Abstract

Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimizing alignment and growth of low-loss YAG single crystal fibers using laser heated pedestal growth technique

Subhabrata Bera, Craig D. Nie, Michael G. Soskind, and James A. Harrington
Appl. Opt. 56(35) 9649-9655 (2017)

Optical properties of single-crystal sapphire fibers

Rick K. Nubling and James A. Harrington
Appl. Opt. 36(24) 5934-5940 (1997)

Single-crystal laser-heated pedestal-growth sapphire fibers for Er:YAG laser power delivery

Rick K. Nubling and James A. Harrington
Appl. Opt. 37(21) 4777-4781 (1998)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Parthasarathy, R. S. Hay, G. Fair, and F. K. Hopkins, “Predicted performance limits of yttrium aluminum garnet fiber lasers,” Opt. Eng. 49(9), 094302 (2010).
    [Crossref]
  2. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).
  3. R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
    [Crossref]
  4. Y. Li, Z. Zhang, I. Buckley, J. K. Miller, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Investigation of the amplification properties of Ho:YAG single crystal fiber,” Proc. SPIE 9342, 934205 (2015).
  5. H. E. LaBelle., “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50(1), 8–17 (1980).
    [Crossref]
  6. T. Fukuda and V. I. Chani, Shaped Crystals-Growth by Micro-Pulling-Down Technique, (Springer, 2007).
  7. J. S. Haggerty, W. P. Menashi, and J. F. Wenekkus, “Method for forming refractory fibers by laser energy”. US Patent 3,944,640, (1976).
  8. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
    [Crossref]
  9. M. Saifi, B. Dubois, E. M. Vogel, and F. A. Thiel, “Growth of tetragonal BaTiO3 single crystal fibers,” J. Mater. Res. 1(03), 452–456 (1986).
    [Crossref]
  10. R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36(24), 5934–5940 (1997).
    [Crossref] [PubMed]
  11. G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330 (2013).
  12. R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79(1-3), 669–680 (1986).
    [Crossref]
  13. R. Nubling and J. A. Harrington, “Single-crystal LHPG sapphire fibers for Er:YAG laser power delivery,” Appl. Opt. 37, 4777–4781 (1998).
    [Crossref] [PubMed]
  14. B. T. Laustsen and J. A. Harrington, “Fabrication and optical properties of single-crystal YAG fiber optics,” Proc. SPIE 8235, 823505 (2012).
    [Crossref]
  15. J. A. Harrington and M. Sparks, “Inverse-square wavelength dependence of attenuation in infrared polycrystalline fibers,” Opt. Lett. 8(4), 223–225 (1983).
    [Crossref] [PubMed]
  16. S. Ishibashi, K. Naganuma, and I. Yokohoma, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Cryst. Growth 183(4), 614–621 (1998).
    [Crossref]
  17. M. J. F. Digonnet, C. J. Gaeta, D. O. O’Meara, and B. L. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol. 5(5), 642–646 (1987).
    [Crossref]
  18. K. Kitamura, M. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, “Stress-birefringence associated with facets of rare-earth garnets grown from the melt; A model and measurement of stress-birefringence observed in thin sections,” J. Cryst. Growth 62(2), 351–359 (1983).
    [Crossref]
  19. I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
    [Crossref]
  20. O. Weinstein and S. Brandon, “Dynamics of partially faceted melt/crystal interfaces I: computational approach and single step-source calculations,” J. Cryst. Growth 268(1-2), 299–319 (2004).
    [Crossref]

2015 (1)

Y. Li, Z. Zhang, I. Buckley, J. K. Miller, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Investigation of the amplification properties of Ho:YAG single crystal fiber,” Proc. SPIE 9342, 934205 (2015).

2013 (1)

G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330 (2013).

2012 (1)

B. T. Laustsen and J. A. Harrington, “Fabrication and optical properties of single-crystal YAG fiber optics,” Proc. SPIE 8235, 823505 (2012).
[Crossref]

2010 (2)

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
[Crossref]

T. A. Parthasarathy, R. S. Hay, G. Fair, and F. K. Hopkins, “Predicted performance limits of yttrium aluminum garnet fiber lasers,” Opt. Eng. 49(9), 094302 (2010).
[Crossref]

2004 (1)

O. Weinstein and S. Brandon, “Dynamics of partially faceted melt/crystal interfaces I: computational approach and single step-source calculations,” J. Cryst. Growth 268(1-2), 299–319 (2004).
[Crossref]

1998 (2)

