Abstract

We propose a hitless flexible coherent transceiver enabled by a novel modulation format identification (MFI) scheme for dynamic agile optical networks. The modulation format transparent digital signal processing (DSP) is realized by a block-wise decision-directed least-mean-square (DD-LMS) equalizer for channel tracking, and a pilot symbol aided superscalar phase locked loop (PLL) for carrier phase estimation (CPE). For the MFI, the modulation format information is encoded onto the pilot symbols initially used for CPE. Therefore, the proposed MFI method does not require extra overhead. Moreover, it can identify arbitrary modulation formats including multi-dimensional formats, and it enables tracking of the format change for short data blocks. The performance of the proposed hitless flexible coherent transceiver is successfully evaluated with five modulation formats including QPSK, 16QAM, 64QAM, Hybrid QPSK/8QAM and set-partitioning (SP)-512-QAM. We show that the proposed MFI method induces a negligible performance penalty. Moreover, we experimentally demonstrate that such a hitless transceiver can adapt to fast block-by-block modulation format switching. Finally, the performance improvement of the proposed MFI method is experimentally verified with respect to other commonly used MFI methods.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
RF-pilot aided modulation format identification for hitless coherent transceiver

Meng Xiang, Qunbi Zhuge, Meng Qiu, Xinyu Zhou, Ming Tang, Deming Liu, Songnian Fu, and David V. Plant
Opt. Express 25(1) 463-471 (2017)

Modulation format identification enabled by the digital frequency-offset loading technique for hitless coherent transceiver

Songnian Fu, Zuying Xu, Jianing Lu, Hexun Jiang, Qiong Wu, Zhouyi Hu, Ming Tang, Deming Liu, and Calvin Chun-Kit Chan
Opt. Express 26(6) 7288-7296 (2018)

Modulation format identification assisted by sparse-fast-Fourier-transform for hitless flexible coherent transceivers

