Abstract

In this paper, an asymmetric plasmonic structure composed of two MIM (metal-insulator-metal) waveguides and two rectangular cavities is reported, which can support triple Fano resonances originating from three different mechanisms. And the multimode interference coupled mode theory (MICMT) including coupling phases is proposed based on single mode coupled mode theory (CMT), which is used for describing and explaining the multiple Fano resonance phenomenon in coupled plasmonic resonator systems. Just because the triple Fano resonances originate from three different mechanisms, each Fano resonance can be tuned independently or semi-independently by changing the parameters of the two rectangular cavities. Such, a narrow ‘M’ type of double Lorentzian-like line-shape transmission windows with the position and the full width at half maximum (FWHM) can be tuned freely is constructed by changing the parameters of the two cavities appropriately, which can find widely applications in sensors, nonlinear and slow-light devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system

Shilei Li, Yilin Wang, Rongzhen Jiao, Lulu Wang, Gaoyan Duan, and Li Yu
Opt. Express 25(4) 3525-3533 (2017)

Independently tunable double Fano resonances in asymmetric MIM waveguide structure

Jiwei Qi, Zongqiang Chen, Jing Chen, Yudong Li, Wu Qiang, Jingjun Xu, and Qian Sun
Opt. Express 22(12) 14688-14695 (2014)

Independently tunable Fano resonances in a metal-insulator-metal coupled cavities system

Yonghao Chen, Li Chen, Kunhua Wen, Yihua Hu, and Weitao Lin
Appl. Opt. 59(5) 1484-1490 (2020)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. A. D. Khan and G. Miano, “Plasmonic Fano resonances in single-layer gold conical nanoshells,” Plasmonics 8(3), 1429–1437 (2013).
    [Crossref]
  3. J. Shu, W. Gao, and Q. Xu, “Fano resonance in concentric ring apertures,” Opt. Express 21(9), 11101–11106 (2013).
    [Crossref] [PubMed]
  4. J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits,” Plasmonics 8(4), 1627–1632 (2013).
    [Crossref]
  5. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
    [Crossref] [PubMed]
  6. J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
    [Crossref] [PubMed]
  7. D. Wang, X. Yu, and Q. Yu, “Tuning multiple Fano and plasmon resonances in rectangle grid quasi-3D plasmonic-photonic nanostructures,” Appl. Phys. Lett. 103(5), 053117 (2013).
    [Crossref]
  8. Y. Y. Zhang, S. L. Li, X. Y. Zhang, Y. Y. Chen, L. L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
    [Crossref]
  9. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
    [Crossref] [PubMed]
  10. Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
    [Crossref]
  11. K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
    [Crossref]
  12. Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
    [Crossref]
  13. Y. Xu and A. E. Miroshnichenko, “Reconfigurable non reciprocity with a nonlinear fano diode,” Phys. Rev. B 89(13), 1361–1377 (2014).
    [Crossref]
  14. K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Electromagnetically induced transparency-like transmission in a compact side-coupled T-shaped resonator,” J. Lightwave Technol. 32(9), 1701–1707 (2014).
    [Crossref]
  15. T. R. Liu, Z. K. Zhou, C. Jin, and X. Wang, “Tuning triangular prism dimer into fano resonance for plasmonic sensor,” Plasmonics 8(2), 885–890 (2013).
    [Crossref]
  16. G. Zhan, R. Liang, H. Liang, J. Luo, and R. Zhao, “Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities,” Opt. Express 22(8), 9912–9919 (2014).
    [Crossref] [PubMed]
  17. T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
    [Crossref] [PubMed]
  18. Z. Chen and L. Yu, “Multiple fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).
  19. Z. Chen, L. Yu, L. L. Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “A refractive index nanosensor based on fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
    [Crossref]
  20. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
    [Crossref] [PubMed]
  21. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref] [PubMed]
  22. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [Crossref] [PubMed]
  23. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  24. G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
    [Crossref] [PubMed]
  25. J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Response line-shapes in compact coupled plasmonic resonator systems,” Plasmonics 8(2), 1129–1134 (2013).
    [Crossref]
  26. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [Crossref] [PubMed]
  27. M. Bera and M. Ray, “Circular phase response based analysis for swapped multilayer metallo-dilelectric plasmonic structures,” Plasmonics 9(2), 237–249 (2014).
    [Crossref]

