” New J. Phys. 17(2), 023032 (2015).

Bernhard, S.

M. S. Lowry and S. Bernhard, “Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications,” Chemistry 12(31), 7970–7977 (2006).
[Crossref] [PubMed]

Botchway, S. W.

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, “Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes,” Proc. Natl. Acad. Sci. U.S.A. 105(42), 16071–16076 (2008).
[Crossref] [PubMed]

Bukowiecki, R.

V. I. Shcheslavskiy, A. Neubauer, R. Bukowiecki, F. Dinter, and W. Becker, “Combined fluorescence and phosphorescence lifetime imaging,” Appl. Phys. Lett. 108(9), 091111 (2016).

Bull, B.

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

Cao, L.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Cao, T.

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

Chae, W.-S.

H. Woo, S. Cho, Y. Han, W.-S. Chae, D.-R. Ahn, Y. You, and W. Nam, “Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors,” J. Am. Chem. Soc. 135(12), 4771–4787 (2013).
[Crossref] [PubMed]

Chan, D. S.-H.

D.-L. Ma, D. S.-H. Chan, and C.-H. Leung, “Group 9 organometallic compounds for therapeutic and bioanalytical applications,” Acc. Chem. Res. 47(12), 3614–3631 (2014).
[Crossref] [PubMed]

Charnley, M.

S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, “Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes,” Proc. Natl. Acad. Sci. U.S.A. 105(42), 16071–16076 (2008).
[Crossref] [PubMed]

Cheng, J.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Cho, S.

H. Woo, S. Cho, Y. Han, W.-S. Chae, D.-R. Ahn, Y. You, and W. Nam, “Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors,” J. Am. Chem. Soc. 135(12), 4771–4787 (2013).
[Crossref] [PubMed]

Christensen, K.

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

Crouzel, C.

G. Sette, J. C. Baron, B. Mazoyer, M. Levasseur, S. Pappata, and C. Crouzel, “Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography,” Brain 112(4), 931–951 (1989).
[Crossref] [PubMed]

De Cola, L.

M. Mauro, A. Aliprandi, D. Septiadi, N. S. Kehr, and L. De Cola, “When self-assembly meets biology: luminescent platinum complexes for imaging applications,” Chem. Soc. Rev. 43(12), 4144–4166 (2014).
[Crossref] [PubMed]

Dinter, F.

V. I. Shcheslavskiy, A. Neubauer, R. Bukowiecki, F. Dinter, and W. Becker, “Combined fluorescence and phosphorescence lifetime imaging,” Appl. Phys. Lett. 108(9), 091111 (2016).

Dmitriev, R. I.

D. B. Papkovsky and R. I. Dmitriev, “Biological detection by optical oxygen sensing,” Chem. Soc. Rev. 42(22), 8700–8732 (2013).
[Crossref] [PubMed]

Dong, L.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Festy, F.

Fox, M. D.

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

Gill, M. R.

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

Green, N. H.

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

Han, F.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Han, Y.

H. Woo, S. Cho, Y. Han, W.-S. Chae, D.-R. Ahn, Y. You, and W. Nam, “Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors,” J. Am. Chem. Soc. 135(12), 4771–4787 (2013).
[Crossref] [PubMed]

Y. You, Y. Han, Y.-M. Lee, S. Y. Park, W. Nam, and S. J. Lippard, “Phosphorescent sensor for robust quantification of copper(II) ion,” J. Am. Chem. Soc. 133(30), 11488–11491 (2011).
[Crossref] [PubMed]

Harris, A. L.

A. L. Harris, “Hypoxia--a key regulatory factor in tumour growth,” Nat. Rev. Cancer 2(1), 38–47 (2002).
[Crossref] [PubMed]

Haycock, J. W.

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, “Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes,” Proc. Natl. Acad. Sci. U.S.A. 105(42), 16071–16076 (2008).
[Crossref] [PubMed]

Hirvonen, L. M.

Hirvonen, L.M.

L.M. Hirvonen, Z. Petrášek, A. Beeby, and K. Suhling, “Sub-μs time resolution in wide-field time-correlated single photon counting microscopy obtained from the photon event phosphor decay,” New J. Phys. 17(2), 023032 (2015).

