Abstract

We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Megawatt peak power tunable femtosecond source based on self-phase modulation enabled spectral selection

Hsiang-Yu Chung, Wei Liu, Qian Cao, Liwei Song, Franz X. Kärtner, and Guoqing Chang
Opt. Express 26(3) 3684-3695 (2018)

Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm

Hsiang-Yu Chung, Wei Liu, Qian Cao, Franz X. Kärtner, and Guoqing Chang
Opt. Express 25(14) 15760-15771 (2017)

Energetic ultrafast fiber laser sources tunable in 1030–1215 nm for deep tissue multi-photon microscopy

Wei Liu, Shih-Hsuan Chia, Hsiang-Yu Chung, Rüdiger Greinert, Franz X. Kärtner, and Guoqing Chang
Opt. Express 25(6) 6822-6831 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  2. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
    [Crossref] [PubMed]
  3. C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
    [Crossref] [PubMed]
  4. K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 50–60 (2014).
    [Crossref]
  5. X. Gao, W. Zong, B. Chen, J. Zhang, C. Li, Y. Liu, A. Wang, Y. Song, and Z. Zhang, “Core-pumped femtosecond Nd:fiber laser at 910 and 935 nm,” Opt. Lett. 39(15), 4404–4407 (2014).
    [Crossref] [PubMed]
  6. H.-W. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kärtner, and G. Chang, “3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength,” Opt. Lett. 38(22), 4927–4930 (2013).
    [Crossref] [PubMed]
  7. M.-C. Chan, C.-H. Lien, J.-Y. Lu, and B.-H. Lyu, “High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy,” Opt. Express 22(8), 9498–9507 (2014).
    [Crossref] [PubMed]
  8. H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 microns,” Electron. Lett. 40(24), 1523–1525 (2004).
    [Crossref]
  9. J. Lim, H.-W. Chen, S. Xu, Z. Yang, G. Chang, and F. X. Kärtner, “3 GHz, watt-level femtosecond Raman soliton source,” Opt. Lett. 39(7), 2060–2063 (2014).
    [Crossref] [PubMed]
  10. Y. Liu, H. Tu, W. A. Benalcazar, E. J. Chaney, and S. A. Boppart, “Multimodal nonlinear microscopy by shaping a fiber supercontinuum from 900 to 1160 nm,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1209–1214 (2012).
    [Crossref] [PubMed]
  11. T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
    [Crossref] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).
  13. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
    [Crossref] [PubMed]
  14. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006).
    [Crossref] [PubMed]
  15. H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express 18(26), 27872–27884 (2010).
    [Crossref] [PubMed]
  16. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [Crossref] [PubMed]
  17. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
    [Crossref] [PubMed]
  18. C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett. 37(12), 2196–2198 (2012).
    [Crossref] [PubMed]
  19. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett. 37(12), 2172–2174 (2012).
    [Crossref] [PubMed]
  20. S. R. Domingue and R. A. Bartels, “Three-photon excitation source at 1250 nm generated in a dual zero dispersion wavelength nonlinear fiber,” Opt. Express 22(25), 30777–30785 (2014).
    [Crossref] [PubMed]
  21. Y. Yao and W. H. Knox, “Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers,” Opt. Express 21(22), 26612–26619 (2013).
    [Crossref] [PubMed]
  22. Y. Yao and W. H. Knox, “Speckle-free femtosecond red-green-blue (RGB) source from a fiber laser driven spectrally efficient two zero dispersion wavelength fiber source,” Opt. Express 23(1), 536–544 (2015).
    [Crossref] [PubMed]
  23. Y. Yao, G. P. Agrawal, and W. H. Knox, “Yb:fiber laser-based, spectrally coherent and efficient generation of femtosecond 1.3-μm pulses from a fiber with two zero-dispersion wavelengths,” Opt. Lett. 40(15), 3631–3634 (2015).
    [Crossref] [PubMed]

2015 (3)

2014 (5)

2013 (3)

2012 (3)

2011 (2)

2010 (1)

2009 (1)

2006 (1)

2004 (1)

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 microns,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

2003 (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
[Crossref] [PubMed]

Agrawal, G. P.

Aguirre, A.

Bartels, R. A.

Bartelt, H.

Benalcazar, W. A.

