Abstract

A compact, broadband, and low-loss TE-pass polarizer using transparent conducting oxides (TCOs) embedded in the center of the strip waveguide and deposited on its top is proposed and analyzed in detail. With the tunable permittivity of TCO, epsilon-near-zero (ENZ) of its real part and significant increase of its imaginary part can be achieved around the wavelength of 1.55 μm under a certain electron concentration. By introducing this ENZ material into the strip waveguide, huge polarization dependence can be realized, that is, the TE mode is almost not affected due to its quite weak interaction with TCOs, while the TM mode is extremely confined in the accumulation layers of TCO with high absorption loss, leading to a great reduction in length for the present polarizer. Moreover, the top TCO layer is applied to further enhance the polarizer performance. Results show that a polarizer of only 4.5 μm in length with an extinction ratio (ER) of 25.26 dB and an insertion loss of 0.21 dB is achieved at 1.55 μm, and its bandwidth can be extended to ~140 nm for an ER>20 dB. In addition, the ER can also be increased only by enlarging the length of the TCO-based polarizer.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband TE-pass slot waveguide polarizer using an asymmetrical directional coupler

Bin Ni and Jinbiao Xiao
Appl. Opt. 57(15) 4032-4038 (2018)

Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers

Ahmed El-Sayed Abd-Elkader, Mohamed Farhat O. Hameed, Nihal F. F. Areed, Hossam El-Din Mostafa, and Salah S. A. Obayya
J. Opt. Soc. Am. B 36(3) 652-661 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
    [Crossref] [PubMed]
  2. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
    [Crossref]
  3. X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
    [Crossref] [PubMed]
  4. Y. Xu and J. Xiao, “Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers,” Opt. Lett. 41(4), 773–776 (2016).
    [Crossref] [PubMed]
  5. A. Xie, L. Zhou, J. Chen, and X. Li, “Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide,” Opt. Express 23(4), 3960–3970 (2015).
    [Crossref] [PubMed]
  6. Y. Xu, J. Xiao, and X. Sun, “A compact hybrid plasmonic polarization rotator for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 26(16), 1609–1612 (2014).
    [Crossref]
  7. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]
  8. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37(1), 55–57 (2012).
    [Crossref] [PubMed]
  9. Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2(1), 49–56 (2010).
    [Crossref]
  10. D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
    [Crossref] [PubMed]
  11. X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39(15), 4514–4517 (2014).
    [Crossref] [PubMed]
  12. Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
    [Crossref]
  13. Y. Huang, S. Zhu, H. Zhang, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform,” Opt. Express 21(10), 12790–12796 (2013).
    [Crossref] [PubMed]
  14. Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 27(19), 2071–2074 (2015).
    [Crossref]
  15. X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,” Opt. Lett. 37(23), 4814–4816 (2012).
    [Crossref] [PubMed]
  16. X. Yin, T. Zhang, L. Chen, and X. Li, “Ultra-compact TE-pass polarizer with graphene multilayer embedded in a silicon slot waveguide,” Opt. Lett. 40(8), 1733–1736 (2015).
    [Crossref] [PubMed]
  17. L. Sánchez, S. Lechago, and P. Sanchis, “Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon,” Opt. Lett. 40(7), 1452–1455 (2015).
    [Crossref] [PubMed]
  18. V. J. Sorger, N. D. Lanzillotti-kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
    [Crossref]
  19. V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
  20. A. P. Vasudev, J.-H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
    [Crossref] [PubMed]
  21. S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO₂/ITO/Cu stack for CMOS backend integration,” Opt. Express 22(15), 17930–17947 (2014).
    [Crossref] [PubMed]
  22. J. Baek, J.-B. You, and K. Yu, “Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO,” Opt. Express 23(12), 15863–15876 (2015).
    [Crossref] [PubMed]
  23. H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
    [Crossref] [PubMed]
  24. H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).
  25. Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
    [Crossref]
  26. A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
    [Crossref] [PubMed]
  27. J. Xiao, H. Ni, and X. Sun, “Full-vector mode solver for bending waveguides based on the finite-difference frequency-domain method in cylindrical coordinate systems,” Opt. Lett. 33(16), 1848–1850 (2008).
    [Crossref] [PubMed]
  28. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).
  29. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
  30. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]

2016 (1)

2015 (9)