Höckel, M.

P. Vaupel, K. Schlenger, C. Knoop, and M. Höckel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements,” Cancer Res. 51(12), 3316–3322 (1991).
[PubMed]

Hong, L.-J.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Hosaka, M.

T. Yoshihara, Y. Yamaguchi, M. Hosaka, T. Takeuchi, and S. Tobita, “Ratiometric molecular sensor for monitoring oxygen levels in living cells,” Angew. Chem. Int. Ed. Engl. 51(17), 4148–4151 (2012).
[Crossref] [PubMed]

S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, and T. Takeuchi, “Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals,” Cancer Res. 70(11), 4490–4498 (2010).
[Crossref] [PubMed]

Hu, Y.-H.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Hu, Y.-Z.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Huang, W.

S. Liu, H. Liang, K. Y. Zhang, Q. Zhao, X. Zhou, W. Xu, and W. Huang, “A multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia monitoring,” Chem. Commun. (Camb.) 51(37), 7943–7946 (2015).
[Crossref] [PubMed]

W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

K. Y. Zhang, J. Zhang, Y. Liu, S. Liu, P. Zhang, Q. Zhao, Y. Tang, and W. Huang, “Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy,” Chem. Sci. (Camb.) 6(1), 301–307 (2015).
[Crossref]

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

Huynh, L.

L. Huynh, Z. Wang, J. Yang, V. Stoeva, A. Lough, I. Manners, and M. A. Winnik, “Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications,” Chem. Mater. 17(19), 4765–4773 (2005).
[Crossref]

Iida, Y.

S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, and T. Takeuchi, “Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals,” Cancer Res. 70(11), 4490–4498 (2010).
[Crossref] [PubMed]

Jiang, J.

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

Jiang, Q.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Kallinowski, F.

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49(23), 6449–6465 (1989).
[PubMed]

Kehr, N. S.

M. Mauro, A. Aliprandi, D. Septiadi, N. S. Kehr, and L. De Cola, “When self-assembly meets biology: luminescent platinum complexes for imaging applications,” Chem. Soc. Rev. 43(12), 4144–4166 (2014).
[Crossref] [PubMed]

Knoop, C.

P. Vaupel, K. Schlenger, C. Knoop, and M. Höckel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements,” Cancer Res. 51(12), 3316–3322 (1991).
[PubMed]

Lee, Y.-M.

Y. You, Y. Han, Y.-M. Lee, S. Y. Park, W. Nam, and S. J. Lippard, “Phosphorescent sensor for robust quantification of copper(II) ion,” J. Am. Chem. Soc. 133(30), 11488–11491 (2011).
[Crossref] [PubMed]

Leung, C.-H.

D.-L. Ma, D. S.-H. Chan, and C.-H. Leung, “Group 9 organometallic compounds for therapeutic and bioanalytical applications,” Acc. Chem. Res. 47(12), 3614–3631 (2014).
[Crossref] [PubMed]

Levasseur, M.

G. Sette, J. C. Baron, B. Mazoyer, M. Levasseur, S. Pappata, and C. Crouzel, “Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography,” Brain 112(4), 931–951 (1989).
[Crossref] [PubMed]

Lewis, C. E.

C. Murdoch, M. Muthana, and C. E. Lewis, “Hypoxia regulates macrophage functions in inflammation,” J. Immunol. 175(10), 6257–6263 (2005).
[Crossref] [PubMed]

Li, F.

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).

Li, X.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Liang, H.

S. Liu, H. Liang, K. Y. Zhang, Q. Zhao, X. Zhou, W. Xu, and W. Huang, “A multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia monitoring,” Chem. Commun. (Camb.) 51(37), 7943–7946 (2015).
[Crossref] [PubMed]

W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

Liao, M.-H.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Lin, J.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Lippard, S. J.

Y. You, Y. Han, Y.-M. Lee, S. Y. Park, W. Nam, and S. J. Lippard, “Phosphorescent sensor for robust quantification of copper(II) ion,” J. Am. Chem. Soc. 133(30), 11488–11491 (2011).
[Crossref] [PubMed]

Liu, S.