2016 (2)

Y. Y. Zhang, S. L. Li, X. Y. Zhang, Y. Y. Chen, L. L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

2015 (4)

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

Z. Chen, L. Yu, L. L. Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “A refractive index nanosensor based on fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
[Crossref] [PubMed]

2014 (6)

M. Bera and M. Ray, “Circular phase response based analysis for swapped multilayer metallo-dilelectric plasmonic structures,” Plasmonics 9(2), 237–249 (2014).
[Crossref]

G. Zhan, R. Liang, H. Liang, J. Luo, and R. Zhao, “Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities,” Opt. Express 22(8), 9912–9919 (2014).
[Crossref] [PubMed]

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

Z. Chen and L. Yu, “Multiple fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).

Y. Xu and A. E. Miroshnichenko, “Reconfigurable non reciprocity with a nonlinear fano diode,” Phys. Rev. B 89(13), 1361–1377 (2014).
[Crossref]

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Electromagnetically induced transparency-like transmission in a compact side-coupled T-shaped resonator,” J. Lightwave Technol. 32(9), 1701–1707 (2014).
[Crossref]

2013 (7)

T. R. Liu, Z. K. Zhou, C. Jin, and X. Wang, “Tuning triangular prism dimer into fano resonance for plasmonic sensor,” Plasmonics 8(2), 885–890 (2013).
[Crossref]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
[Crossref] [PubMed]

D. Wang, X. Yu, and Q. Yu, “Tuning multiple Fano and plasmon resonances in rectangle grid quasi-3D plasmonic-photonic nanostructures,” Appl. Phys. Lett. 103(5), 053117 (2013).
[Crossref]

A. D. Khan and G. Miano, “Plasmonic Fano resonances in single-layer gold conical nanoshells,” Plasmonics 8(3), 1429–1437 (2013).
[Crossref]

J. Shu, W. Gao, and Q. Xu, “Fano resonance in concentric ring apertures,” Opt. Express 21(9), 11101–11106 (2013).
[Crossref] [PubMed]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits,” Plasmonics 8(4), 1627–1632 (2013).
[Crossref]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Response line-shapes in compact coupled plasmonic resonator systems,” Plasmonics 8(2), 1129–1134 (2013).
[Crossref]

2012 (1)

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

2011 (2)

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
[Crossref] [PubMed]

2010 (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (1)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bera, M.

M. Bera and M. Ray, “Circular phase response based analysis for swapped multilayer metallo-dilelectric plasmonic structures,” Plasmonics 9(2), 237–249 (2014).
[Crossref]

Bian, Z.

Chen, J.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Chen, J. J.

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits,” Plasmonics 8(4), 1627–1632 (2013).
[Crossref]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Response line-shapes in compact coupled plasmonic resonator systems,” Plasmonics 8(2), 1129–1134 (2013).
[Crossref]

Chen, L.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Chen, Y. Y.

Y. Y. Zhang, S. L. Li, X. Y. Zhang, Y. Y. Chen, L. L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Chen, Z.

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Z. Chen, L. Yu, L. L. Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “A refractive index nanosensor based on fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

Z. Chen and L. Yu, “Multiple fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Cui, L. N.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Deng, Z. L.

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits,” Plasmonics 8(4), 1627–1632 (2013).
[Crossref]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Response line-shapes in compact coupled plasmonic resonator systems,” Plasmonics 8(2), 1129–1134 (2013).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ding, P.

Duan, G. Y.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Z. Chen, L. Yu, L. L. Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “A refractive index nanosensor based on fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fan, C.

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Gao, W.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gong, Q.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Gong, Q. H.

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits,” Plasmonics 8(4), 1627–1632 (2013).
[Crossref]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Response line-shapes in compact coupled plasmonic resonator systems,” Plasmonics 8(2), 1129–1134 (2013).
[Crossref]

Gong, Y.

Guo, Y. H.

Guo, Z.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

He, J.

Hu, Y. H.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Huang, X. G.

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Jin, C.

