Abstract

An optically pumped K–Rb hybrid atomic magnetometer can be a useful tool for biomagnetic measurements due to the high spatial homogeneity of its sensor property inside a cell. However, because the property varies depending on the densities of potassium and rubidium atoms, optimization of the densities is essential. In this study, by using the Bloch equations of K and Rb and considering the spatial distribution of the spin polarization, we confirmed that the calculation results of spin polarization behavior are in good agreement with the experimental data. Using our model, we calculated the spatial distribution of the spin polarization and found that the optimal density of K atoms is 3 × 1019 m−3 and the optimal density ratio is nK/nRb ~ 400 to maximize the output signal and enhance spatial homogeneity of the sensor property.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature characteristics of K-Rb hybrid optically pumped magnetometers with different density ratios

Sho Ito, Yosuke Ito, and Tetsuo Kobayashi
Opt. Express 27(6) 8037-8047 (2019)

In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts

Kai Wei, Tian Zhao, Xiujie Fang, Yueyang Zhai, Hairong Li, and Wei Quan
Opt. Express 27(11) 16169-16183 (2019)

On-site monitoring of atomic density number for an all-optical atomic magnetometer based on atomic spin exchange relaxation

Hong Zhang, Sheng Zou, Xiyuan Chen, Ming Ding, Guangcun Shan, Zhaohui Hu, and Wei Quan
Opt. Express 24(15) 17234-17241 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
    [Crossref] [PubMed]
  2. D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
    [Crossref] [PubMed]
  3. I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104, 023504 (2014).
    [Crossref]
  4. R. Jimenez-Martinez, S. Knappe, and J. Kitching, “An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening,” Rev. Sci. Instrum. 85, 045124 (2014).
    [Crossref] [PubMed]
  5. K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
    [Crossref]
  6. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
    [Crossref]
  7. G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
    [Crossref]
  8. C. N. Johnson, P. D. D. Schwindt, and M. Weisend, “Multi-sensor magnetoencephalography with atomic magnetometers,” Phys. Med. Biol. 58, 6065 (2013).
    [Crossref] [PubMed]
  9. G. Lembke, S. N. Erné, H. Nowak, B. Menhorn, and A. Pasquarelli, “Optical multichannel room temperature magnetic field imaging system for clinical application,” Biomed. Opt. Express 5, 876–881 (2014).
    [Crossref] [PubMed]
  10. H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
    [Crossref]
  11. A. Gusarov, D. Levron, E. Paperno, R. Shuker, and A.-A. Baranga, “Three-dimensional magnetic field measurements in a single serf atomic-magnetometer cell,” IEEE Trans. Magn. 45, 4478–4481 (2009).
    [Crossref]
  12. R. Wyllie, M. Kauer, R. T. Wakai, and T. G. Walker, “Optical magnetometer array for fetal magnetocardiography,” Opt. Lett. 37, 2247–2249 (2012).
    [Crossref] [PubMed]
  13. K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
    [Crossref]
  14. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
    [Crossref]
  15. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Advances 2, 032127 (2012).
    [Crossref]
  16. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
    [Crossref]
  17. Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
    [Crossref]
  18. H. G. Dehmelt, “Spin resonance of free electrons polarized by exchange collisions,” Phys. Rev. 109, 381–385 (1958).
    [Crossref]
  19. D. Suter, The Physics of Laser-Atom Interactions (Cambridge University, 1997).
    [Crossref]
  20. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers” in Proceedings of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2013), pp. 3254–3257.
  21. F. A. Franz and C. Volk, “Electronic spin relaxation of the 42S1/2 state of K induced by K-He and K-Ne collisions,” Phys. Rev. A 26, 85–92 (1982).
    [Crossref]
  22. J. A. Silver, “Measurement of atomic sodium and potassium diffusion coefficients,” J. Chem. Phys. 81, 5125–5130 (1984).
    [Crossref]
  23. F. A. Franz and C. Volk, “Spin relaxation of rubidium atoms in sudden and quasimolecular collisions with light-noble-gas atoms,” Phys. Rev. A 14, 1711–1728 (1976).
    [Crossref]
  24. N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spinexchange cross sections for Cs133, Rb87, Rb85, K39, and Na23,” Phys. Rev. 184, 102–118 (1969).
    [Crossref]
  25. S. Kadlecek, L. W. Anderson, and T. Walker, “Measurement of potassium-potassium spin relaxation cross sections,” Nucl. Instrum. Meth. Phys. Res. A 402, 208–211 (1998).
    [Crossref]
  26. N. Lwin and D. G. McCartan, “Collision broadening of the potassium resonance lines by noble gases,” J. Phys. B: At. Mol. Phys. 11, 3841–3849 (1978).
    [Crossref]
  27. M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: Line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
    [Crossref]
  28. J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
    [Crossref] [PubMed]
  29. N. Mizutani, K. Okano, K. Ban, S. Ichihara, A. Terao, and T. Kobayashi, “A plateau in the sensitivity of a compact optically pumped atomic magnetometer,” AIP Advances 4, 057132 (2014).
    [Crossref]
  30. K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23, 6976–6987 (2015).
    [Crossref] [PubMed]

