Abstract

We analyze the modal attenuation properties of silica hollow-core fibers with a gold-wire based indefinite metamaterial cladding at 10.6 µm. We find that by varying the metamaterial feature sizes and core diameter, the loss discrimination can be tailored such that either the HE11, TE01 or TM01 mode has the lowest loss, which is particularly difficult to achieve for the radially polarized mode in commonly used hollow-core fibers. Furthermore, it is possible to tailor the HE11 and TM01 modes in the metamaterial-clad waveguide so that they possess attenuations lower than in hollow tubes composed of the individual constituent materials. We show that S-parameter retrieval techniques in combination with an anisotropic dispersion equation can be used to predict the loss discrimination properties of such fibers. These results pave the way for the design of metamaterial hollow-core fibers with novel guidance properties, in particular for applications demanding cylindrically polarized modes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers

Matthias Zeisberger, Alessandro Tuniz, and Markus A. Schmidt
Opt. Express 24(18) 20515-20528 (2016)

Hollow-core infrared fiber incorporating metal-wire metamaterial

Min Yan and Niels Asger Mortensen
Opt. Express 17(17) 14851-14864 (2009)

Flexible single-mode hollow-core terahertz fiber with metamaterial cladding

Haisu Li, Shaghik Atakaramians, Richard Lwin, Xiaoli Tang, Zhuzheng Yu, Alexander Argyros, and Boris T. Kuhlmey
Optica 3(9) 941-947 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers â Ӑ Ş an innovative platform for in-fiber photonic devices,” Adv. Opt. Mat. 4(1), 13–36 (2016).
    [Crossref]
  2. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
    [Crossref] [PubMed]
  3. W. Cai and V. M. Shalaev, Optical Metamaterials (Springer, 2006).
  4. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mat. 24(31), 4229–4248 (2012).
    [Crossref]
  5. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [Crossref] [PubMed]
  6. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
    [Crossref] [PubMed]
  7. C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mater. Express 6(6), 1790–1799 (2016).
    [Crossref]
  8. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
    [Crossref]
  9. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
    [Crossref] [PubMed]
  10. O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
    [Crossref]
  11. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
    [Crossref] [PubMed]
  12. P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
    [Crossref] [PubMed]
  13. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
    [Crossref]
  14. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17(17), 14851–14864 (2009).
    [Crossref] [PubMed]
  15. S. Townsend, S. Zhou, and Q. Li, “Design of fiber metamaterials with negative refractive index in the infrared,” Opt. Express 23(14), 18236–18242 (2015).
    [Crossref] [PubMed]
  16. D. Pratap, S. A. Ramakrishna, J. G. Pollock, and A. K. Iyer, “Anisotropic metamaterial optical fibers,” Opt. Express 23(7), 9074–9085 (2015).
    [Crossref] [PubMed]
  17. A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, “Fiber metamaterials with negative magnetic permeability in the terahertz,” Opt. Mat. Express 1(1), 115–120 (2011).
    [Crossref]
  18. A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011).
    [Crossref] [PubMed]
  19. N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mat. Express 2(9), 1254–1259 (2012).
    [Crossref]
  20. A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 42706 (2013).
    [Crossref] [PubMed]
  21. S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29(9) 2462–2477 (2012).
    [Crossref]
  22. S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30(4) 851–867 (2013).
    [Crossref]
  23. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009)
    [Crossref] [PubMed]
  24. A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
    [Crossref] [PubMed]
  25. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916) 650–653 (2002).
    [Crossref] [PubMed]
  26. F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32(4), 495–508 (1960).
    [Crossref]
  27. D. Torres and et al., “OmniGuide photonic bandgap fibers for flexible delivery of CO2 laser energy for laryngeal and airway surgery,” Proc. SPIE 5686, 310–321 (2005).
    [Crossref]
  28. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. B 71(3), 036617 (2005).
    [Crossref]
  29. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
    [Crossref] [PubMed]
  30. A. Rakić, A. Djurišić, J. Elazar, and M. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]
  31. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  32. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  33. A.V. Nesterov, V.G. Nizlev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. Appl. Phys. 32(22), 2871–2875 (1999).
    [Crossref]
  34. V.G. Niziev and A.V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D. Appl. Phys. 32(13), 1455–1461 (1999).
    [Crossref]
  35. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  36. F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B 26(12), 2242–2247 (2009).
    [Crossref]
  37. Y. I. Salamin, “Low-diffraction direct particle acceleration by a radially polarized laser beam,” Phys. Lett. A 374(48), 4950–4953 (2010).
    [Crossref]