Y. Liu, H. Tu, W. A. Benalcazar, E. J. Chaney, and S. A. Boppart, “Multimodal nonlinear microscopy by shaping a fiber supercontinuum from 900 to 1160 nm,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1209–1214 (2012).
[Crossref] [PubMed]

Benko, C.

Boppart, S. A.

Bosman, G. W.

Buckley, J.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 microns,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Chan, M.-C.

Chaney, E. J.

Y. Liu, H. Tu, W. A. Benalcazar, E. J. Chaney, and S. A. Boppart, “Multimodal nonlinear microscopy by shaping a fiber supercontinuum from 900 to 1160 nm,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1209–1214 (2012).
[Crossref] [PubMed]

Chang, G.

Charan, K.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 50–60 (2014).
[Crossref]

Chen, B.

Chen, H.-W.

Chong, A.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 microns,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Domingue, S. R.

Durst, M. E.

Eikema, K. S. E.

Fermann, M. E.

Fujimoto, J.

Gao, X.

Gottschall, T.

Haider, Z.

Hartl, I.

Hartung, A.

Hasegawa, T.

Heidt, A. M.

Hooper, L. E.

Horton, N. G.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 50–60 (2014).
[Crossref]

Kärtner, F. X.

Knight, J. C.

Knox, W. H.

Kobat, D.

Kopf, D.

Koshiba, M.

Krok, P.

Lægsgaard, J.

Lederer, M.

Li, C.

Lien, C.-H.

Lim, H.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 microns,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Lim, J.

Limpert, J.

Liu, Y.

Lu, J.-Y.

Lyu, B.-H.

Martin, M. J.

Meyer, T.

Mosley, P. J.

Muir, A. C.

Nishimura, N.

Nishizawa, N.

Popp, J.

Rohwer, E. G.

Ruehl, A.

Saitoh, K.

Sasaoka, E.

Schaffer, C. B.

Schmitt, M.

Schwoerer, H.

Seitz, W.

Sharma, U.

Siegel, M.

Song, Y.

Tu, H.

Tünnermann, A.

Wadsworth, W. J.

Wang, A.

Wang, K.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 50–60 (2014).
[Crossref]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wise, F. W.

C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref] [PubMed]

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 microns,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Wong, A. W.

Xu, C.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 50–60 (2014).
[Crossref]

C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Xu, S.

Yang, Z.

Yao, Y.

Ye, J.

Zhang, J.

Zhang, Z.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Zong, W.

Electron. Lett. (1)

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 microns,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 50–60 (2014).
[Crossref]

Y. Liu, H. Tu, W. A. Benalcazar, E. J. Chaney, and S. A. Boppart, “Multimodal nonlinear microscopy by shaping a fiber supercontinuum from 900 to 1160 nm,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1209–1214 (2012).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref] [PubMed]

Opt. Express (11)

M.-C. Chan, C.-H. Lien, J.-Y. Lu, and B.-H. Lyu, “High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy,” Opt. Express 22(8), 9498–9507 (2014).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
[Crossref] [PubMed]

A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006).
[Crossref] [PubMed]

H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express 18(26), 27872–27884 (2010).
[Crossref] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[Crossref] [PubMed]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
[Crossref] [PubMed]

S. R. Domingue and R. A. Bartels, “Three-photon excitation source at 1250 nm generated in a dual zero dispersion wavelength nonlinear fiber,” Opt. Express 22(25), 30777–30785 (2014).
[Crossref] [PubMed]

Y. Yao and W. H. Knox, “Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers,” Opt. Express 21(22), 26612–26619 (2013).
[Crossref] [PubMed]

Y. Yao and W. H. Knox, “Speckle-free femtosecond red-green-blue (RGB) source from a fiber laser driven spectrally efficient two zero dispersion wavelength fiber source,” Opt. Express 23(1), 536–544 (2015).
[Crossref] [PubMed]

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
[Crossref] [PubMed]