K. Y. Zhang, J. Zhang, Y. Liu, S. Liu, P. Zhang, Q. Zhao, Y. Tang, and W. Huang, “Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy,” Chem. Sci. (Camb.) 6(1), 301–307 (2015).
[Crossref]

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

S. Liu, H. Liang, K. Y. Zhang, Q. Zhao, X. Zhou, W. Xu, and W. Huang, “A multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia monitoring,” Chem. Commun. (Camb.) 51(37), 7943–7946 (2015).
[Crossref] [PubMed]

W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

Liu, Y.

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

K. Y. Zhang, J. Zhang, Y. Liu, S. Liu, P. Zhang, Q. Zhao, Y. Tang, and W. Huang, “Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy,” Chem. Sci. (Camb.) 6(1), 301–307 (2015).
[Crossref]

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Lough, A.

L. Huynh, Z. Wang, J. Yang, V. Stoeva, A. Lough, I. Manners, and M. A. Winnik, “Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications,” Chem. Mater. 17(19), 4765–4773 (2005).
[Crossref]

Lowry, M. S.

M. S. Lowry and S. Bernhard, “Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications,” Chemistry 12(31), 7970–7977 (2006).
[Crossref] [PubMed]

Lu, N.-N.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Lu, Y.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Lu, Y.-M.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Lv, W.

W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).

Ma, D.-L.

D.-L. Ma, D. S.-H. Chan, and C.-H. Leung, “Group 9 organometallic compounds for therapeutic and bioanalytical applications,” Acc. Chem. Res. 47(12), 3614–3631 (2014).
[Crossref] [PubMed]

Ma, K.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Man, N.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Manners, I.

L. Huynh, Z. Wang, J. Yang, V. Stoeva, A. Lough, I. Manners, and M. A. Winnik, “Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications,” Chem. Mater. 17(19), 4765–4773 (2005).
[Crossref]

Mauro, M.

M. Mauro, A. Aliprandi, D. Septiadi, N. S. Kehr, and L. De Cola, “When self-assembly meets biology: luminescent platinum complexes for imaging applications,” Chem. Soc. Rev. 43(12), 4144–4166 (2014).
[Crossref] [PubMed]

Mazoyer, B.

G. Sette, J. C. Baron, B. Mazoyer, M. Levasseur, S. Pappata, and C. Crouzel, “Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography,” Brain 112(4), 931–951 (1989).
[Crossref] [PubMed]

McNeill, J.

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

Mosmann, T.

T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
[Crossref] [PubMed]

Murdoch, C.

C. Murdoch, M. Muthana, and C. E. Lewis, “Hypoxia regulates macrophage functions in inflammation,” J. Immunol. 175(10), 6257–6263 (2005).
[Crossref] [PubMed]

Muthana, M.

C. Murdoch, M. Muthana, and C. E. Lewis, “Hypoxia regulates macrophage functions in inflammation,” J. Immunol. 175(10), 6257–6263 (2005).
[Crossref] [PubMed]

Nam, W.

H. Woo, S. Cho, Y. Han, W.-S. Chae, D.-R. Ahn, Y. You, and W. Nam, “Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors,” J. Am. Chem. Soc. 135(12), 4771–4787 (2013).
[Crossref] [PubMed]

Y. You, Y. Han, Y.-M. Lee, S. Y. Park, W. Nam, and S. J. Lippard, “Phosphorescent sensor for robust quantification of copper(II) ion,” J. Am. Chem. Soc. 133(30), 11488–11491 (2011).
[Crossref] [PubMed]

Negishi, K.

S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, and T. Takeuchi, “Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals,” Cancer Res. 70(11), 4490–4498 (2010).
[Crossref] [PubMed]

Neubauer, A.

V. I. Shcheslavskiy, A. Neubauer, R. Bukowiecki, F. Dinter, and W. Becker, “Combined fluorescence and phosphorescence lifetime imaging,” Appl. Phys. Lett. 108(9), 091111 (2016).

Okunieff, P.

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49(23), 6449–6465 (1989).
[PubMed]

Papkovsky, D. B.

D. B. Papkovsky and R. I. Dmitriev, “Biological detection by optical oxygen sensing,” Chem. Soc. Rev. 42(22), 8700–8732 (2013).
[Crossref] [PubMed]

Pappata, S.