2016 (3)

2015 (2)

2013 (3)

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30(4) 851–867 (2013).
[Crossref]

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 42706 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (3)

2010 (4)

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref]

Y. I. Salamin, “Low-diffraction direct particle acceleration by a radially polarized laser beam,” Phys. Lett. A 374(48), 4950–4953 (2010).
[Crossref]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

2007 (1)

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

2005 (2)

D. Torres and et al., “OmniGuide photonic bandgap fibers for flexible delivery of CO2 laser energy for laryngeal and airway surgery,” Proc. SPIE 5686, 310–321 (2005).
[Crossref]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. B 71(3), 036617 (2005).
[Crossref]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

2002 (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916) 650–653 (2002).
[Crossref] [PubMed]

2001 (1)

1999 (2)

A.V. Nesterov, V.G. Nizlev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. Appl. Phys. 32(22), 2871–2875 (1999).
[Crossref]

V.G. Niziev and A.V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D. Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

1998 (1)

1960 (1)

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32(4), 495–508 (1960).
[Crossref]

Abouraddy, A. F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

AlâARJanabi, A. H.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
[Crossref]

Aleksandrova, A.

Anthony, J.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers â Ӑ Ş an innovative platform for in-fiber photonic devices,” Adv. Opt. Mat. 4(1), 13–36 (2016).
[Crossref]

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 42706 (2013).
[Crossref] [PubMed]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30(4) 851–867 (2013).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29(9) 2462–2477 (2012).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mat. Express 2(9), 1254–1259 (2012).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011).
[Crossref] [PubMed]

Atakaramians, S.

Atrashchenko, A. V.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mat. 24(31), 4229–4248 (2012).
[Crossref]

Bartal, G.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009)
[Crossref] [PubMed]

Bayindir, M.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Belov, P. A.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mat. 24(31), 4229–4248 (2012).
[Crossref]

Bendavid, A.

A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, “Fiber metamaterials with negative magnetic permeability in the terahertz,” Opt. Mat. Express 1(1), 115–120 (2011).
[Crossref]

Benoit, G.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916) 650–653 (2002).
[Crossref] [PubMed]

Bird, D.

Cai, W.

W. Cai and V. M. Shalaev, Optical Metamaterials (Springer, 2006).

Castelli, A.

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32(4), 495–508 (1960).
[Crossref]

Chashnikova, M.

Constable, E.

Djurišic, A.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Elazar, J.

Engeness, T. D.

Fedosenko, O.

Fink, Y.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916) 650–653 (2002).
[Crossref] [PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[Crossref] [PubMed]

Fischer, B. M.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 42706 (2013).
[Crossref] [PubMed]

Fleming, S. C.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 42706 (2013).
[Crossref] [PubMed]

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30(4) 851–867 (2013).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29(9) 2462–2477 (2012).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mat. Express 2(9), 1254–1259 (2012).
[Crossref]

A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, “Fiber metamaterials with negative magnetic permeability in the terahertz,” Opt. Mat. Express 1(1), 115–120 (2011).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011).
[Crossref] [PubMed]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Flores, Y.

Fredericks, W.

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32(4), 495–508 (1960).
[Crossref]

Genov, D. A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009)
[Crossref] [PubMed]

George, A.