R. Nubling and J. A. Harrington, “Single-crystal LHPG sapphire fibers for Er:YAG laser power delivery,” Appl. Opt. 37, 4777–4781 (1998).
[Crossref] [PubMed]

S. Ishibashi, K. Naganuma, and I. Yokohoma, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Cryst. Growth 183(4), 614–621 (1998).
[Crossref]

1997 (1)

1991 (1)

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

1989 (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

1987 (1)

M. J. F. Digonnet, C. J. Gaeta, D. O. O’Meara, and B. L. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol. 5(5), 642–646 (1987).
[Crossref]

1986 (2)

M. Saifi, B. Dubois, E. M. Vogel, and F. A. Thiel, “Growth of tetragonal BaTiO3 single crystal fibers,” J. Mater. Res. 1(03), 452–456 (1986).
[Crossref]

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79(1-3), 669–680 (1986).
[Crossref]

1983 (2)

K. Kitamura, M. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, “Stress-birefringence associated with facets of rare-earth garnets grown from the melt; A model and measurement of stress-birefringence observed in thin sections,” J. Cryst. Growth 62(2), 351–359 (1983).
[Crossref]

J. A. Harrington and M. Sparks, “Inverse-square wavelength dependence of attenuation in infrared polycrystalline fibers,” Opt. Lett. 8(4), 223–225 (1983).
[Crossref] [PubMed]

1980 (1)

H. E. LaBelle., “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50(1), 8–17 (1980).
[Crossref]

Aubry, N.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
[Crossref]

Balembois, F.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
[Crossref]

Bigotta, S.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
[Crossref]

Brandon, S.

O. Weinstein and S. Brandon, “Dynamics of partially faceted melt/crystal interfaces I: computational approach and single step-source calculations,” J. Cryst. Growth 268(1-2), 299–319 (2004).
[Crossref]

Buckley, I.

Y. Li, Z. Zhang, I. Buckley, J. K. Miller, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Investigation of the amplification properties of Ho:YAG single crystal fiber,” Proc. SPIE 9342, 934205 (2015).

Byer, R. L.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

Chang, R. S. F.

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

Didierjean, J.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
[Crossref]

Digonnet, M. J. F.

M. J. F. Digonnet, C. J. Gaeta, D. O. O’Meara, and B. L. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol. 5(5), 642–646 (1987).
[Crossref]

Djeu, N.

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

Dubois, B.

M. Saifi, B. Dubois, E. M. Vogel, and F. A. Thiel, “Growth of tetragonal BaTiO3 single crystal fibers,” J. Mater. Res. 1(03), 452–456 (1986).
[Crossref]

Eichhorn, M.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
[Crossref]

Fair, G.

T. A. Parthasarathy, R. S. Hay, G. Fair, and F. K. Hopkins, “Predicted performance limits of yttrium aluminum garnet fiber lasers,” Opt. Eng. 49(9), 094302 (2010).
[Crossref]

Feigelson, R. S.

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79(1-3), 669–680 (1986).
[Crossref]

Fejer, M. M.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

Gaeta, C. J.

M. J. F. Digonnet, C. J. Gaeta, D. O. O’Meara, and B. L. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol. 5(5), 642–646 (1987).
[Crossref]

Gebremichael, E.

G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330 (2013).

Georges, P.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
[Crossref]

Harrington, J. A.

Y. Li, Z. Zhang, I. Buckley, J. K. Miller, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Investigation of the amplification properties of Ho:YAG single crystal fiber,” Proc. SPIE 9342, 934205 (2015).

B. T. Laustsen and J. A. Harrington, “Fabrication and optical properties of single-crystal YAG fiber optics,” Proc. SPIE 8235, 823505 (2012).
[Crossref]

R. Nubling and J. A. Harrington, “Single-crystal LHPG sapphire fibers for Er:YAG laser power delivery,” Appl. Opt. 37, 4777–4781 (1998).
[Crossref] [PubMed]

R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36(24), 5934–5940 (1997).
[Crossref] [PubMed]

J. A. Harrington and M. Sparks, “Inverse-square wavelength dependence of attenuation in infrared polycrystalline fibers,” Opt. Lett. 8(4), 223–225 (1983).
[Crossref] [PubMed]

Hay, R. S.

T. A. Parthasarathy, R. S. Hay, G. Fair, and F. K. Hopkins, “Predicted performance limits of yttrium aluminum garnet fiber lasers,” Opt. Eng. 49(9), 094302 (2010).
[Crossref]

Hopkins, F. K.

