Abstract

Optical devices with asymmetric transmission have important applications in optical systems, but optical isolators with the modal asymmetry can only be built using magneto-optical or nonlinear materials, as dictated by the Lorentz reciprocity theorem. However, optical devices with the power asymmetry can be achieved by linear materials such as metals and dielectrics. In this paper, we report a large-area, nanoimprint-defined meta-surface (stacked subwavelength gratings) with high-contrast asymmetric transmittance in the visible-to-infrared wavelength range for TM-polarized light. The physical origin of asymmetric transmission through the meta-surface is studied by analyzing the scattering matrix.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Taming the flow of light via active magneto-optical impurities

Hamidreza Ramezani, Zin Lin, Samuel Kalish, Tsampikos Kottos, Vassilios Kovanis, and Ilya Vitebskiy
Opt. Express 20(24) 26200-26207 (2012)

Broadband asymmetric light transmission via all-dielectric digital metasurfaces

Bing Shen, Randy Polson, and Rajesh Menon
Opt. Express 23(16) 20961-20970 (2015)

Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface

Yonghong Ling, Lirong Huang, Wei Hong, Tongjun Liu, Yali Sun, Jing Luan, and Gang Yuan
Opt. Express 25(12) 13648-13658 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
    [Crossref]
  2. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (WileyNew York, 1991).
  3. L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
    [Crossref] [PubMed]
  4. N. I. Zheludev, “A roadmap for metamaterials,” Opt. Photonics News 22(30), 30–35 (2011).
    [Crossref]
  5. Z. Zhu, K. Liu, W. Xu, Z. Luo, C. Guo, B. Yang, T. Ma, X. Yuan, and W. Ye, “One-way transmission of linearly polarized light in plasmonic subwavelength metallic grating cascaded with dielectric grating,” Opt. Lett. 37(19), 4008–4010 (2012).
    [Crossref] [PubMed]
  6. P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. E. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
    [Crossref]
  7. M. Stolarek, D. Yavorskiy, R. Kotyński, C. J. Z. Rodríguez, J. Łusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38(6), 839–841 (2013).
    [Crossref] [PubMed]
  8. Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
    [Crossref]
  9. Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D: Appl. Phys. 47(7), 075107 (2014).
    [Crossref]
  10. M. Naruse, H. Hori, S. Ishii, A. Drezet, S. Huant, M. Hoga, Y. Ohyagi, T. Matsumoto, N. Tate, and M. Ohtsu, “Unidirectional light propagation through two-layer nanostructures based on optical near-field interactions,” J. Opt. Soc. Am. B 31(10), 2404–2413 (2014).
    [Crossref]
  11. A. E. Serebryannikov, E. Ozbay, and S. Nojima, “Asymmetric transmission of terahertz waves using polar dielectrics,” Opt. Express 22(3), 3075–3088 (2014).
    [Crossref] [PubMed]
  12. J. Shi, H. Ma, C. Guan, Z. Wang, and T. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90-twisted babinet-inverted metasurfaces,” Phys. Rev. B 89(16), 165128 (2014).
    [Crossref]
  13. S. Wu, S. Xu, Y. Zhang, Y. Wu, J. Jiang, Q. Wang, X. Zhang, and Y. Zhu, “Asymmetric transmission and optical rotation of a quasi-3d asymmetric metallic structure,” Opt. Lett. 39(22), 6426–6429 (2014).
    [Crossref] [PubMed]
  14. T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5, 4141 (2014).
    [Crossref] [PubMed]
  15. Y. Zhang, D. Li, C. Zeng, Z. Huang, Y. Wang, Q. Huang, Y. Wu, J. Yu, and J. Xia, “Silicon optical diode based on cascaded photonic crystal cavities,” Opt. Lett. 39(6), 1370–1373 (2014).
    [Crossref] [PubMed]
  16. C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
    [Crossref] [PubMed]
  17. G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
    [Crossref]
  18. Ł. Zinkiewicz, J. Haberko, and P. Wasylczyk, “Highly asymmetric near infrared light transmission in an all-dielectric grating-on-mirror photonic structure,” Opt. Express 23(4), 4206–4211 (2015).
    [Crossref] [PubMed]
  19. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
    [Crossref]
  20. J. Melngailis, “Focused ion beam technology and applications,” J. Vac. Sci. Technol. B 5(2), 469–495 (1987).
    [Crossref]
  21. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [Crossref] [PubMed]
  22. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol., B 14(6), 4129–4133 (1996).
    [Crossref]
  23. S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874 (2005).
    [Crossref]
  24. M. Mutlu, A. Akosman, G. Kurt, M. Gokkavas, and E. Ozbay, “Experimental realization of a high-contrast grating based broadband quarter-wave plate,” Opt. Express 20(20), 27966–27973 (2012).
    [Crossref] [PubMed]
  25. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36(7), 1566–1572 (1997).
    [Crossref] [PubMed]
  26. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993).
  27. M. Moharam, T. Gaylord, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  28. T. Savas, M. Schattenburg, J. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol., B 14(6), 4167–4170 (1996).
    [Crossref]
  29. Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
    [Crossref] [PubMed]
  30. Y. Yao, Y. Wang, H. Liu, Y. Li, B. Song, and W. Wu, “Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography,” Appl. Phys. A 121(2), 399–403 (2015).
    [Crossref]
  31. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
    [Crossref]