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

A. Xie, L. Zhou, J. Chen, and X. Li, “Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide,” Opt. Express 23(4), 3960–3970 (2015).
[Crossref] [PubMed]

L. Sánchez, S. Lechago, and P. Sanchis, “Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon,” Opt. Lett. 40(7), 1452–1455 (2015).
[Crossref] [PubMed]

X. Yin, T. Zhang, L. Chen, and X. Li, “Ultra-compact TE-pass polarizer with graphene multilayer embedded in a silicon slot waveguide,” Opt. Lett. 40(8), 1733–1736 (2015).
[Crossref] [PubMed]

J. Baek, J.-B. You, and K. Yu, “Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO,” Opt. Express 23(12), 15863–15876 (2015).
[Crossref] [PubMed]

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 27(19), 2071–2074 (2015).
[Crossref]

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).

2014 (5)

2013 (2)

2012 (6)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37(1), 55–57 (2012).
[Crossref] [PubMed]

X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,” Opt. Lett. 37(23), 4814–4816 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2008 (1)

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Aitchison, J. S.

Alam, M. Z.

Atwater, H. A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Babicheva, V. E.

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).

Baek, J.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Boltasseva, A.

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).

Bowers, J. E.

Brongersma, M. L.

Burgos, S. P.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Capretti, A.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).

Chander, K.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Cheben, P.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Chen, J.

Chen, L.

Chen, P.

Chen, R. T.

Chen, S.

Dai, D.

Guan, X.

Ho, S.-T.

Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2(1), 49–56 (2010).
[Crossref]

Hosseini, A.

Huang, Y.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Julian, N.

Kang, J.-H.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Klamkin, J.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Kriesch, A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Kwong, D.

Kwong, D. L.

Lanzillotti-kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Lavrinenko, A. V.

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).

Lechago, S.

Lee, H. W.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Li, X.

Liow, T.-Y.

Liu, X.

Lo, G. Q.

Lo, G.-Q.

Lu, Z.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Ma, R.-M.

V. J. Sorger, N. D. Lanzillotti-kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Mojahedi, M.

Negro, L. D.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).

Ni, H.

Pala, R.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Papadakis, G.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Park, J.

Peschel, U.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Sánchez, L.

Sanchis, P.

Schmid, J. H.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Shi, K.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Shi, Y.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Sorger, V. J.

V. J. Sorger, N. D. Lanzillotti-kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Subbaraman, H.

Sun, X.

Vasudev, A. P.

Wagner, S. J.

Wang, Q.

Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2(1), 49–56 (2010).
[Crossref]

Wang, Y.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).

Wang, Z.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Wu, H.

Xiao, J.

Y. Xu and J. Xiao, “Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers,” Opt. Lett. 41(4), 773–776 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 27(19), 2071–2074 (2015).
[Crossref]

Y. Xu, J. Xiao, and X. Sun, “A compact hybrid plasmonic polarization rotator for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 26(16), 1609–1612 (2014).
[Crossref]

J. Xiao, H. Ni, and X. Sun, “Full-vector mode solver for bending waveguides based on the finite-difference frequency-domain method in cylindrical coordinate systems,” Opt. Lett. 33(16), 1848–1850 (2008).
[Crossref] [PubMed]

Xie, A.

Xiong, Y.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Xu, D.-X.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Xu, P.

Xu, X.

Xu, Y.

Y. Xu and J. Xiao, “Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers,” Opt. Lett. 41(4), 773–776 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 27(19), 2071–2074 (2015).
[Crossref]

Y. Xu, J. Xiao, and X. Sun, “A compact hybrid plasmonic polarization rotator for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 26(16), 1609–1612 (2014).
[Crossref]

Ye, W. N.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Yin, X.

You, J.-B.

Yu, K.

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Zhang, H.

Zhang, T.

Zhang, X.

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

V. J. Sorger, N. D. Lanzillotti-kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Zhang, Y.

Zhao, H.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).

Zhao, W.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Zhou, L.

Zhu, S.

IEEE J. Sel. Top. Quantum Electron. (1)

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 3300207 (2015).