G. Sette, J. C. Baron, B. Mazoyer, M. Levasseur, S. Pappata, and C. Crouzel, “Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography,” Brain 112(4), 931–951 (1989).
[Crossref] [PubMed]

Park, S. Y.

Y. You, Y. Han, Y.-M. Lee, S. Y. Park, W. Nam, and S. J. Lippard, “Phosphorescent sensor for robust quantification of copper(II) ion,” J. Am. Chem. Soc. 133(30), 11488–11491 (2011).
[Crossref] [PubMed]

Parker, A. W.

S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, “Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes,” Proc. Natl. Acad. Sci. U.S.A. 105(42), 16071–16076 (2008).
[Crossref] [PubMed]

Petrášek, Z.

L.M. Hirvonen, Z. Petrášek, A. Beeby, and K. Suhling, “Sub-μs time resolution in wide-field time-correlated single photon counting microscopy obtained from the photon event phosphor decay,” New J. Phys. 17(2), 023032 (2015).

Raichle, M. E.

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

Rochester, D. L.

S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, “Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes,” Proc. Natl. Acad. Sci. U.S.A. 105(42), 16071–16076 (2008).
[Crossref] [PubMed]

Sazanovich, I. V.

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

Schlenger, K.

P. Vaupel, K. Schlenger, C. Knoop, and M. Höckel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements,” Cancer Res. 51(12), 3316–3322 (1991).
[PubMed]

Semenza, G. L.

G. L. Semenza, “Oxygen sensing, homeostasis, and disease,” N. Engl. J. Med. 365(6), 537–547 (2011).
[Crossref] [PubMed]

G. L. Semenza, “Angiogenesis in ischemic and neoplastic disorders,” Annu. Rev. Med. 54(2), 17–28 (2003).
[Crossref] [PubMed]

G. L. Semenza, “Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology,” Trends Mol. Med. 7(8), 345–350 (2001).
[Crossref] [PubMed]

Septiadi, D.

M. Mauro, A. Aliprandi, D. Septiadi, N. S. Kehr, and L. De Cola, “When self-assembly meets biology: luminescent platinum complexes for imaging applications,” Chem. Soc. Rev. 43(12), 4144–4166 (2014).
[Crossref] [PubMed]

Sette, G.

G. Sette, J. C. Baron, B. Mazoyer, M. Levasseur, S. Pappata, and C. Crouzel, “Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography,” Brain 112(4), 931–951 (1989).
[Crossref] [PubMed]

Shcheslavskiy, V. I.

V. I. Shcheslavskiy, A. Neubauer, R. Bukowiecki, F. Dinter, and W. Becker, “Combined fluorescence and phosphorescence lifetime imaging,” Appl. Phys. Lett. 108(9), 091111 (2016).

Smythe, C.

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

Stoeva, V.

L. Huynh, Z. Wang, J. Yang, V. Stoeva, A. Lough, I. Manners, and M. A. Winnik, “Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications,” Chem. Mater. 17(19), 4765–4773 (2005).
[Crossref]

Suhling, K.

L.M. Hirvonen, Z. Petrášek, A. Beeby, and K. Suhling, “Sub-μs time resolution in wide-field time-correlated single photon counting microscopy obtained from the photon event phosphor decay,” New J. Phys. 17(2), 023032 (2015).

L. M. Hirvonen, F. Festy, and K. Suhling, “Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution,” Opt. Lett. 39(19), 5602–5605 (2014).
[Crossref] [PubMed]

Takeuchi, T.

T. Yoshihara, Y. Yamaguchi, M. Hosaka, T. Takeuchi, and S. Tobita, “Ratiometric molecular sensor for monitoring oxygen levels in living cells,” Angew. Chem. Int. Ed. Engl. 51(17), 4148–4151 (2012).
[Crossref] [PubMed]

S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, and T. Takeuchi, “Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals,” Cancer Res. 70(11), 4490–4498 (2010).
[Crossref] [PubMed]

Tang, Y.

K. Y. Zhang, J. Zhang, Y. Liu, S. Liu, P. Zhang, Q. Zhao, Y. Tang, and W. Huang, “Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy,” Chem. Sci. (Camb.) 6(1), 301–307 (2015).
[Crossref]

Tao, R.-R.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Thomas, J. A.