T. R. Liu, Z. K. Zhou, C. Jin, and X. Wang, “Tuning triangular prism dimer into fano resonance for plasmonic sensor,” Plasmonics 8(2), 885–890 (2013).
[Crossref]

Khan, A. D.

A. D. Khan and G. Miano, “Plasmonic Fano resonances in single-layer gold conical nanoshells,” Plasmonics 8(3), 1429–1437 (2013).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Lai, G.

Lei, L.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Li, S. L.

Y. Y. Zhang, S. L. Li, X. Y. Zhang, Y. Y. Chen, L. L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Li, Z.

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits,” Plasmonics 8(4), 1627–1632 (2013).
[Crossref]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Response line-shapes in compact coupled plasmonic resonator systems,” Plasmonics 8(2), 1129–1134 (2013).
[Crossref]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Liang, E.

Liang, H.

Liang, R.

Lin, X. S.

Liu, T. R.

T. R. Liu, Z. K. Zhou, C. Jin, and X. Wang, “Tuning triangular prism dimer into fano resonance for plasmonic sensor,” Plasmonics 8(2), 885–890 (2013).
[Crossref]

Liu, X.

Liu, Y.

Lu, H.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Luo, B.

Luo, J.

Luo, X. G.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Mao, D.

Meng, Z. M.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Miano, G.

A. D. Khan and G. Miano, “Plasmonic Fano resonances in single-layer gold conical nanoshells,” Plasmonics 8(3), 1429–1437 (2013).
[Crossref]

Miroshnichenko, A. E.

Y. Xu and A. E. Miroshnichenko, “Reconfigurable non reciprocity with a nonlinear fano diode,” Phys. Rev. B 89(13), 1361–1377 (2014).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Pan, W.

Peng, Y.

Ray, M.

M. Bera and M. Ray, “Circular phase response based analysis for swapped multilayer metallo-dilelectric plasmonic structures,” Plasmonics 9(2), 237–249 (2014).
[Crossref]

Shu, C.

Shu, J.

Shvets, G.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Wang, D.

D. Wang, X. Yu, and Q. Yu, “Tuning multiple Fano and plasmon resonances in rectangle grid quasi-3D plasmonic-photonic nanostructures,” Appl. Phys. Lett. 103(5), 053117 (2013).
[Crossref]

Wang, J.

Wang, L.

Wang, L. L.

Y. Y. Zhang, S. L. Li, X. Y. Zhang, Y. Y. Chen, L. L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Z. Chen, L. Yu, L. L. Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “A refractive index nanosensor based on fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

Wang, W. H.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Wang, X.

T. R. Liu, Z. K. Zhou, C. Jin, and X. Wang, “Tuning triangular prism dimer into fano resonance for plasmonic sensor,” Plasmonics 8(2), 885–890 (2013).
[Crossref]

Wen, K. H.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Electromagnetically induced transparency-like transmission in a compact side-coupled T-shaped resonator,” J. Lightwave Technol. 32(9), 1701–1707 (2014).
[Crossref]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Wu, T.

Xiao, J.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Xiao, J. H.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

Z. Chen, L. Yu, L. L. Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “A refractive index nanosensor based on fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Response line-shapes in compact coupled plasmonic resonator systems,” Plasmonics 8(2), 1129–1134 (2013).
[Crossref]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits,” Plasmonics 8(4), 1627–1632 (2013).
[Crossref]

Xu, Q.

Xu, Y.

Y. Xu and A. E. Miroshnichenko, “Reconfigurable non reciprocity with a nonlinear fano diode,” Phys. Rev. B 89(13), 1361–1377 (2014).
[Crossref]

Xue, Q.

Yan, L. S.

Ye, H.

Yi, L.

Yu, L.

Y. Y. Zhang, S. L. Li, X. Y. Zhang, Y. Y. Chen, L. L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Z. Chen, L. Yu, L. L. Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “A refractive index nanosensor based on fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

Z. Chen and L. Yu, “Multiple fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).

Yu, Q.

D. Wang, X. Yu, and Q. Yu, “Tuning multiple Fano and plasmon resonances in rectangle grid quasi-3D plasmonic-photonic nanostructures,” Appl. Phys. Lett. 103(5), 053117 (2013).
[Crossref]

Yu, X.