IEEE Photonics J. (3)

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 7802107 (2015).
[Crossref]

Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2(1), 49–56 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Xu, J. Xiao, and X. Sun, “A compact hybrid plasmonic polarization rotator for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 26(16), 1609–1612 (2014).
[Crossref]

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photonics Technol. Lett. 27(19), 2071–2074 (2015).
[Crossref]

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Nano Lett. (1)

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Nanophotonics (2)

V. J. Sorger, N. D. Lanzillotti-kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Opt. Express (8)

D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
[Crossref] [PubMed]

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

A. Xie, L. Zhou, J. Chen, and X. Li, “Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide,” Opt. Express 23(4), 3960–3970 (2015).
[Crossref] [PubMed]

A. P. Vasudev, J.-H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO₂/ITO/Cu stack for CMOS backend integration,” Opt. Express 22(15), 17930–17947 (2014).
[Crossref] [PubMed]

J. Baek, J.-B. You, and K. Yu, “Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO,” Opt. Express 23(12), 15863–15876 (2015).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

Y. Huang, S. Zhu, H. Zhang, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform,” Opt. Express 21(10), 12790–12796 (2013).
[Crossref] [PubMed]

Opt. Lett. (8)

J. Xiao, H. Ni, and X. Sun, “Full-vector mode solver for bending waveguides based on the finite-difference frequency-domain method in cylindrical coordinate systems,” Opt. Lett. 33(16), 1848–1850 (2008).
[Crossref] [PubMed]

X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,” Opt. Lett. 37(23), 4814–4816 (2012).
[Crossref] [PubMed]

X. Yin, T. Zhang, L. Chen, and X. Li, “Ultra-compact TE-pass polarizer with graphene multilayer embedded in a silicon slot waveguide,” Opt. Lett. 40(8), 1733–1736 (2015).
[Crossref] [PubMed]

L. Sánchez, S. Lechago, and P. Sanchis, “Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon,” Opt. Lett. 40(7), 1452–1455 (2015).
[Crossref] [PubMed]

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers,” Opt. Lett. 41(4), 773–776 (2016).
[Crossref] [PubMed]

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39(15), 4514–4517 (2014).
[Crossref] [PubMed]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37(1), 55–57 (2012).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Other (2)

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the proposed TE-pass polarizer, where its cross-section view of the polarizer region is also illustrated. h1 and h2 represent the thicknesses of ITO and HfO2 layers embedded in the center of the strip waveguide, h3 and h4 represent the thicknesses of HfO2 and ITO layers deposited on the top of the strip waveguide, respectively.
Fig. 2
Fig. 2 (a) Real and (b) imaginary parts of ITO’s permittivity versus wavelength for different electron concentrations n, where the dotted lines indicate the required electron concentration to generate ENZ in the accumulation layer at the wavelength of 1.55 μm. The corresponding electrode configurations are illustrated in (c).
Fig. 3
Fig. 3 Real and imaginary parts of the effective indices of guided modes as a function of the electron concentration n for (a) the TE mode and (b) the TM mode in the polarizer region. The insets show the electric field distributions at n = 0.1 × 1020, 6.47 × 1020, 1.0 × 1021cm−3 and gray lines represent the electron concentration of the ENZ point.
Fig. 4
Fig. 4 (a) Wavelength dependence of the polarizer with an ITO layer embedded in the waveguide center which is illustrated in the inset, and field evolution of (b) the TE (Ex) and (c) TM (Ey) modes along the propagation direction through the polarizer, where the polarizer length is 4.5 μm.
Fig. 5
Fig. 5 ER and IL of the improved polarizer as functions of (a) the ITO layer thickness h1 for different HfO2 thicknesses h2 in the waveguide center and (b) the layer thicknesses of HfO2 h3 and ITO h4 on the waveguide top.
Fig. 6
Fig. 6 Wavelength dependence of the improved polarizer for different electron concentrations of the accumulation layers of ITO, where the horizontal dash-dotted line represents ER of 20 dB which is employed to estimate the bandwidth.
Fig. 7
Fig. 7 (a) ER and IL of the device as functions of the central layer offset and the top layer offset, and (b) length dependence of the designed polarizer.
Fig. 8
Fig. 8 Field evolution of (a) the TE (Ex) and (b) TM (Ey) modes through the designed TE-pass polarizer in x-z cross section (y = 150 nm), where insets show the field evolution through the device in y-z cross section (x = 0).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε ω p 2 ω(ω+iγ) , ω p 2 = n e 2 ε 0 m
ER(dB)=10 log 10 P TE 2 P TM 2 , IL(dB)=10 log 10 P TE 2 P TE 1

Metrics