2015 (2)

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23, 6976–6987 (2015).
[Crossref] [PubMed]

2014 (7)

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref] [PubMed]

N. Mizutani, K. Okano, K. Ban, S. Ichihara, A. Terao, and T. Kobayashi, “A plateau in the sensitivity of a compact optically pumped atomic magnetometer,” AIP Advances 4, 057132 (2014).
[Crossref]

G. Lembke, S. N. Erné, H. Nowak, B. Menhorn, and A. Pasquarelli, “Optical multichannel room temperature magnetic field imaging system for clinical application,” Biomed. Opt. Express 5, 876–881 (2014).
[Crossref] [PubMed]

I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104, 023504 (2014).
[Crossref]

R. Jimenez-Martinez, S. Knappe, and J. Kitching, “An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening,” Rev. Sci. Instrum. 85, 045124 (2014).
[Crossref] [PubMed]

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

2013 (2)

C. N. Johnson, P. D. D. Schwindt, and M. Weisend, “Multi-sensor magnetoencephalography with atomic magnetometers,” Phys. Med. Biol. 58, 6065 (2013).
[Crossref] [PubMed]

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Advances 2, 032127 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

R. Wyllie, M. Kauer, R. T. Wakai, and T. G. Walker, “Optical magnetometer array for fetal magnetocardiography,” Opt. Lett. 37, 2247–2249 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

2010 (1)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

2009 (2)

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

A. Gusarov, D. Levron, E. Paperno, R. Shuker, and A.-A. Baranga, “Three-dimensional magnetic field measurements in a single serf atomic-magnetometer cell,” IEEE Trans. Magn. 45, 4478–4481 (2009).
[Crossref]

2006 (1)

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

2002 (1)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

1998 (1)

S. Kadlecek, L. W. Anderson, and T. Walker, “Measurement of potassium-potassium spin relaxation cross sections,” Nucl. Instrum. Meth. Phys. Res. A 402, 208–211 (1998).
[Crossref]

1997 (1)

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: Line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
[Crossref]

1984 (1)

J. A. Silver, “Measurement of atomic sodium and potassium diffusion coefficients,” J. Chem. Phys. 81, 5125–5130 (1984).
[Crossref]

1982 (1)

F. A. Franz and C. Volk, “Electronic spin relaxation of the 42S1/2 state of K induced by K-He and K-Ne collisions,” Phys. Rev. A 26, 85–92 (1982).
[Crossref]

1978 (1)

N. Lwin and D. G. McCartan, “Collision broadening of the potassium resonance lines by noble gases,” J. Phys. B: At. Mol. Phys. 11, 3841–3849 (1978).
[Crossref]

1976 (1)

F. A. Franz and C. Volk, “Spin relaxation of rubidium atoms in sudden and quasimolecular collisions with light-noble-gas atoms,” Phys. Rev. A 14, 1711–1728 (1976).
[Crossref]

1969 (1)

N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spinexchange cross sections for Cs133, Rb87, Rb85, K39, and Na23,” Phys. Rev. 184, 102–118 (1969).
[Crossref]

1958 (1)

H. G. Dehmelt, “Spin resonance of free electrons polarized by exchange collisions,” Phys. Rev. 109, 381–385 (1958).
[Crossref]

Allred, J. C.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Anderson, L. W.