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

Tobita, S.

T. Yoshihara, Y. Yamaguchi, M. Hosaka, T. Takeuchi, and S. Tobita, “Ratiometric molecular sensor for monitoring oxygen levels in living cells,” Angew. Chem. Int. Ed. Engl. 51(17), 4148–4151 (2012).
[Crossref] [PubMed]

S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, and T. Takeuchi, “Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals,” Cancer Res. 70(11), 4490–4498 (2010).
[Crossref] [PubMed]

Turton, D.

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

Vaupel, P.

P. Vaupel, K. Schlenger, C. Knoop, and M. Höckel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements,” Cancer Res. 51(12), 3316–3322 (1991).
[PubMed]

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49(23), 6449–6465 (1989).
[PubMed]

Wang, X. D.

X. D. Wang and O. S. Wolfbeis, “Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications,” Chem. Soc. Rev. 43(10), 3666–3761 (2014).
[Crossref] [PubMed]

Wang, Z.

L. Huynh, Z. Wang, J. Yang, V. Stoeva, A. Lough, I. Manners, and M. A. Winnik, “Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications,” Chem. Mater. 17(19), 4765–4773 (2005).
[Crossref]

Weinstein, J. A.

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, “Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes,” Proc. Natl. Acad. Sci. U.S.A. 105(42), 16071–16076 (2008).
[Crossref] [PubMed]

Wen, L.-P.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Williams, J. A. G.

S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, “Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes,” Proc. Natl. Acad. Sci. U.S.A. 105(42), 16071–16076 (2008).
[Crossref] [PubMed]

Winnik, M. A.

L. Huynh, Z. Wang, J. Yang, V. Stoeva, A. Lough, I. Manners, and M. A. Winnik, “Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications,” Chem. Mater. 17(19), 4765–4773 (2005).
[Crossref]

Wolfbeis, O. S.

X. D. Wang and O. S. Wolfbeis, “Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications,” Chem. Soc. Rev. 43(10), 3666–3761 (2014).
[Crossref] [PubMed]

Woo, H.

H. Woo, S. Cho, Y. Han, W.-S. Chae, D.-R. Ahn, Y. You, and W. Nam, “Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors,” J. Am. Chem. Soc. 135(12), 4771–4787 (2013).
[Crossref] [PubMed]

Wu, C.

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

Wu, W.-B.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Xu, W.

S. Liu, H. Liang, K. Y. Zhang, Q. Zhao, X. Zhou, W. Xu, and W. Huang, “A multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia monitoring,” Chem. Commun. (Camb.) 51(37), 7943–7946 (2015).
[Crossref] [PubMed]

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

Xu, W.-P.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Xu, Y.-J.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Yamaguchi, Y.

T. Yoshihara, Y. Yamaguchi, M. Hosaka, T. Takeuchi, and S. Tobita, “Ratiometric molecular sensor for monitoring oxygen levels in living cells,” Angew. Chem. Int. Ed. Engl. 51(17), 4148–4151 (2012).
[Crossref] [PubMed]

Yang, H.

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

Yang, J.

L. Huynh, Z. Wang, J. Yang, V. Stoeva, A. Lough, I. Manners, and M. A. Winnik, “Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications,” Chem. Mater. 17(19), 4765–4773 (2005).
[Crossref]

Yang, L.

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

Yang, T.

W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

Ye, W.-F.

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

Yoshihara, T.

T. Yoshihara, Y. Yamaguchi, M. Hosaka, T. Takeuchi, and S. Tobita, “Ratiometric molecular sensor for monitoring oxygen levels in living cells,” Angew. Chem. Int. Ed. Engl. 51(17), 4148–4151 (2012).
[Crossref] [PubMed]

S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, and T. Takeuchi, “Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals,” Cancer Res. 70(11), 4490–4498 (2010).
[Crossref] [PubMed]

You, Y.