Jianing Lu, Zhongwei Tan, Alan Pak Tao Lau, Songnian Fu, Ming Tang, and Chao Lu
Opt. Express 27(5) 7072-7086 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Cisco Visual Networking Index, Forecast and Methodology, 2013–2018. [Online] Available at (http://www. cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11–481360.pdf ).
  2. B. Liu, X. Xin, L. Zhang, and J. Yu, “109.92-Gb/s WDM-OFDMA Uni-PON with dynamic resource allocation and variable rate access,” Opt. Express 20(10), 10552–10561 (2012).
    [Crossref] [PubMed]
  3. I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
    [Crossref]
  4. Z. Zhang, and C. Li, “Hitless multi-rate coherent transceiver,” in Proceedings of Signal Processing in Photonic Communications (2015), paper SpS3D.2.
  5. D. A. A. Mello, V. N. Rozental, T. C. Lima, F. C. Pereira, A. N. Barreto, M. Camera, and G. Bruno, “Adaptive optical transceivers: concepts and challenges,” J. Commun. Information Sys. 29(1), 1–11 (2014).
    [Crossref]
  6. K. Roberts and C. Laperle, “Flexible transceivers,” in Proceedings of European Conference and Exposition on Optical Communications (2012), paper We.3.A.3.
    [Crossref]
  7. R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
    [Crossref] [PubMed]
  8. R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
    [Crossref]
  9. P. Isautier, A. Stark, and S. E. Ralph, “Autonomous software-defined coherent optical receivers performing modulation format recognition in Stokes-space,” in Proceedings of OFC (2014), paper OTh3B.4.
  10. P. Isautier, J. Pan, and S. E. Ralph, “Stokes space-based modulation format recognition for autonomous optical receivers,” J. Lightwave Technol. 33(24), 5157–5163 (2015).
    [Crossref]
  11. P. Isautier, J. Pan, and S. E. Ralph, “Autonomous receivers for complex format identification and demodulation,” in Proceedings of AVFOP (2014), paper TuB2.
    [Crossref]
  12. J. Liu, Z. Dong, K. P. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Proceedings of OFC (2014), paper Th4D.3.
    [Crossref]
  13. S. M. Bilal, G. Bosco, Z. Dong, A. P. Lau, and C. Lu, “Blind modulation format identification for digital coherent receivers,” Opt. Express 23(20), 26769–26778 (2015).
    [Crossref] [PubMed]
  14. Q. Zhuge, M. Morsy-Osman, and D. V. Plant, “Spectral efficiency-adaptive optical transmission using time domain hybrid QAM for agile optical networks,” J. Lightwave Technol. 31(15), 2621–2628 (2013).
    [Crossref]
  15. J. K. Fischer, C. Schmidt-Langhorst, S. Alreesh, R. Elschner, F. Frey, P. W. Berenguer, L. Molle, M. Nolle, and C. Schubert, “Generation, transmission and detection of 4D set-partitioning QAM signals,” J. Lightwave Technol. 33(7), 1445–1451 (2015).
    [Crossref]
  16. Q. Zhuge, C. Chen, and D. V. Plant, “Low computation complexity two-stage feedforward carrier recovery algorithm for M-QAM,” in Proceedings of OFC (2011), paper OMJ5.
    [Crossref]
  17. M. Xiang, S. Fu, L. Deng, M. Tang, P. Shum, and D. Liu, “Low-complexity feed-forward carrier phase estimation for M-ary QAM based on phase search acceleration by quadratic approximation,” Opt. Express 23(15), 19142–19153 (2015).
    [Crossref] [PubMed]
  18. K. Piyawanno, M. Kuschnerov, and B. Lankl, “Low complexity carrier recovery for coherent QAM using superscalar parallelization,” in Proceedings of European Conference on Optical Communication (2010), paper We.7.A.3.
    [Crossref]
  19. Q. Zhuge, M. Morsy-Osman, X. Xu, M. E. Mousa-Pasandi, M. Chagnon, Z. A. El-Sahn, and D. V. Plant, “Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL,” Opt. Express 20(17), 19599–19609 (2012).
    [Crossref] [PubMed]
  20. M. Qiu, Q. Zhuge, W. Wang, M. Chagnon, F. Zhang, and D. V. Plant, “Optimized superscalar parallelization based carrier phase recovery for agile metro optical networks,” J. Lightwave Technol. 34(4), 1111–1119 (2016).
    [Crossref]
  21. Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
    [Crossref]
  22. M. Selmi, P. Ciblat, Y. Jaouen, and C. Gosset, “Block versus adaptive MIMO equalization for coherent PolMux QAM transmission system,” in Proceedings of European Conference on Optical Communication (2010), paper Th.9.A.5.
    [Crossref]
  23. S.-H. Fan, J. Yu, D. Qian, and G.-K. Chang, “A fast and efficient frequency offset correction technique for coherent optical orthogonal frequency division multiplexing,” J. Lightwave Technol. 29(13), 1997–2004 (2011).
    [Crossref]
  24. X. Chen, A. Al Amin, and W. Shieh, “Characterization and monitoring of laser linewidths in coherent systems,” J. Lightwave Technol. 29(17), 2533–2537 (2012).
    [Crossref]

2016 (1)

2015 (5)

2014 (2)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

D. A. A. Mello, V. N. Rozental, T. C. Lima, F. C. Pereira, A. N. Barreto, M. Camera, and G. Bruno, “Adaptive optical transceivers: concepts and challenges,” J. Commun. Information Sys. 29(1), 1–11 (2014).
[Crossref]

2013 (2)

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Q. Zhuge, M. Morsy-Osman, and D. V. Plant, “Spectral efficiency-adaptive optical transmission using time domain hybrid QAM for agile optical networks,” J. Lightwave Technol. 31(15), 2621–2628 (2013).
[Crossref]

2012 (3)

2011 (1)

2003 (1)

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

Al Amin, A.

Alreesh, S.

Arlunno, V.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Azodolmolky, S.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Barreto, A. N.

D. A. A. Mello, V. N. Rozental, T. C. Lima, F. C. Pereira, A. N. Barreto, M. Camera, and G. Bruno, “Adaptive optical transceivers: concepts and challenges,” J. Commun. Information Sys. 29(1), 1–11 (2014).
[Crossref]

Berenguer, P. W.

Bilal, S. M.

Boada, R.

Borkowski, R.