S. Kadlecek, L. W. Anderson, and T. Walker, “Measurement of potassium-potassium spin relaxation cross sections,” Nucl. Instrum. Meth. Phys. Res. A 402, 208–211 (1998).
[Crossref]

Ban, K.

N. Mizutani, K. Okano, K. Ban, S. Ichihara, A. Terao, and T. Kobayashi, “A plateau in the sensitivity of a compact optically pumped atomic magnetometer,” AIP Advances 4, 057132 (2014).
[Crossref]

Baranga, A. B.-A.

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

Baranga, A.-A.

A. Gusarov, D. Levron, E. Paperno, R. Shuker, and A.-A. Baranga, “Three-dimensional magnetic field measurements in a single serf atomic-magnetometer cell,” IEEE Trans. Magn. 45, 4478–4481 (2009).
[Crossref]

Begus, S.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Bison, G.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Boshier, M. G.

I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104, 023504 (2014).
[Crossref]

Castagna, N.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Cates, G. D.

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: Line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
[Crossref]

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Dehmelt, H. G.

H. G. Dehmelt, “Spin resonance of free electrons polarized by exchange collisions,” Phys. Rev. 109, 381–385 (1958).
[Crossref]

Dural, N.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

Erné, S. N.

Fang, J.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref] [PubMed]

Franz, F. A.

F. A. Franz and C. Volk, “Electronic spin relaxation of the 42S1/2 state of K induced by K-He and K-Ne collisions,” Phys. Rev. A 26, 85–92 (1982).
[Crossref]

F. A. Franz and C. Volk, “Spin relaxation of rubidium atoms in sudden and quasimolecular collisions with light-noble-gas atoms,” Phys. Rev. A 14, 1711–1728 (1976).
[Crossref]

Gusarov, A.

A. Gusarov, D. Levron, E. Paperno, R. Shuker, and A.-A. Baranga, “Three-dimensional magnetic field measurements in a single serf atomic-magnetometer cell,” IEEE Trans. Magn. 45, 4478–4481 (2009).
[Crossref]

Hofer, A.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Hoffman, D.

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

Ichihara, S.

K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23, 6976–6987 (2015).
[Crossref] [PubMed]

N. Mizutani, K. Okano, K. Ban, S. Ichihara, A. Terao, and T. Kobayashi, “A plateau in the sensitivity of a compact optically pumped atomic magnetometer,” AIP Advances 4, 057132 (2014).
[Crossref]

Ito, Y.

K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23, 6976–6987 (2015).
[Crossref] [PubMed]

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Advances 2, 032127 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers” in Proceedings of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2013), pp. 3254–3257.

Jazbinsek, V.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Jimenez-Martinez, R.

R. Jimenez-Martinez, S. Knappe, and J. Kitching, “An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening,” Rev. Sci. Instrum. 85, 045124 (2014).
[Crossref] [PubMed]

Johnson, C. N.

C. N. Johnson, P. D. D. Schwindt, and M. Weisend, “Multi-sensor magnetoencephalography with atomic magnetometers,” Phys. Med. Biol. 58, 6065 (2013).
[Crossref] [PubMed]

Kadlecek, S.

S. Kadlecek, L. W. Anderson, and T. Walker, “Measurement of potassium-potassium spin relaxation cross sections,” Nucl. Instrum. Meth. Phys. Res. A 402, 208–211 (1998).
[Crossref]

Kamada, K.

K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23, 6976–6987 (2015).
[Crossref] [PubMed]

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Advances 2, 032127 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers” in Proceedings of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2013), pp. 3254–3257.

Karaulanov, T.

I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104, 023504 (2014).
[Crossref]

Kasprzak, M.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Kauer, M.

Kim, K.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Kitching, J.

R. Jimenez-Martinez, S. Knappe, and J. Kitching, “An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening,” Rev. Sci. Instrum. 85, 045124 (2014).
[Crossref] [PubMed]

Knappe, S.