H. Woo, S. Cho, Y. Han, W.-S. Chae, D.-R. Ahn, Y. You, and W. Nam, “Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors,” J. Am. Chem. Soc. 135(12), 4771–4787 (2013).
[Crossref] [PubMed]

Y. You, Y. Han, Y.-M. Lee, S. Y. Park, W. Nam, and S. J. Lippard, “Phosphorescent sensor for robust quantification of copper(II) ion,” J. Am. Chem. Soc. 133(30), 11488–11491 (2011).
[Crossref] [PubMed]

Yu, Q.

W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).

Yu, S.-H.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Zhang, C.

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

Zhang, J.

K. Y. Zhang, J. Zhang, Y. Liu, S. Liu, P. Zhang, Q. Zhao, Y. Tang, and W. Huang, “Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy,” Chem. Sci. (Camb.) 6(1), 301–307 (2015).
[Crossref]

Zhang, K. Y.

K. Y. Zhang, J. Zhang, Y. Liu, S. Liu, P. Zhang, Q. Zhao, Y. Tang, and W. Huang, “Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy,” Chem. Sci. (Camb.) 6(1), 301–307 (2015).
[Crossref]

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).

S. Liu, H. Liang, K. Y. Zhang, Q. Zhao, X. Zhou, W. Xu, and W. Huang, “A multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia monitoring,” Chem. Commun. (Camb.) 51(37), 7943–7946 (2015).
[Crossref] [PubMed]

Zhang, L.

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Zhang, P.

K. Y. Zhang, J. Zhang, Y. Liu, S. Liu, P. Zhang, Q. Zhao, Y. Tang, and W. Huang, “Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy,” Chem. Sci. (Camb.) 6(1), 301–307 (2015).
[Crossref]

Zhang, S.

S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, and T. Takeuchi, “Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals,” Cancer Res. 70(11), 4490–4498 (2010).
[Crossref] [PubMed]

Zhao, Q.

W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

K. Y. Zhang, J. Zhang, Y. Liu, S. Liu, P. Zhang, Q. Zhao, Y. Tang, and W. Huang, “Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy,” Chem. Sci. (Camb.) 6(1), 301–307 (2015).
[Crossref]

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

S. Liu, H. Liang, K. Y. Zhang, Q. Zhao, X. Zhou, W. Xu, and W. Huang, “A multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia monitoring,” Chem. Commun. (Camb.) 51(37), 7943–7946 (2015).
[Crossref] [PubMed]

Zhou, X.

S. Liu, H. Liang, K. Y. Zhang, Q. Zhao, X. Zhou, W. Xu, and W. Huang, “A multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia monitoring,” Chem. Commun. (Camb.) 51(37), 7943–7946 (2015).
[Crossref] [PubMed]

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

Acc. Chem. Res. (1)

D.-L. Ma, D. S.-H. Chan, and C.-H. Leung, “Group 9 organometallic compounds for therapeutic and bioanalytical applications,” Acc. Chem. Res. 47(12), 3614–3631 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

L. Dong, Y. Liu, Y. Lu, L. Zhang, N. Man, L. Cao, K. Ma, D. An, J. Lin, Y.-J. Xu, W.-P. Xu, W.-B. Wu, S.-H. Yu, and L.-P. Wen, “Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy Nanocrystals,” Adv. Funct. Mater. 23(47), 5930–5940 (2013).
[Crossref]

Adv. Sci. (1)

W. Lv, T. Yang, Q. Yu, Q. Zhao, K. Y. Zhang, H. Liang, S. Liu, F. Li, and W. Huang, “A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy,” Adv. Sci. 2(10), 1500107 (2015).

Angew. Chem. Int. Ed. Engl. (3)

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

T. Yoshihara, Y. Yamaguchi, M. Hosaka, T. Takeuchi, and S. Tobita, “Ratiometric molecular sensor for monitoring oxygen levels in living cells,” Angew. Chem. Int. Ed. Engl. 51(17), 4148–4151 (2012).
[Crossref] [PubMed]

E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, and J. A. Thomas, “Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA,” Angew. Chem. Int. Ed. Engl. 53(13), 3367–3371 (2014).
[Crossref] [PubMed]

Annu. Rev. Med. (1)

G. L. Semenza, “Angiogenesis in ischemic and neoplastic disorders,” Annu. Rev. Med. 54(2), 17–28 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

V. I. Shcheslavskiy, A. Neubauer, R. Bukowiecki, F. Dinter, and W. Becker, “Combined fluorescence and phosphorescence lifetime imaging,” Appl. Phys. Lett. 108(9), 091111 (2016).