T. A. Parthasarathy, R. S. Hay, G. Fair, and F. K. Hopkins, “Predicted performance limits of yttrium aluminum garnet fiber lasers,” Opt. Eng. 49(9), 094302 (2010).
[Crossref]

Ishibashi, S.

S. Ishibashi, K. Naganuma, and I. Yokohoma, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Cryst. Growth 183(4), 614–621 (1998).
[Crossref]

Johnson, E. G.

Y. Li, Z. Zhang, I. Buckley, J. K. Miller, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Investigation of the amplification properties of Ho:YAG single crystal fiber,” Proc. SPIE 9342, 934205 (2015).

Jundt, D. H.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

Kamada, O.

K. Kitamura, M. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, “Stress-birefringence associated with facets of rare-earth garnets grown from the melt; A model and measurement of stress-birefringence observed in thin sections,” J. Cryst. Growth 62(2), 351–359 (1983).
[Crossref]

Kieleck, C.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
[Crossref]

Kimura, M.

K. Kitamura, M. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, “Stress-birefringence associated with facets of rare-earth garnets grown from the melt; A model and measurement of stress-birefringence observed in thin sections,” J. Cryst. Growth 62(2), 351–359 (1983).
[Crossref]

Kitamura, K.

K. Kitamura, M. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, “Stress-birefringence associated with facets of rare-earth garnets grown from the melt; A model and measurement of stress-birefringence observed in thin sections,” J. Cryst. Growth 62(2), 351–359 (1983).
[Crossref]

LaBelle, H. E.

H. E. LaBelle., “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50(1), 8–17 (1980).
[Crossref]

Laustsen, B. T.

B. T. Laustsen and J. A. Harrington, “Fabrication and optical properties of single-crystal YAG fiber optics,” Proc. SPIE 8235, 823505 (2012).
[Crossref]

Li, Y.

Y. Li, Z. Zhang, I. Buckley, J. K. Miller, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Investigation of the amplification properties of Ho:YAG single crystal fiber,” Proc. SPIE 9342, 934205 (2015).

Martial, I.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
[Crossref]

Maxwell, G.

G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330 (2013).

Miller, J. K.

Y. Li, Z. Zhang, I. Buckley, J. K. Miller, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Investigation of the amplification properties of Ho:YAG single crystal fiber,” Proc. SPIE 9342, 934205 (2015).

Miyazawa, Y.

K. Kitamura, M. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, “Stress-birefringence associated with facets of rare-earth garnets grown from the melt; A model and measurement of stress-birefringence observed in thin sections,” J. Cryst. Growth 62(2), 351–359 (1983).
[Crossref]

Mori, Y.

K. Kitamura, M. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, “Stress-birefringence associated with facets of rare-earth garnets grown from the melt; A model and measurement of stress-birefringence observed in thin sections,” J. Cryst. Growth 62(2), 351–359 (1983).
[Crossref]

Naganuma, K.

S. Ishibashi, K. Naganuma, and I. Yokohoma, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Cryst. Growth 183(4), 614–621 (1998).
[Crossref]

Nie, C. D.

Y. Li, Z. Zhang, I. Buckley, J. K. Miller, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Investigation of the amplification properties of Ho:YAG single crystal fiber,” Proc. SPIE 9342, 934205 (2015).

Nubling, R.

Nubling, R. K.

O’Meara, D. O.

M. J. F. Digonnet, C. J. Gaeta, D. O. O’Meara, and B. L. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol. 5(5), 642–646 (1987).
[Crossref]

Parthasarathy, T. A.

T. A. Parthasarathy, R. S. Hay, G. Fair, and F. K. Hopkins, “Predicted performance limits of yttrium aluminum garnet fiber lasers,” Opt. Eng. 49(9), 094302 (2010).
[Crossref]

Perfetti, R.

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
[Crossref]

Ponting, B.

G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330 (2013).

Saifi, M.

M. Saifi, B. Dubois, E. M. Vogel, and F. A. Thiel, “Growth of tetragonal BaTiO3 single crystal fibers,” J. Mater. Res. 1(03), 452–456 (1986).
[Crossref]

Sengupta, S.

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

Shaw, B. L.

M. J. F. Digonnet, C. J. Gaeta, D. O. O’Meara, and B. L. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol. 5(5), 642–646 (1987).
[Crossref]

Shaw, L. B.

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

Shori, R.

Y. Li, Z. Zhang, I. Buckley, J. K. Miller, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Investigation of the amplification properties of Ho:YAG single crystal fiber,” Proc. SPIE 9342, 934205 (2015).