2015 (3)

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Y. Yao, Y. Wang, H. Liu, Y. Li, B. Song, and W. Wu, “Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography,” Appl. Phys. A 121(2), 399–403 (2015).
[Crossref]

Ł. Zinkiewicz, J. Haberko, and P. Wasylczyk, “Highly asymmetric near infrared light transmission in an all-dielectric grating-on-mirror photonic structure,” Opt. Express 23(4), 4206–4211 (2015).
[Crossref] [PubMed]

2014 (9)

A. E. Serebryannikov, E. Ozbay, and S. Nojima, “Asymmetric transmission of terahertz waves using polar dielectrics,” Opt. Express 22(3), 3075–3088 (2014).
[Crossref] [PubMed]

Y. Zhang, D. Li, C. Zeng, Z. Huang, Y. Wang, Q. Huang, Y. Wu, J. Yu, and J. Xia, “Silicon optical diode based on cascaded photonic crystal cavities,” Opt. Lett. 39(6), 1370–1373 (2014).
[Crossref] [PubMed]

M. Naruse, H. Hori, S. Ishii, A. Drezet, S. Huant, M. Hoga, Y. Ohyagi, T. Matsumoto, N. Tate, and M. Ohtsu, “Unidirectional light propagation through two-layer nanostructures based on optical near-field interactions,” J. Opt. Soc. Am. B 31(10), 2404–2413 (2014).
[Crossref]

S. Wu, S. Xu, Y. Zhang, Y. Wu, J. Jiang, Q. Wang, X. Zhang, and Y. Zhu, “Asymmetric transmission and optical rotation of a quasi-3d asymmetric metallic structure,” Opt. Lett. 39(22), 6426–6429 (2014).
[Crossref] [PubMed]

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D: Appl. Phys. 47(7), 075107 (2014).
[Crossref]

J. Shi, H. Ma, C. Guan, Z. Wang, and T. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90-twisted babinet-inverted metasurfaces,” Phys. Rev. B 89(16), 165128 (2014).
[Crossref]

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5, 4141 (2014).
[Crossref] [PubMed]

2013 (3)

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. E. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

M. Stolarek, D. Yavorskiy, R. Kotyński, C. J. Z. Rodríguez, J. Łusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38(6), 839–841 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

N. I. Zheludev, “A roadmap for metamaterials,” Opt. Photonics News 22(30), 30–35 (2011).
[Crossref]

2010 (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

2009 (1)

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

2005 (1)

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874 (2005).
[Crossref]

2004 (1)

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

2000 (1)

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]

1997 (1)

1996 (2)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol., B 14(6), 4129–4133 (1996).
[Crossref]

T. Savas, M. Schattenburg, J. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol., B 14(6), 4167–4170 (1996).
[Crossref]

1995 (1)

1987 (1)

J. Melngailis, “Focused ion beam technology and applications,” J. Vac. Sci. Technol. B 5(2), 469–495 (1987).
[Crossref]

Ahn, S.-W.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874 (2005).
[Crossref]

Akosman, A.