Brain (1)

G. Sette, J. C. Baron, B. Mazoyer, M. Levasseur, S. Pappata, and C. Crouzel, “Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography,” Brain 112(4), 931–951 (1989).
[Crossref] [PubMed]

Cancer Res. (3)

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49(23), 6449–6465 (1989).
[PubMed]

S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, and T. Takeuchi, “Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals,” Cancer Res. 70(11), 4490–4498 (2010).
[Crossref] [PubMed]

P. Vaupel, K. Schlenger, C. Knoop, and M. Höckel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements,” Cancer Res. 51(12), 3316–3322 (1991).
[PubMed]

Chem. Commun. (Camb.) (1)

S. Liu, H. Liang, K. Y. Zhang, Q. Zhao, X. Zhou, W. Xu, and W. Huang, “A multifunctional phosphorescent iridium(III) complex for specific nucleus staining and hypoxia monitoring,” Chem. Commun. (Camb.) 51(37), 7943–7946 (2015).
[Crossref] [PubMed]

Chem. Mater. (1)

L. Huynh, Z. Wang, J. Yang, V. Stoeva, A. Lough, I. Manners, and M. A. Winnik, “Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications,” Chem. Mater. 17(19), 4765–4773 (2005).
[Crossref]

Chem. Sci. (Camb.) (2)

Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang, H. Yang, F. Li, and W. Huang, “Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging,” Chem. Sci. (Camb.) 6(3), 1825–1831 (2015).
[Crossref]

K. Y. Zhang, J. Zhang, Y. Liu, S. Liu, P. Zhang, Q. Zhao, Y. Tang, and W. Huang, “Core–shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy,” Chem. Sci. (Camb.) 6(1), 301–307 (2015).
[Crossref]

Chem. Soc. Rev. (3)

M. Mauro, A. Aliprandi, D. Septiadi, N. S. Kehr, and L. De Cola, “When self-assembly meets biology: luminescent platinum complexes for imaging applications,” Chem. Soc. Rev. 43(12), 4144–4166 (2014).
[Crossref] [PubMed]

D. B. Papkovsky and R. I. Dmitriev, “Biological detection by optical oxygen sensing,” Chem. Soc. Rev. 42(22), 8700–8732 (2013).
[Crossref] [PubMed]

X. D. Wang and O. S. Wolfbeis, “Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications,” Chem. Soc. Rev. 43(10), 3666–3761 (2014).
[Crossref] [PubMed]

Chemistry (1)

M. S. Lowry and S. Bernhard, “Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications,” Chemistry 12(31), 7970–7977 (2006).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

Y. You, Y. Han, Y.-M. Lee, S. Y. Park, W. Nam, and S. J. Lippard, “Phosphorescent sensor for robust quantification of copper(II) ion,” J. Am. Chem. Soc. 133(30), 11488–11491 (2011).
[Crossref] [PubMed]

H. Woo, S. Cho, Y. Han, W.-S. Chae, D.-R. Ahn, Y. You, and W. Nam, “Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors,” J. Am. Chem. Soc. 135(12), 4771–4787 (2013).
[Crossref] [PubMed]

X. Li, R.-R. Tao, L.-J. Hong, J. Cheng, Q. Jiang, Y.-M. Lu, M.-H. Liao, W.-F. Ye, N.-N. Lu, F. Han, Y.-Z. Hu, and Y.-H. Hu, “Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury,” J. Am. Chem. Soc. 137(38), 12296–12303 (2015).
[Crossref] [PubMed]

J. Immunol. (1)

C. Murdoch, M. Muthana, and C. E. Lewis, “Hypoxia regulates macrophage functions in inflammation,” J. Immunol. 175(10), 6257–6263 (2005).
[Crossref] [PubMed]

J. Immunol. Methods (1)

T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

G. L. Semenza, “Oxygen sensing, homeostasis, and disease,” N. Engl. J. Med. 365(6), 537–547 (2011).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

A. L. Harris, “Hypoxia--a key regulatory factor in tumour growth,” Nat. Rev. Cancer 2(1), 38–47 (2002).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

New J. Phys. (1)

L.M. Hirvonen, Z. Petrášek, A. Beeby, and K. Suhling, “Sub-μs time resolution in wide-field time-correlated single photon counting microscopy obtained from the photon event phosphor decay,” New J. Phys. 17(2), 023032 (2015).