Gruska, B.

Halik, M.

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32(4), 495–508 (1960).
[Crossref]

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916) 650–653 (2002).
[Crossref] [PubMed]

Hou, J.

Hunt, P. G.

A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, “Fiber metamaterials with negative magnetic permeability in the terahertz,” Opt. Mat. Express 1(1), 115–120 (2011).
[Crossref]

Ibanescu, M.

Ishikawa, A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009)
[Crossref] [PubMed]

Iyer, A. K.

Jacobs, S. A.

Jain, C.

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916) 650–653 (2002).
[Crossref] [PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[Crossref] [PubMed]

Johnson, S. G.

Joly, N.

Joly, N. Y.

Kaltenecker, K. J.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 42706 (2013).
[Crossref] [PubMed]

Karatchevtseva, I.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
[Crossref]

Kischkat, J.

Kivshar, Y. S.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mat. 24(31), 4229–4248 (2012).
[Crossref]

Klinkmüller, M.

Knight, J. C.

Koschny, Th.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. B 71(3), 036617 (2005).
[Crossref]

Kuhlmey, B. T.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 42706 (2013).
[Crossref] [PubMed]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30(4) 851–867 (2013).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29(9) 2462–2477 (2012).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mat. Express 2(9), 1254–1259 (2012).
[Crossref]

A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, “Fiber metamaterials with negative magnetic permeability in the terahertz,” Opt. Mat. Express 1(1), 115–120 (2011).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011).
[Crossref] [PubMed]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
[Crossref] [PubMed]

Kuriki, K.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Large, M. C. J.

A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, “Fiber metamaterials with negative magnetic permeability in the terahertz,” Opt. Mat. Express 1(1), 115–120 (2011).
[Crossref]

Lee, H. W.

Lei, M.

Leonhardt, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Lewis, R. A.

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011).
[Crossref] [PubMed]

A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, “Fiber metamaterials with negative magnetic permeability in the terahertz,” Opt. Mat. Express 1(1), 115–120 (2011).
[Crossref]

Li, Q.

Liu, Z.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref]

Lwin, R.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mat. Express 2(9), 1254–1259 (2012).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011).
[Crossref] [PubMed]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Machulik, S.

Maier, S.

Majewski, M.

Masselink, W. T.

Mei, Y.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref]

Monastyrskyi, G.

Mortensen, N. A.

Naman, O. T.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
[Crossref]

Nesterov, A.V.

V.G. Niziev and A.V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D. Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

A.V. Nesterov, V.G. Nizlev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. Appl. Phys. 32(22), 2871–2875 (1999).
[Crossref]

New-Tolley, M. R.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
[Crossref]

Niziev, V.G.

V.G. Niziev and A.V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D. Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

Nizlev, V.G.

A.V. Nesterov, V.G. Nizlev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. Appl. Phys. 32(22), 2871–2875 (1999).
[Crossref]

Orf, N.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Peng, F.

Peters, S.

Pogson, E. M.

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011).
[Crossref] [PubMed]

A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, “Fiber metamaterials with negative magnetic permeability in the terahertz,” Opt. Mat. Express 1(1), 115–120 (2011).
[Crossref]

Pollock, J. G.

Pratap, D.

Pristera, F.

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32(4), 495–508 (1960).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Rakic, A.

Ramakrishna, S. A.

Rettenmayr, M.

Reuther, K.

Russell, P. S. J.

Russell, R. F.

Salamin, Y. I.

Y. I. Salamin, “Low-diffraction direct particle acceleration by a radially polarized laser beam,” Phys. Lett. A 374(48), 4950–4953 (2010).
[Crossref]

Scharrer, M.

Schmidt, M. A.

Schmidt, O. G.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Semtsiv, M.

Shalaev, V. M.

W. Cai and V. M. Shalaev, Optical Metamaterials (Springer, 2006).

Shapira, O.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Simovski, C. R.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mat. 24(31), 4229–4248 (2012).
[Crossref]

Singh, N.