R. Jimenez-Martinez, S. Knappe, and J. Kitching, “An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening,” Rev. Sci. Instrum. 85, 045124 (2014).
[Crossref] [PubMed]

Knowles, P.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Kobayashi, T.

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23, 6976–6987 (2015).
[Crossref] [PubMed]

N. Mizutani, K. Okano, K. Ban, S. Ichihara, A. Terao, and T. Kobayashi, “A plateau in the sensitivity of a compact optically pumped atomic magnetometer,” AIP Advances 4, 057132 (2014).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Advances 2, 032127 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers” in Proceedings of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2013), pp. 3254–3257.

Kornack, T. W.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Lee, S.-K.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Lembke, G.

Levron, D.

A. Gusarov, D. Levron, E. Paperno, R. Shuker, and A.-A. Baranga, “Three-dimensional magnetic field measurements in a single serf atomic-magnetometer cell,” IEEE Trans. Magn. 45, 4478–4481 (2009).
[Crossref]

Li, S.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

Li, Y.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref] [PubMed]

Lwin, N.

N. Lwin and D. G. McCartan, “Collision broadening of the potassium resonance lines by noble gases,” J. Phys. B: At. Mol. Phys. 11, 3841–3849 (1978).
[Crossref]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

McCartan, D. G.

N. Lwin and D. G. McCartan, “Collision broadening of the potassium resonance lines by noble gases,” J. Phys. B: At. Mol. Phys. 11, 3841–3849 (1978).
[Crossref]

Menhorn, B.

Miron, E.

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: Line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
[Crossref]

Mizutani, N.

K. Kamada, Y. Ito, S. Ichihara, N. Mizutani, and T. Kobayashi, “Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations,” Opt. Express 23, 6976–6987 (2015).
[Crossref] [PubMed]

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

N. Mizutani, K. Okano, K. Ban, S. Ichihara, A. Terao, and T. Kobayashi, “A plateau in the sensitivity of a compact optically pumped atomic magnetometer,” AIP Advances 4, 057132 (2014).
[Crossref]

Natsukawa, H.

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Nowak, H.

Ohnishi, H.

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Advances 2, 032127 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers” in Proceedings of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2013), pp. 3254–3257.

Okano, K.

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

N. Mizutani, K. Okano, K. Ban, S. Ichihara, A. Terao, and T. Kobayashi, “A plateau in the sensitivity of a compact optically pumped atomic magnetometer,” AIP Advances 4, 057132 (2014).
[Crossref]

Paperno, E.

A. Gusarov, D. Levron, E. Paperno, R. Shuker, and A.-A. Baranga, “Three-dimensional magnetic field measurements in a single serf atomic-magnetometer cell,” IEEE Trans. Magn. 45, 4478–4481 (2009).
[Crossref]

Pasquarelli, A.

Quan, W.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref] [PubMed]

Ressler, N. W.

N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spinexchange cross sections for Cs133, Rb87, Rb85, K39, and Na23,” Phys. Rev. 184, 102–118 (1969).
[Crossref]

Romalis, M. V.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: Line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
[Crossref]

Sands, R. H.

N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spinexchange cross sections for Cs133, Rb87, Rb85, K39, and Na23,” Phys. Rev. 184, 102–118 (1969).
[Crossref]

Sato, D.

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

Saudan, H.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Savukov, I.

I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104, 023504 (2014).
[Crossref]

Schenker, J.-L.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Schwindt, P. D. D.

C. N. Johnson, P. D. D. Schwindt, and M. Weisend, “Multi-sensor magnetoencephalography with atomic magnetometers,” Phys. Med. Biol. 58, 6065 (2013).
[Crossref] [PubMed]

Sheng, D.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

Shuker, R.

A. Gusarov, D. Levron, E. Paperno, R. Shuker, and A.-A. Baranga, “Three-dimensional magnetic field measurements in a single serf atomic-magnetometer cell,” IEEE Trans. Magn. 45, 4478–4481 (2009).
[Crossref]

Silver, J. A.