Soleimani, N.

G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330 (2013).

Sparks, M.

Thiel, F. A.

M. Saifi, B. Dubois, E. M. Vogel, and F. A. Thiel, “Growth of tetragonal BaTiO3 single crystal fibers,” J. Mater. Res. 1(03), 452–456 (1986).
[Crossref]

Vogel, E. M.

M. Saifi, B. Dubois, E. M. Vogel, and F. A. Thiel, “Growth of tetragonal BaTiO3 single crystal fibers,” J. Mater. Res. 1(03), 452–456 (1986).
[Crossref]

Weinstein, O.

O. Weinstein and S. Brandon, “Dynamics of partially faceted melt/crystal interfaces I: computational approach and single step-source calculations,” J. Cryst. Growth 268(1-2), 299–319 (2004).
[Crossref]

Yokohoma, I.

S. Ishibashi, K. Naganuma, and I. Yokohoma, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Cryst. Growth 183(4), 614–621 (1998).
[Crossref]

Zhang, Z.

Y. Li, Z. Zhang, I. Buckley, J. K. Miller, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Investigation of the amplification properties of Ho:YAG single crystal fiber,” Proc. SPIE 9342, 934205 (2015).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

J. Cryst. Growth (5)

H. E. LaBelle., “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50(1), 8–17 (1980).
[Crossref]

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79(1-3), 669–680 (1986).
[Crossref]

S. Ishibashi, K. Naganuma, and I. Yokohoma, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Cryst. Growth 183(4), 614–621 (1998).
[Crossref]

K. Kitamura, M. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, “Stress-birefringence associated with facets of rare-earth garnets grown from the melt; A model and measurement of stress-birefringence observed in thin sections,” J. Cryst. Growth 62(2), 351–359 (1983).
[Crossref]

O. Weinstein and S. Brandon, “Dynamics of partially faceted melt/crystal interfaces I: computational approach and single step-source calculations,” J. Cryst. Growth 268(1-2), 299–319 (2004).
[Crossref]

J. Lightwave Technol. (1)

M. J. F. Digonnet, C. J. Gaeta, D. O. O’Meara, and B. L. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol. 5(5), 642–646 (1987).
[Crossref]

J. Mater. Res. (1)

M. Saifi, B. Dubois, E. M. Vogel, and F. A. Thiel, “Growth of tetragonal BaTiO3 single crystal fibers,” J. Mater. Res. 1(03), 452–456 (1986).
[Crossref]

Opt. Eng. (1)

T. A. Parthasarathy, R. S. Hay, G. Fair, and F. K. Hopkins, “Predicted performance limits of yttrium aluminum garnet fiber lasers,” Opt. Eng. 49(9), 094302 (2010).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Perfetti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single-crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater. 32(9), 1251–1255 (2010).
[Crossref]

Proc. SPIE (4)

B. T. Laustsen and J. A. Harrington, “Fabrication and optical properties of single-crystal YAG fiber optics,” Proc. SPIE 8235, 823505 (2012).
[Crossref]

G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330 (2013).

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

Y. Li, Z. Zhang, I. Buckley, J. K. Miller, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Investigation of the amplification properties of Ho:YAG single crystal fiber,” Proc. SPIE 9342, 934205 (2015).

Other (3)

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).

T. Fukuda and V. I. Chani, Shaped Crystals-Growth by Micro-Pulling-Down Technique, (Springer, 2007).

J. S. Haggerty, W. P. Menashi, and J. F. Wenekkus, “Method for forming refractory fibers by laser energy”. US Patent 3,944,640, (1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental set-up of the LHPG technique used to grow SC YAG fibers. The use of transmissive axicons rather than a reflective optics allows us more flexibility in adjusting the optical parameters of the ring of CO2 laser light.
Fig. 2
Fig. 2 Spectral loss for a SC YAG fiber. The peak around 4.8 μm is intrinsic to YAG.
Fig. 3
Fig. 3 Loss for SC YAG fiber at four laser wavelengths.
Fig. 4
Fig. 4 (a) Scattering loss as a function of the distance of the integrating sphere along the length of the fiber. The data shown here were using a 532 and 1064 nm laser. (b) Scattering loss measured at the same four laser wavelengths as for the total loss in Fig. 3.
Fig. 5
Fig. 5 Surface and cross section of (a) a fiber grown from an unoriented seed and (b) another fiber which was grown using an oriented seed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d I s =I(x) α s dx=[ I o exp( α T )] α s dx

Metrics