D. Wang, X. Yu, and Q. Yu, “Tuning multiple Fano and plasmon resonances in rectangle grid quasi-3D plasmonic-photonic nanostructures,” Appl. Phys. Lett. 103(5), 053117 (2013).
[Crossref]

Yu, Z.

Yue, S.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Zhan, G.

Zhang, X. Y.

Y. Y. Zhang, S. L. Li, X. Y. Zhang, Y. Y. Chen, L. L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Zhang, Y.

Y. Y. Zhang, S. L. Li, X. Y. Zhang, Y. Y. Chen, L. L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
[Crossref] [PubMed]

Zhang, Y. Y.

Y. Y. Zhang, S. L. Li, X. Y. Zhang, Y. Y. Chen, L. L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Zhao, R.

Zhao, Y. F.

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

Z. Chen, L. Yu, L. L. Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “A refractive index nanosensor based on fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhou, J. Y.

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Zhou, Z. K.

T. R. Liu, Z. K. Zhou, C. Jin, and X. Wang, “Tuning triangular prism dimer into fano resonance for plasmonic sensor,” Plasmonics 8(2), 885–890 (2013).
[Crossref]

Zou, Y. J.

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits,” Plasmonics 8(4), 1627–1632 (2013).
[Crossref]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Response line-shapes in compact coupled plasmonic resonator systems,” Plasmonics 8(2), 1129–1134 (2013).
[Crossref]

Appl. Phys. Lett. (1)

D. Wang, X. Yu, and Q. Yu, “Tuning multiple Fano and plasmon resonances in rectangle grid quasi-3D plasmonic-photonic nanostructures,” Appl. Phys. Lett. 103(5), 053117 (2013).
[Crossref]

IEEE Photonics J. (1)

Z. Chen and L. Yu, “Multiple fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).

IEEE Photonics Technol. Lett. (1)

Z. Chen, L. Yu, L. L. Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “A refractive index nanosensor based on fano resonance in the plasmonic waveguide system,” IEEE Photonics Technol. Lett. 27(16), 1695–1698 (2015).
[Crossref]

J. Lightwave Technol. (1)

Nano Lett. (1)

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Y. Zhang, S. L. Li, X. Y. Zhang, Y. Y. Chen, L. L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (1)

Y. Xu and A. E. Miroshnichenko, “Reconfigurable non reciprocity with a nonlinear fano diode,” Phys. Rev. B 89(13), 1361–1377 (2014).
[Crossref]

Phys. Rev. Lett. (3)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Plasmonics (8)

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

K. H. Wen, Y. H. Hu, L. Chen, J. Y. Zhou, L. Lei, and Z. M. Meng, “Single/dual fano resonance based on plasmonic metal-dielectric-metal waveguide,” Plasmonics 11(1), 315–321 (2016).
[Crossref]

Z. Chen, W. H. Wang, L. N. Cui, L. Yu, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, “Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system,” Plasmonics 10(3), 721–727 (2015).
[Crossref]

A. D. Khan and G. Miano, “Plasmonic Fano resonances in single-layer gold conical nanoshells,” Plasmonics 8(3), 1429–1437 (2013).
[Crossref]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits,” Plasmonics 8(4), 1627–1632 (2013).
[Crossref]

T. R. Liu, Z. K. Zhou, C. Jin, and X. Wang, “Tuning triangular prism dimer into fano resonance for plasmonic sensor,” Plasmonics 8(2), 885–890 (2013).
[Crossref]

J. J. Chen, Z. Li, Y. J. Zou, Z. L. Deng, J. H. Xiao, and Q. H. Gong, “Response line-shapes in compact coupled plasmonic resonator systems,” Plasmonics 8(2), 1129–1134 (2013).
[Crossref]