J. A. Silver, “Measurement of atomic sodium and potassium diffusion coefficients,” J. Chem. Phys. 81, 5125–5130 (1984).
[Crossref]

Stark, T. E.

N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spinexchange cross sections for Cs133, Rb87, Rb85, K39, and Na23,” Phys. Rev. 184, 102–118 (1969).
[Crossref]

Suter, D.

D. Suter, The Physics of Laser-Atom Interactions (Cambridge University, 1997).
[Crossref]

Terao, A.

N. Mizutani, K. Okano, K. Ban, S. Ichihara, A. Terao, and T. Kobayashi, “A plateau in the sensitivity of a compact optically pumped atomic magnetometer,” AIP Advances 4, 057132 (2014).
[Crossref]

Trontelj, Z.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Volk, C.

F. A. Franz and C. Volk, “Electronic spin relaxation of the 42S1/2 state of K induced by K-He and K-Ne collisions,” Phys. Rev. A 26, 85–92 (1982).
[Crossref]

F. A. Franz and C. Volk, “Spin relaxation of rubidium atoms in sudden and quasimolecular collisions with light-noble-gas atoms,” Phys. Rev. A 14, 1711–1728 (1976).
[Crossref]

Wakai, R. T.

Walker, T.

S. Kadlecek, L. W. Anderson, and T. Walker, “Measurement of potassium-potassium spin relaxation cross sections,” Nucl. Instrum. Meth. Phys. Res. A 402, 208–211 (1998).
[Crossref]

Walker, T. G.

Wang, T.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref] [PubMed]

Weis, A.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Weisend, M.

C. N. Johnson, P. D. D. Schwindt, and M. Weisend, “Multi-sensor magnetoencephalography with atomic magnetometers,” Phys. Med. Biol. 58, 6065 (2013).
[Crossref] [PubMed]

Wyllie, R.

Xia, H.

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

Yuan, H.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref] [PubMed]

Zhang, H.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref] [PubMed]

Zou, S.

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref] [PubMed]

AIP Advances (2)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Advances 2, 032127 (2012).
[Crossref]

N. Mizutani, K. Okano, K. Ban, S. Ichihara, A. Terao, and T. Kobayashi, “A plateau in the sensitivity of a compact optically pumped atomic magnetometer,” AIP Advances 4, 057132 (2014).
[Crossref]

Appl. Phys. Lett. (4)

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[Crossref]

I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104, 023504 (2014).
[Crossref]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95, 173701 (2009).
[Crossref]

Biomed. Opt. Express (1)

IEEE Trans. Magn. (4)

A. Gusarov, D. Levron, E. Paperno, R. Shuker, and A.-A. Baranga, “Three-dimensional magnetic field measurements in a single serf atomic-magnetometer cell,” IEEE Trans. Magn. 45, 4478–4481 (2009).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Effect of spatial homogeneity of spin polarization on magnetic field response of an optically pumped atomic magnetometer using a hybrid cell of K and Rb atoms,” IEEE Trans. Magn. 48, 3715–3718 (2012).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer,” IEEE Trans. Magn. 50, 4006903 (2014).
[Crossref]

J. Chem. Phys. (1)

J. A. Silver, “Measurement of atomic sodium and potassium diffusion coefficients,” J. Chem. Phys. 81, 5125–5130 (1984).
[Crossref]

J. Phys. B: At. Mol. Phys. (1)

N. Lwin and D. G. McCartan, “Collision broadening of the potassium resonance lines by noble gases,” J. Phys. B: At. Mol. Phys. 11, 3841–3849 (1978).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi, “Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer,” Jpn. J. Appl. Phys. 54, 026601 (2015).
[Crossref]

NeuroImage (1)

K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Nucl. Instrum. Meth. Phys. Res. A (1)

S. Kadlecek, L. W. Anderson, and T. Walker, “Measurement of potassium-potassium spin relaxation cross sections,” Nucl. Instrum. Meth. Phys. Res. A 402, 208–211 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (1)

C. N. Johnson, P. D. D. Schwindt, and M. Weisend, “Multi-sensor magnetoencephalography with atomic magnetometers,” Phys. Med. Biol. 58, 6065 (2013).
[Crossref] [PubMed]