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mat. Express 2(9), 1254–1259 (2012).
[Crossref]

Skorobogatiy, M.

Smith, D. R.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. B 71(3), 036617 (2005).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Smith, E. J.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref]

Soljacic, M.

Sorin, F.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers â Ӑ Ş an innovative platform for in-fiber photonic devices,” Adv. Opt. Mat. 4(1), 13–36 (2016).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. B 71(3), 036617 (2005).
[Crossref]

Temelkuran, B.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916) 650–653 (2002).
[Crossref] [PubMed]

Torres, D.

D. Torres and et al., “OmniGuide photonic bandgap fibers for flexible delivery of CO2 laser energy for laryngeal and airway surgery,” Proc. SPIE 5686, 310–321 (2005).
[Crossref]

Townsend, S.

Tuniz, A.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Mater. Express 6(6), 1790–1799 (2016).
[Crossref]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 42706 (2013).
[Crossref] [PubMed]

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mat. Express 2(9), 1254–1259 (2012).
[Crossref]

A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, “Fiber metamaterials with negative magnetic permeability in the terahertz,” Opt. Mat. Express 1(1), 115–120 (2011).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011).
[Crossref] [PubMed]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Tyagi, H. K.

Uebel, P.

Vier, D. C.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. B 71(3), 036617 (2005).
[Crossref]

Walther, M.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 42706 (2013).
[Crossref] [PubMed]

Wang, A.

A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, “Fiber metamaterials with negative magnetic permeability in the terahertz,” Opt. Mat. Express 1(1), 115–120 (2011).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Weidlich, S.

Weisberg, O.

Wieduwilt, T.

Yakunin, V. P.

A.V. Nesterov, V.G. Nizlev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. Appl. Phys. 32(22), 2871–2875 (1999).
[Crossref]

Yan, M.

Yan, S.

Yao, B.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Zhang, S.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009)
[Crossref] [PubMed]

Zhang, X.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009)
[Crossref] [PubMed]

Zhao, W.

Zhou, S.

Adv. Mat. (1)

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mat. 24(31), 4229–4248 (2012).
[Crossref]

Adv. Opt. Mat. (2)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers â Ӑ Ş an innovative platform for in-fiber photonic devices,” Adv. Opt. Mat. 4(1), 13–36 (2016).
[Crossref]

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. AlâǍŘJanabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mat. 1(12), 971–977 (2013).
[Crossref]

Anal. Chem. (1)

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32(4), 495–508 (1960).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. D. Appl. Phys. (2)

A.V. Nesterov, V.G. Nizlev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. Appl. Phys. 32(22), 2871–2875 (1999).
[Crossref]

V.G. Niziev and A.V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D. Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

Nano Lett. (1)

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[Crossref]

Nat. Commun. (1)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 42706 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[Crossref] [PubMed]

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916) 650–653 (2002).
[Crossref] [PubMed]

Opt. Express (8)

D. Pratap, S. A. Ramakrishna, J. G. Pollock, and A. K. Iyer, “Anisotropic metamaterial optical fibers,” Opt. Express 23(7), 9074–9085 (2015).
[Crossref] [PubMed]

S. Townsend, S. Zhou, and Q. Li, “Design of fiber metamaterials with negative refractive index in the infrared,” Opt. Express 23(14), 18236–18242 (2015).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19(17), 16480–16490 (2011).
[Crossref] [PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[Crossref] [PubMed]

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
[Crossref] [PubMed]

M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17(17), 14851–14864 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mat. Express (2)

A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, “Fiber metamaterials with negative magnetic permeability in the terahertz,” Opt. Mat. Express 1(1), 115–120 (2011).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mat. Express 2(9), 1254–1259 (2012).
[Crossref]

Opt. Mater. Express (1)

Phys. Lett. A (1)