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref] [PubMed]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Bosco, G.

Bruno, G.

D. A. A. Mello, V. N. Rozental, T. C. Lima, F. C. Pereira, A. N. Barreto, M. Camera, and G. Bruno, “Adaptive optical transceivers: concepts and challenges,” J. Commun. Information Sys. 29(1), 1–11 (2014).
[Crossref]

Caballero, A.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Camera, M.

D. A. A. Mello, V. N. Rozental, T. C. Lima, F. C. Pereira, A. N. Barreto, M. Camera, and G. Bruno, “Adaptive optical transceivers: concepts and challenges,” J. Commun. Information Sys. 29(1), 1–11 (2014).
[Crossref]

Careglio, D.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Chagnon, M.

Chang, G.-K.

Chen, X.

Ciblat, P.

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

M. Selmi, P. Ciblat, Y. Jaouen, and C. Gosset, “Block versus adaptive MIMO equalization for coherent PolMux QAM transmission system,” in Proceedings of European Conference on Optical Communication (2010), paper Th.9.A.5.
[Crossref]

Deng, L.

Dong, Z.

El-Sahn, Z. A.

Elschner, R.

Fan, S.-H.

Fischer, J. K.

Frey, F.

Fu, S.

Gosset, C.

M. Selmi, P. Ciblat, Y. Jaouen, and C. Gosset, “Block versus adaptive MIMO equalization for coherent PolMux QAM transmission system,” in Proceedings of European Conference on Optical Communication (2010), paper Th.9.A.5.
[Crossref]

Isautier, P.

P. Isautier, J. Pan, and S. E. Ralph, “Stokes space-based modulation format recognition for autonomous optical receivers,” J. Lightwave Technol. 33(24), 5157–5163 (2015).
[Crossref]

P. Isautier, A. Stark, and S. E. Ralph, “Autonomous software-defined coherent optical receivers performing modulation format recognition in Stokes-space,” in Proceedings of OFC (2014), paper OTh3B.4.

Jaouen, Y.

M. Selmi, P. Ciblat, Y. Jaouen, and C. Gosset, “Block versus adaptive MIMO equalization for coherent PolMux QAM transmission system,” in Proceedings of European Conference on Optical Communication (2010), paper Th.9.A.5.
[Crossref]

Kuschnerov, M.

K. Piyawanno, M. Kuschnerov, and B. Lankl, “Low complexity carrier recovery for coherent QAM using superscalar parallelization,” in Proceedings of European Conference on Optical Communication (2010), paper We.7.A.3.
[Crossref]

Lankl, B.

K. Piyawanno, M. Kuschnerov, and B. Lankl, “Low complexity carrier recovery for coherent QAM using superscalar parallelization,” in Proceedings of European Conference on Optical Communication (2010), paper We.7.A.3.
[Crossref]

Laperle, C.

K. Roberts and C. Laperle, “Flexible transceivers,” in Proceedings of European Conference and Exposition on Optical Communications (2012), paper We.3.A.3.
[Crossref]

Lau, A. P.

Lima, T. C.

D. A. A. Mello, V. N. Rozental, T. C. Lima, F. C. Pereira, A. N. Barreto, M. Camera, and G. Bruno, “Adaptive optical transceivers: concepts and challenges,” J. Commun. Information Sys. 29(1), 1–11 (2014).
[Crossref]

Liu, B.

Liu, D.

Lu, C.

Mello, D. A. A.

D. A. A. Mello, V. N. Rozental, T. C. Lima, F. C. Pereira, A. N. Barreto, M. Camera, and G. Bruno, “Adaptive optical transceivers: concepts and challenges,” J. Commun. Information Sys. 29(1), 1–11 (2014).
[Crossref]

Molle, L.

Monroy, I. T.

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref] [PubMed]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Morsy-Osman, M.

Mousa-Pasandi, M. E.

Nolle, M.

Palkopoulou, E.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Pan, J.

Pereira, F. C.

D. A. A. Mello, V. N. Rozental, T. C. Lima, F. C. Pereira, A. N. Barreto, M. Camera, and G. Bruno, “Adaptive optical transceivers: concepts and challenges,” J. Commun. Information Sys. 29(1), 1–11 (2014).
[Crossref]

Piyawanno, K.