Ayache, M.

L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Baets, R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Beruete, M.

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. E. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

Busch, K.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Carcenac, F.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]

Carter, J.

T. Savas, M. Schattenburg, J. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol., B 14(6), 4167–4170 (1996).
[Crossref]

Chen, S.

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Chen, Y.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]

Chen, Y.-F.

L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Cheng, H.

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol., B 14(6), 4129–4133 (1996).
[Crossref]

Couraud, L.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]

Cui, B.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Cui, T.

J. Shi, H. Ma, C. Guan, Z. Wang, and T. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90-twisted babinet-inverted metasurfaces,” Phys. Rev. B 89(16), 165128 (2014).
[Crossref]

Deubel, M.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Doerr, C. R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Drezet, A.

Economou, E. N.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Fainman, Y.

L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Fan, S.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Farsari, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Feng, L.

L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Gaylord, T.

Ge, H.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Gokkavas, M.

Grann, E. B.

Grbic, A.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Gu, Y.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Guan, C.

J. Shi, H. Ma, C. Guan, Z. Wang, and T. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90-twisted babinet-inverted metasurfaces,” Phys. Rev. B 89(16), 165128 (2014).
[Crossref]

Guo, C.

Guo, L. J.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Haberko, J.

Hoga, M.

Hori, H.

Huang, J.

L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Huang, Q.

Huang, Z.

Huant, S.

Ishii, S.

Iwata, K.

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Jiang, J.

Joannopoulos, J. D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Kafesaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Kenanakis, G.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Kikuta, H.

Kim, J.-S.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874 (2005).
[Crossref]

Kim, S. H.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874 (2005).
[Crossref]

Kotynski, R.

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol., B 14(6), 4129–4133 (1996).
[Crossref]

Kunz, K. S.

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993).

Kurt, G.

Launois, H.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]

Lebib, A.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]

Lederer, F.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Lee, K.-D.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874 (2005).
[Crossref]

Lee, S.-H.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874 (2005).
[Crossref]

Lezec, H. J.

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5, 4141 (2014).
[Crossref] [PubMed]

Li, D.

Li, J.

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Li, Y.

Y. Yao, Y. Wang, H. Liu, Y. Li, B. Song, and W. Wu, “Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography,” Appl. Phys. A 121(2), 399–403 (2015).
[Crossref]

Li, Z.

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D: Appl. Phys. 47(7), 075107 (2014).
[Crossref]

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Liu, H.

Y. Yao, Y. Wang, H. Liu, Y. Li, B. Song, and W. Wu, “Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography,” Appl. Phys. A 121(2), 399–403 (2015).
[Crossref]

Liu, K.

Liu, W.

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Liu, Z.

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Lu, M.-H.

L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Luebbers, R. J.

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993).

Luo, Z.

Lusakowski, J.

Ma, H.

J. Shi, H. Ma, C. Guan, Z. Wang, and T. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90-twisted babinet-inverted metasurfaces,” Phys. Rev. B 89(16), 165128 (2014).
[Crossref]

Ma, T.

Manin-Ferlazzo, L.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]

Matsumoto, T.

Mejias, M.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Melngailis, J.

J. Melngailis, “Focused ion beam technology and applications,” J. Vac. Sci. Technol. B 5(2), 469–495 (1987).
[Crossref]

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Moharam, M.

Mutlu, M.

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D: Appl. Phys. 47(7), 075107 (2014).
[Crossref]

M. Mutlu, A. Akosman, G. Kurt, M. Gokkavas, and E. Ozbay, “Experimental realization of a high-contrast grating based broadband quarter-wave plate,” Opt. Express 20(20), 27966–27973 (2012).
[Crossref] [PubMed]

Naruse, M.

Navarro-Cía, M.

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. E. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

Nieto-Vesperinas, M.

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (WileyNew York, 1991).