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, and J. A. G. Williams, “Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes,” Proc. Natl. Acad. Sci. U.S.A. 105(42), 16071–16076 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

Q. Zhao, C. Zhang, S. Liu, Y. Liu, K. Y. Zhang, X. Zhou, J. Jiang, W. Xu, T. Yang, and W. Huang, “Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy,” Sci. Rep. 5, 16420 (2015).

Trends Mol. Med. (1)

G. L. Semenza, “Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology,” Trends Mol. Med. 7(8), 345–350 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Chemical structures of complex Ir1 and Ir2. (b) UV-vis absorption and normalized phosphorescence spectra of Ir1 and Ir2 in dichloromethane at 293 K (concentration = 10 μM, excitation wavelength = 365 nm). (c and d) Phosphorescence spectra and decays of Ir1 under different O2 concentrations.
Fig. 2
Fig. 2 (a) Cytotoxic evaluation of complex Ir1 by LDH release. LDH release tests of Hela cells after treatment with complex Ir1 (5 μM, 10 μM, 50 μM, 100 μM, 200 μM) for 24 and 48 h. The release of LDH molecules was triggered upon disruption of the cell membrane. It was found that intracellular LDH concentrations of the cells treated with complex Ir1 showed little difference compared with the untreated control group. This indicates low adverse effects of complex Ir1 on cell membrane integrity within a time range of 48 h. (b) Cytotoxic evaluation of complex Ir1 by JC-1 staining. Hela cells were incubated with or without complex Ir1 (5, 10, 50, 100 μM) in culture dish for 48 h and then incubated with JC-1 for 30 min. For positive control experiment, Hela cells were incubated with CCCP (10 μM) for 30 min and then incubated with JC-1 for 30 min. JC-1 aggregates in healthy mitochondria and has a red fluorescence, whereas green fluorescence represents the monomeric form of JC-1, indicating dissipation of mitochondrial membrane potential (ΔΨm). CCCP (10 μM) treatment shows obvious fluorescence emission shift in Hela cells, while complex Ir1 (5 to 100 μM) treatment did not show obvious change.
Fig. 3
Fig. 3 (a) The confocal imaging of live Hela cells incubated with Ir1 for 1 h at 37 °C and then further incubated with dye CMAC for 10 min at room temperature. (b) The photoluminescence lifetime imaging of Hela cells incubated with Ir1 and CMAC. (c and d) The time-gated luminescence imaging of Hela cells incubated with Ir1 and CMAC with the delay time of 0 ns and 50 ns. (e-h) Luminescence intensity profile of Ir1 (red) and CMAC (green) across the line corresponding to cytoplasm region (1 and 3) and nuclear region (2). The concentrations of Ir1 and CMAC in incubation solution were 10 μM and 1 μM, respectively. Excitation wavelength was 405 nm.
Fig. 4
Fig. 4 (a-c) The cell imaging of Hela cells stained with Ir1 and CMAC before photobleaching. (d-f) The cell imaging of Hela cells stained with Ir1 and CMAC after photobleaching for 220 s. (g) The average intensity of the chosen region at different photobleaching time. The concentrations of Ir1 and CMAC in incubation solution were 10 μM and 1 μM, respectively. Excitation wavelength was 405 nm. The scale bars were 20 μm.
Fig. 5
Fig. 5 Photoluminescence intensity (a and b) and lifetime (c and d) images of Ir1 in the cytoplasm under 21% and 2.5% oxygen level. Time-gated luminescence intensity images (e and f) of Ir1 in the cytoplasm under 21% and 2.5% oxygen level with 450 ns delay. (g) The representative decays corresponding to the PLIM images in cell experiments. The concentrations of Ir1 in incubation solution was 10 μM. Excitation wavelength was 405 nm.

Metrics