K. Piyawanno, M. Kuschnerov, and B. Lankl, “Low complexity carrier recovery for coherent QAM using superscalar parallelization,” in Proceedings of European Conference on Optical Communication (2010), paper We.7.A.3.
[Crossref]

Plant, D. V.

Qian, D.

Qiu, M.

Ralph, S. E.

P. Isautier, J. Pan, and S. E. Ralph, “Stokes space-based modulation format recognition for autonomous optical receivers,” J. Lightwave Technol. 33(24), 5157–5163 (2015).
[Crossref]

P. Isautier, A. Stark, and S. E. Ralph, “Autonomous software-defined coherent optical receivers performing modulation format recognition in Stokes-space,” in Proceedings of OFC (2014), paper OTh3B.4.

Roberts, K.

K. Roberts and C. Laperle, “Flexible transceivers,” in Proceedings of European Conference and Exposition on Optical Communications (2012), paper We.3.A.3.
[Crossref]

Rozental, V. N.

D. A. A. Mello, V. N. Rozental, T. C. Lima, F. C. Pereira, A. N. Barreto, M. Camera, and G. Bruno, “Adaptive optical transceivers: concepts and challenges,” J. Commun. Information Sys. 29(1), 1–11 (2014).
[Crossref]

Schmidt-Langhorst, C.

Schubert, C.

Selmi, M.

M. Selmi, P. Ciblat, Y. Jaouen, and C. Gosset, “Block versus adaptive MIMO equalization for coherent PolMux QAM transmission system,” in Proceedings of European Conference on Optical Communication (2010), paper Th.9.A.5.
[Crossref]

Serpedin, E.

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

Shieh, W.

Shum, P.

Sole-Pareta, J.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Stark, A.

P. Isautier, A. Stark, and S. E. Ralph, “Autonomous software-defined coherent optical receivers performing modulation format recognition in Stokes-space,” in Proceedings of OFC (2014), paper OTh3B.4.

Tang, M.

Tomkos, I.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Wang, W.

Wang, Y.

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

Xiang, M.

Xin, X.

Xu, X.

Yu, J.

Zhang, F.

Zhang, L.

Zhuge, Q.

Zibar, D.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

IEEE Trans. Commun. (1)

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

J. Commun. Information Sys. (1)

D. A. A. Mello, V. N. Rozental, T. C. Lima, F. C. Pereira, A. N. Barreto, M. Camera, and G. Bruno, “Adaptive optical transceivers: concepts and challenges,” J. Commun. Information Sys. 29(1), 1–11 (2014).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (5)

Proc. IEEE (1)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Other (9)

Z. Zhang, and C. Li, “Hitless multi-rate coherent transceiver,” in Proceedings of Signal Processing in Photonic Communications (2015), paper SpS3D.2.

K. Roberts and C. Laperle, “Flexible transceivers,” in Proceedings of European Conference and Exposition on Optical Communications (2012), paper We.3.A.3.
[Crossref]

Cisco Visual Networking Index, Forecast and Methodology, 2013–2018. [Online] Available at (http://www. cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11–481360.pdf ).

P. Isautier, A. Stark, and S. E. Ralph, “Autonomous software-defined coherent optical receivers performing modulation format recognition in Stokes-space,” in Proceedings of OFC (2014), paper OTh3B.4.

K. Piyawanno, M. Kuschnerov, and B. Lankl, “Low complexity carrier recovery for coherent QAM using superscalar parallelization,” in Proceedings of European Conference on Optical Communication (2010), paper We.7.A.3.
[Crossref]

Q. Zhuge, C. Chen, and D. V. Plant, “Low computation complexity two-stage feedforward carrier recovery algorithm for M-QAM,” in Proceedings of OFC (2011), paper OMJ5.
[Crossref]

P. Isautier, J. Pan, and S. E. Ralph, “Autonomous receivers for complex format identification and demodulation,” in Proceedings of AVFOP (2014), paper TuB2.
[Crossref]

J. Liu, Z. Dong, K. P. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Proceedings of OFC (2014), paper Th4D.3.
[Crossref]