Opt. Lett. (6)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Propagation of a 50-nJ, 200-fs pulse inside an optical fiber with a mode-field diameter of 6 µm. In the simulation, only SPM is considered. (a) Spectrum evolution versus fiber length. (b) Optical spectrum after propagating 6 cm in the fiber. The leftmost and rightmost spectral lobes are filtered, respectively. The corresponding optical pulse (blue curve) and the calculated TL pulse (red curve) from the filtered spectral are shown in (c) for the leftmost lobe and in (d) for the rightmost lobe. Insets: filtered optical spectra. TL: transform-limited.
Fig. 2
Fig. 2 Propagation of a 50-nJ, 200-fs pulse through 6-cm optical fiber with a mode-field diameter of 6 µm. (a) Optical spectra for simulations including SPM and SS (blue curve) or including SPM, SS, and SRS (red curve). Inset: optical pulse at the fiber output when the simulation includes SPM, SS, and SRS. (b) Leftmost and rightmost spectral lobes are filtered, respectively. The corresponding optical pulse (blue curve) and the calculated TL pulse (red curve) from the filtered spectral are shown in (c) for the leftmost lobe and in (d) for the rightmost lobe. Insets: filtered optical spectra. TL: transform-limited.
Fig. 3
Fig. 3 Propagation of a 50-nJ, 200-fs pulse through 6-cm optical fiber with a mode-field diameter of 6 µm. (a) Optical spectra for simulations including SPM, SS, SRS, and GVD (5 fs2/mm). Inset: close-up of the spectral range from 600 to 800 nm. (b) Corresponding optical pulse. Inset: close-up of the pulse envelope in the temporal range of 250-300 fs. Leftmost and rightmost spectral lobes are filtered, respectively. The corresponding optical pulse (blue curve) and the calculated TL pulse (red curve) from the filtered spectral are shown in (c) for the leftmost lobe and in (d) for the rightmost lobe. Insets: filtered optical spectra. TL: transform-limited.
Fig. 4
Fig. 4 Effect of pulse energy and fiber length on spectral broadening of a 200-fs pulse propagating in an optical fiber with 6-µm mode-field diameter. Simulation includes SPM, SS, SRS, and GVD (15 fs2/mm). (a) Optical spectra obtained with different simulation parameters. Blue curve: 50-nJ pulse, 6-cm fiber; Red curve: 150-nJ pulse, 2-cm fiber. (b) Corresponding optical pulses in the time domain.
Fig. 5
Fig. 5 (a) Optical spectrum of the home-built Yb-fiber laser system. Inset: measured autocorrelation trace of the laser pulse train. (b) Dispersion curves for PCF NL-1050-ZERO-2 (red), NL-1050-NEG-1 (blue), and single-mode fiber HI1060 (green).
Fig. 6
Fig. 6 Output spectra from PCF NL-1050-ZERO-2 (blue solid curves) and NL-1050-NEG-1 (red dotted curves) with different input pulse energies of 1 nJ (Fig. 6(a)), 3 nJ (Fig. 6(b)), 5 nJ (Fig. 6(c)), and 7 nJ (Fig. 6(d)). Both fibers are 80 mm long.
Fig. 7
Fig. 7 Output spectra from PCF NL-1050-ZERO-2 at different fiber lengths (80 mm versus 40 mm) and input pulse energies. Blue solid curves and red dotted curves represent optical spectral generated from 80-mm PCF and 40-mm PCF, respectively. We adjust the input pulse energies such that the spectra generated by both fibers have their rightmost spectral lobes peaking at 1.07 µm (Fig. (a)), 1.12 µm (Fig. (b)), 1.17 µm (Fig. (c)), 1.185 µm (Fig. (d)), and 1.20 µm (Fig. (e)). Coupled pulse energies for each fiber are presented in each figure as well.
Fig. 8
Fig. 8 (left column) Filtered optical spectra from 20-mm PCF NL-1050-ZERO-2; their peak wavelength and average power are labeled in the figure. (right column) Measured autocorrelation traces (red solid curves) and autocorrelation traces calculated from the transform-limited pulses allowed by the filtered spectra (black dotted curves).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A z +( n=2 β n i n1 n! n T n )A=iγ( 1+ i ω 0 T )( A(z,T) + R(t') | A(z,Tt') | 2 dt' ),
R(t)=(1 f R )δ(t)+ f R ( τ 1 2 + τ 2 2 )/( τ 1 τ 2 2 )exp(t/ τ 2 )sin(t/ τ 1 ),
A z =iγ | A | 2 A.

Metrics