Phys. Rev. (2)

H. G. Dehmelt, “Spin resonance of free electrons polarized by exchange collisions,” Phys. Rev. 109, 381–385 (1958).
[Crossref]

N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spinexchange cross sections for Cs133, Rb87, Rb85, K39, and Na23,” Phys. Rev. 184, 102–118 (1969).
[Crossref]

Phys. Rev. A (3)

F. A. Franz and C. Volk, “Electronic spin relaxation of the 42S1/2 state of K induced by K-He and K-Ne collisions,” Phys. Rev. A 26, 85–92 (1982).
[Crossref]

F. A. Franz and C. Volk, “Spin relaxation of rubidium atoms in sudden and quasimolecular collisions with light-noble-gas atoms,” Phys. Rev. A 14, 1711–1728 (1976).
[Crossref]

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: Line cores and near wings,” Phys. Rev. A 56, 4569–4578 (1997).
[Crossref]

Phys. Rev. Lett. (2)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

R. Jimenez-Martinez, S. Knappe, and J. Kitching, “An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening,” Rev. Sci. Instrum. 85, 045124 (2014).
[Crossref] [PubMed]

J. Fang, T. Wang, W. Quan, H. Yuan, H. Zhang, Y. Li, and S. Zou, “In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect,” Rev. Sci. Instrum. 85, 063108 (2014).
[Crossref] [PubMed]

Other (2)

D. Suter, The Physics of Laser-Atom Interactions (Cambridge University, 1997).
[Crossref]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers” in Proceedings of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2013), pp. 3254–3257.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle of OPAMs using K and Rb hybrid cells.
Fig. 2
Fig. 2 Experimental setup of OPAMs using K and Rb hybrid cells.
Fig. 3
Fig. 3 Experimental and calculated results of pump-beam intensity dependence on response signal.
Fig. 4
Fig. 4 Typical noise levels for nK/nRb = 0.14 and 15.5.
Fig. 5
Fig. 5 Response signal depending on the density of K assuming an ideal distribution of S x K.
Fig. 6
Fig. 6 Maximum response signal and required pump beam power density as a function of the density ratio of K and Rb.
Fig. 7
Fig. 7 Maximum response signal and g value as a function of the density ratio of K and Rb.
Fig. 8
Fig. 8 Spatial distributions of ROP, S z Rb, S z K, and S x K in the pump and probe beams crossing plane. (a) nK/nRb = 3, (b) nK/nRb = 400, and (c) nK/nRb = 3000.

Tables (2)

Tables Icon

Table 1 Densities of K and Rb in the sensor cells.

Tables Icon

Table 2 Parameters used for the calculation.T is the temperature, P is the partial pressure, and v ¯ is the average relative velocity.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d d t S Rb = D Rb 2 S Rb + γ Rb S Rb × B + 1 q Rb R OP 2 z + 1 q Rb R SE Rb S K 1 q Rb ( R OP + R SD Rb + R SE Rb ) S Rb ,
d d t S K = D K 2 S K + γ K S K × B + 1 q K R SE K S Rb 1 q K ( R SD K + R SE K ) S K .
d R OP d z = n Rb σ ( v 0 Rb ) R OP [ 1 2 S z ( z ) ] .
σ ( v ) = r e c f Γ / 2 ( v v 0 ) 2 + ( Γ / 2 ) 2 ,
θ = n K c r e f v probe v 0 K ( v probe v 0 K ) 2 + ( Γ / 2 ) 2 l S x K d x .
S out = η I out [ cos 2 ( θ + φ ) sin 2 ( θ + φ ) ] = η I out cos 2 ( θ + φ ) .
I out = I probe exp [ n K σ ( v probe ) l ] .
S out 2 η I out θ .
R SD Rb = k SD Rb He n He + k SD Rb N 2 n N 2 + k SD Rb Rb n Rb + k SD K K n K + k SD Rb Rb n Rb 2 .
g = [ 1 i ( S i S i ) 2 i S i 2 ] × 100 % .

Metrics