Nojima, S.

Ohira, Y.

Ohtsu, M.

Ohyagi, Y.

Ozbay, E.

Park, J.-D.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874 (2005).
[Crossref]

Pepin, A.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]

Pereira, S.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Pfeiffer, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Pommet, D. A.

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Ray, V.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Renner, H.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol., B 14(6), 4129–4133 (1996).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Rodríguez, C. J. Z.

Rodríguez-Ulibarri, P.

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. E. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

Savas, T.

T. Savas, M. Schattenburg, J. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol., B 14(6), 4167–4170 (1996).
[Crossref]

Schattenburg, M.

T. Savas, M. Schattenburg, J. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol., B 14(6), 4167–4170 (1996).
[Crossref]

Scherer, A.

L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Selimis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Serebryannikov, A. E.

A. E. Serebryannikov, E. Ozbay, and S. Nojima, “Asymmetric transmission of terahertz waves using polar dielectrics,” Opt. Express 22(3), 3075–3088 (2014).
[Crossref] [PubMed]

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. E. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

Shi, J.

J. Shi, H. Ma, C. Guan, Z. Wang, and T. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90-twisted babinet-inverted metasurfaces,” Phys. Rev. B 89(16), 165128 (2014).
[Crossref]

Smith, H. I.

T. Savas, M. Schattenburg, J. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol., B 14(6), 4167–4170 (1996).
[Crossref]

Song, B.

Y. Yao, Y. Wang, H. Liu, Y. Li, B. Song, and W. Wu, “Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography,” Appl. Phys. A 121(2), 399–403 (2015).
[Crossref]

Soukoulis, C. M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Stolarek, M.

Szoplik, T.

Tang, C.

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Tate, N.

Tian, J.

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Vamvakaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Vanwolleghem, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Vieu, C.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]

Von Freymann, G.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Wang, L.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Wang, Q.

Wang, Y.

Y. Yao, Y. Wang, H. Liu, Y. Li, B. Song, and W. Wu, “Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography,” Appl. Phys. A 121(2), 399–403 (2015).
[Crossref]

Y. Zhang, D. Li, C. Zeng, Z. Huang, Y. Wang, Q. Huang, Y. Wu, J. Yu, and J. Xia, “Silicon optical diode based on cascaded photonic crystal cavities,” Opt. Lett. 39(6), 1370–1373 (2014).
[Crossref] [PubMed]

Wang, Z.

J. Shi, H. Ma, C. Guan, Z. Wang, and T. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90-twisted babinet-inverted metasurfaces,” Phys. Rev. B 89(16), 165128 (2014).
[Crossref]

Wasylczyk, P.

Wegener, M.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Williams, R. S.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Wu, S.

Wu, W.

Y. Yao, Y. Wang, H. Liu, Y. Li, B. Song, and W. Wu, “Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography,” Appl. Phys. A 121(2), 399–403 (2015).
[Crossref]

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Wu, Y.

Xia, J.

Xia, Q.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Xie, B.

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Xomalis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Xu, S.

Xu, T.

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5, 4141 (2014).
[Crossref] [PubMed]

Xu, W.

Xu, Y.-L.

L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Yang, B.

Yao, Y.

Y. Yao, Y. Wang, H. Liu, Y. Li, B. Song, and W. Wu, “Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography,” Appl. Phys. A 121(2), 399–403 (2015).
[Crossref]

Yavorskiy, D.

Ye, W.

Yoon, P.-W.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874 (2005).
[Crossref]

Yu, J.

Yu, P.

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Yu, Z.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Yuan, C.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Yuan, X.

Zeng, C.

Zhang, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Zhang, X.

Zhang, Y.

Zheludev, N. I.

N. I. Zheludev, “A roadmap for metamaterials,” Opt. Photonics News 22(30), 30–35 (2011).
[Crossref]

Zhu, Y.

Zhu, Z.

Zinkiewicz, L.