M. Selmi, P. Ciblat, Y. Jaouen, and C. Gosset, “Block versus adaptive MIMO equalization for coherent PolMux QAM transmission system,” in Proceedings of European Conference on Optical Communication (2010), paper Th.9.A.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Structure of the proposed hitless flexible coherent transceiver.
Fig. 2
Fig. 2 Superscalar parallelization buffer structure.
Fig. 3
Fig. 3 (a) Probability of cycle slip versus SNR per symbol. (b) Phase error variance versus SNR per symbol.
Fig. 4
Fig. 4 BER versus SNR per symbol with different numbers of MFI BPSK symbols for averaging under the condition of various Δυ T S .
Fig. 5
Fig. 5 (a) Laser linewidth tolerance. (b) Q2-factor versus the number of total BPSK symbols for PLL initialization ( Δυ T S = 10 5 ).
Fig. 6
Fig. 6 (a) ONSR penalty versus FO drifting speed. (b) ONSR penalty versus polarization rotate speed. ( Δυ T S = 10 5 ).
Fig. 7
Fig. 7 Experimental setup. SW: switch.
Fig. 8
Fig. 8 Back-to-back performance.
Fig. 9
Fig. 9 BER versus launch power for (a) DP-16QAM after 1920 km SSMF transmission, (b) 512-SP-QAM after 960 km SSMF transmission, (c) DP-64QAM after 320 km SSMF transmission. (d) BER versus transmission distance under the optimized launch power.
Fig. 10
Fig. 10 BER and SNR versus block index for (a) interleaved DP-QPSK and DP-Hybrid QPSK/8QAM, and (b) interleaved DP-16QAM and 128-SP-QAM.
Fig. 11
Fig. 11 (a) Normalized signal power distributions for DP-BPSK, (b) stokes distributions for DP-BPSK, (c) normalized signal power for PS-QPSK, and (d) stokes distributions for PS-QPSK Δv ·Ts = 10−4, OSNR = 30 dB.
Fig. 12
Fig. 12 (a) Probability of correct MFI versus OSNR under B2B transmission for DP-16QAM. (b) Probability of correct MFI versus transmission distance.

Tables (1)

Tables Icon

Table 1 An example of a modulation format encoding table given 4-bit information.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

R k = a k + n k ;SNR= P S / P N , P S =E[ | a k | 2 ], P N =E[ | n k | 2 ]
R ¯ k = a k +( n k 1 + n k 2 ++ n k N )/N; SNR ¯ =NSNR=N P S / P N
BER=0.5×erfc( SNRN )
z x ( n )= k=1 L ( w xx ( k ) s x ( nk )+ w xy ( k ) s y ( nk ) )
z y ( n )= k=1 L ( w yx ( k ) s x ( nk )+ w yy ( k ) s y ( nk ) )
w xx l+1 = w xx l μ x l Δ x l
w xy l+1 = w xy l μ x l Δ x l
w yx l+1 = w yx l μ y l Δ y l
w yy l+1 = w yy l μ y l Δ y l
Δ x l = 1 M n=0 M1 { ( z x ( n )Θ( z x ( n ) e j θ n ) e j θ n ) s x ( n ) }
Δ y l = 1 M n=0 M1 { ( z y ( n )Θ( z y ( n ) e j θ n ) e j θ n ) s y ( n ) }
u x l = n=0 M1 { ( z x ( n )Θ( z x ( n ) e j θ n ) e j θ n ) ε l,x ( n ) } 2 n=0 M1 | ε l,x ( n ) | 2 , ε l,x ( n )= ( Δ x l ) H s x ( n )
u y l = n=0 M1 { ( z y ( n )Θ( z y ( n ) e j θ n ) e j θ n ) ε l,y ( n ) } 2 n=0 M1 | ε l,y ( n ) | 2 , ε l,y ( n )= ( Δ y l ) H s y ( n )
Γ=[ cos( θ ) e jϕ sin( θ ) e jϕ sin( θ ) cos( θ ) ]
Γ =Γ[ cos( Ωt ) sin( Ωt ) sin( Ωt ) cos( Ωt ) ]

Metrics