M. Bera and M. Ray, “Circular phase response based analysis for swapped multilayer metallo-dilelectric plasmonic structures,” Plasmonics 9(2), 237–249 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the asymmetric plasmonic structure composed of (a) two MIM waveguides and one rectangular cavity and (b) two MIM waveguides and two rectangular cavities.
Fig. 2
Fig. 2 The distribution of the normalized magnetic field (Hz) of the resonant modes (a) TM1,0 mode at 734 nm, (b) TM0,3 mode at 788 nm, (c) TM0,2 mode at 1105 nm and (d) TM0,4 mode at 593 nm respectively in the rectangular cavity A with LA = 220 nm, H = 760 nm in Fig. 1(a).
Fig. 3
Fig. 3 The FEM simulation results (blue lines) and MICMT results (red lines) of the transmission spectrum of the asymmetric plasmonic system with H = 760 nm, LA = 220 nm and (a) ΔH = 0, (b) ΔH = 15 nm, (c) ΔH = 30 nm. The phase curves of the complex amplitude transmission coefficients of the four modes TM0,2, TM0,3, TM1,0 and TM0,4 in the asymmetric plasmonic system with H = 760 nm, LA = 220 nm and (d) ΔH = 0, (e) ΔH = 15 nm, (f) ΔH = 30 nm.
Fig. 4
Fig. 4 Argand diagrams of the transmission coefficients t1, t2, t3 and t4 of the four resonant modes TM0,2, TM0,3, TM1,0 and TM0,4 at the peak (red lines) and dip (blue lines) of FR1 and FR2 in the plasmonic system shown in Fig. 1(a) with H = 760 nm, LA = 220 nm and (a, e) ΔH = 15nm, (c, f) ΔH = 30 nm. (b) and (d): The detailed transmission coefficients t1, t2 and t3 in the areas selected by rectangular boxes in (a) and (c), respectively.
Fig. 5
Fig. 5 The distribution of the normalized magnetic field (Hz) of the resonant modes at (a) 791 nm, (b) 788 nm and (c) 1105 nm in the asymmetric plasmonic system respectively, when ΔH = 30 nm, H = 760 nm, LA = 220 nm, LB = 500 nm, g = 10 nm and D1 = D2 = 50 nm. (d) The FEM simulation results (blue lines) and MICMT results (red lines) of the transmission spectrum of the asymmetric plasmonic system.
Fig. 6
Fig. 6 (a) The transmission spectra of the plasmonic structure with H = 760 nm, LA = 220 nm, LB = 500 nm, D1 = D2 = 50 nm, g = 10 nm, ΔH = 30 nm, and different refractive indexes of the dielectric in the waveguides and cavities, n = 1.33 (blue line), n = 1.34 (red line). (b) The FOM* curve of this plasmonic structure.
Fig. 7
Fig. 7 The dependence of transmittance on the structure parameters, when ΔH = 30 nm, g = 10 nm, n = 1.33 and D1 = D2 = 50 nm. (a) Different H with fixed LA = 220 nm and LB = 500 nm; (b) different LB with fixed H = 760 nm, LA = 220 nm; (c) different LA with fixed H = 760 nm and LB = 500 nm. (d) ~(f) The change curves of FOM of FR 1 (blue line), FR 2 (green line) and FR 3 (red line) with the change of the structure parameters H, LB and LA, respectively.
Fig. 8
Fig. 8 The dependence of the ‘M’ type of double Lorentzian-like line-shape transmittance on the structure parameters, when ΔH = 30 nm, g = 10 nm, n = 1.33 and D1 = D2 = 50 nm are fixed values. H = 709 nm, LA = 225 nm, LB = 600 nm (blue line); H = 698 nm, LA = 221 nm, LB = 590 nm (green line); H = 708 nm, LA = 225 nm, LB = 610 nm (red line).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d a n dt =( j ω n 1 τ n0 1 τ n1 1 τ n2 ) a n + κ n1 s 1+ + κ n2 s 2+
s 1 = s 1+ + n κ n1 γ n a n e j φ n1
s 2 = s 2+ + n κ n2 γ n a n e j φ n2
t= s 2 s 1+ = n γ n | κ n1 || κ n2 | e j φ n j( ω ω n )+ 1 τ n0 + 1 τ n1 + 1 τ n2 , φ n = φ n2 + θ n1 θ n2
T= | t | 2 = | n=1 4 2 γ n e j φ n j( ω ω n ) τ n +2+ τ n τ n0 | 2 , φ n = φ n2

Metrics