Y. I. Salamin, “Low-diffraction direct particle acceleration by a radially polarized laser beam,” Phys. Lett. A 374(48), 4950–4953 (2010).
[Crossref]

Phys. Rev. B (1)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. B 71(3), 036617 (2005).
[Crossref]

Phys. Rev. Lett. (3)

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009)
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Torres and et al., “OmniGuide photonic bandgap fibers for flexible delivery of CO2 laser energy for laryngeal and airway surgery,” Proc. SPIE 5686, 310–321 (2005).
[Crossref]

Other (2)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

W. Cai and V. M. Shalaev, Optical Metamaterials (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Concept of the proposed iMM hollow-core fiber. Left: air-core fiber with diameter D = 2R with densely packed sub-wavelength gold wires embedded in silica defining the iMM cladding. Inset: square unit cell (diameter d, pitch a) used for the parameter retrieval. Right: equivalent metamaterial hollow-core fiber with permittivity tensors as defined in the text. (b) Sketch of the parameter retrieval procedure and the corresponding unit cell. Permittivity and permeability tensors are retrieved from the transmitted and reflected fields at the input/output ports boundaries using FE simulations. The unit cell is located in air and surrounded by periodic boundary conditions.
Fig. 2
Fig. 2 Pitch/diameter dependence of the different components of the retrieved permittivity tensors (gold wires, silica background, λ = 10.6µm) (a) ℜe(εz), (b) ℜe(εt), (c) ℑm(εz), (d) ℑm(εt). Coloured points in (a)–(b) number the example iMM cladding parameters discussed in the text and shown in Tab. 1.
Fig. 3
Fig. 3 Modal attenation [ℑm(neff) and loss] vs. air core diameter for the three lowest-order modes in hollow-core fibers possessing claddings formed by (a) gold, (b) silica, (c) MM1 and (d) MM2 as defined in Tab. 1. Solid lines: numerical solutions of Eqs. (1)(3). Circles: results obtain by FE modeling. Solid lines in (c), (d) use the permittivity tensors shown in Tab. 1. Also shown are the normalized axial Poynting vectors for the three modes with claddings formed by (e) MM2, D = 600µm and (f) MM3, D = 20µm (numbers below the repective row indicate the scale bar). Note that in (f) the TM01 mode has the lowest loss. Arrows indicate the direction and magnitude of the electric field at a fixed point of time.
Fig. 4
Fig. 4 (a) Modal attenuation [ℑm(neff) and loss] vs. wire diameter d for a constant air-core diameter (D = 600µm) and pitch (a = 2µm, solid lines: FE simulations, dashed line anisotropic dispersion model). (b) Hypothetical calculations to investigate the modal transition behavior (D = 600µm, μ ¯ ¯ ~ 0 I ¯ ¯) Top: ℑm(neff) vs. ℜe(εz) [ℑm(εz) = 1i], εr = εsilica. Bottom: ℑm(neff) vs. ℜe(εr) [ℑm(εr) = 1i], εz = εsilica.

Tables (1)

Tables Icon

Table 1 Summary of metamaterial parameters.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ μ 0 κ J m ( κ R ) J m ( κ R ) μ 0 μ t κ H κ t 2 K m ( κ H R ) K m ( κ H R ) ] [ ε 0 κ J m ( κ R ) J m ( κ R ) ε 0 ε t κ E κ t 2 K m ( κ E R ) K m ( κ E R ) ] = ( m β R ω ) 2 ( 1 κ t 2 1 κ 2 ) 2 ,
[ μ 0 κ J 0 ( κ R ) J 0 ( κ R ) μ 0 μ t κ H κ t 2 K 0 ( κ H R ) K 0 ( κ H R ) ] = 0
[ ε 0 κ J 0 ( κ R ) J 0 ( κ R ) ε 0 ε t κ E κ t 2 K 0 ( κ E R ) K 0 ( κ E R ) ] = 0

Metrics