ACS Photonics (1)

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

Y. Yao, Y. Wang, H. Liu, Y. Li, B. Song, and W. Wu, “Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography,” Appl. Phys. A 121(2), 399–403 (2015).
[Crossref]

Appl. Phys. Lett. (1)

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Appl. Surf. Sci. (1)

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D: Appl. Phys. 47(7), 075107 (2014).
[Crossref]

J. Vac. Sci. Technol. B (1)

J. Melngailis, “Focused ion beam technology and applications,” J. Vac. Sci. Technol. B 5(2), 469–495 (1987).
[Crossref]

J. Vac. Sci. Technol., B (2)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol., B 14(6), 4129–4133 (1996).
[Crossref]

T. Savas, M. Schattenburg, J. Carter, and H. I. Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol., B 14(6), 4167–4170 (1996).
[Crossref]

Nano Lett. (1)

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874 (2005).
[Crossref]

Nat. Commun. (1)

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5, 4141 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is and what is not an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Photonics News (1)

N. I. Zheludev, “A roadmap for metamaterials,” Opt. Photonics News 22(30), 30–35 (2011).
[Crossref]

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Phys. Rev. B (2)

P. Rodríguez-Ulibarri, M. Beruete, M. Navarro-Cía, and A. E. Serebryannikov, “Wideband unidirectional transmission with tunable sign-switchable refraction and deflection in nonsymmetric structures,” Phys. Rev. B 88(16), 165137 (2013).
[Crossref]

J. Shi, H. Ma, C. Guan, Z. Wang, and T. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90-twisted babinet-inverted metasurfaces,” Phys. Rev. B 89(16), 165128 (2014).
[Crossref]

Phys. Rev. Lett. (1)

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Science (1)

L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333(6043), 729–733 (2011).
[Crossref] [PubMed]

Other (2)

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (WileyNew York, 1991).

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of meta-surface with asymmetric transmission

Fig. 2
Fig. 2

The relationship between width of grating (with a pitch of 245 nm) and none

Fig. 3
Fig. 3

(a) Average transmittance (450 nm – 1000 nm) under different height of grating (n = 2) (b) Average transmittance (450 nm – 1000 nm) under difference refractive indices of grating (height = 500 nm)

Fig. 4
Fig. 4

(a) Forward transmittance under different buffer layer thicknesses (i.e. the distance between top grating and substrate); (b) Backward transmittance under different buffer layer thicknesses (i.e. the distance between top grating and substrate)

Fig. 5
Fig. 5

Average transmittance (450 nm to 1000 nm) under different distance (buffer layer thicknesses)

Fig. 6
Fig. 6

The fabrication process of the meta-surface: (a) pattern metallic gratings on SiO2 substrate (b) spin on UV curable resist as the buffer layer; (c) PECVD SiNx; (d) pattern SiNx gratings on buffer layer

Fig. 7
Fig. 7

Cross-sectional SEM image of the fabricated meta-surface

Fig. 8
Fig. 8

Transmittance and extinction ratio of metallic grating

Fig. 9
Fig. 9

Transmittance (Forward and Backward) and extinction ratio of the fabricated meta-surface with asymmetric transmission

Fig. 10
Fig. 10

Real photos of (a) blocking the image on screen (b) showing the image on screen after flipping the sample

Fig. 11
Fig. 11

Schematic of the meta-surface

Tables (1)

Tables Icon

Table 1 Comparison with representative published results on optically asymmetric devices

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ b 1 x b 1 y b 2 x b 2 y ] = [ 0 0 T x x T y x 0 1 0 0 T x x 0 T x y T y x T y y T y x T x y 0 T x y T y y T y y T y y ] [ a 1 x a 1 y a 2 x a 2 y ] .
[ b 1 x b 1 y b 2 x b 2 y ] = [ 0 0 T x x T y x 0 1 0 0 T x x 0 T x y T y x T y y T y x T x y 0 T x y T y y T y y T y y ] [ 0 0 0 E i ] .
[ b 1 x b 1 y b 2 x b 2 y ] = [ 0 0 T x x T y x 0 1 0 0 T x x 0 T x y T y x T y y T y x T x y 0 T x y T y y T y y T y y ] [ 0 E i 0 0 ] .

Metrics