Abstract

Highly luminescent ZnO:Ga-polystyrene composite (ZnO:Ga-PS) with ultrafast subnanosecond decay was prepared by homogeneous embedding the ZnO:Ga scintillating powder into the scintillating organic matrix. The powder was prepared by photo-induced precipitation with subsequent calcination in air and Ar/H2 atmospheres. The composite was subsequently prepared by mixing the ZnO:Ga powder into the polystyrene (10 wt% fraction of ZnO:Ga) and press compacted to the 1 mm thick pellet. Luminescent spectral and kinetic characteristics of ZnO:Ga were preserved. Radioluminescence spectra corresponded purely to the ZnO:Ga scintillating phase and emission of polystyrene at 300-350 nm was absent. These features suggest the presence of non-radiative energy transfer from polystyrene host towards the ZnO:Ga scintillating phase which is confirmed by the measurement of X-ray excited scintillation decay with picosecond time resolution. It shows an ultrafast rise time below the time resolution of the experiment (18 ps) and a single-exponential decay with the decay time around 500 ps.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast Zn(Cd,Mg)O:Ga nanoscintillators with luminescence tunable by band gap modulation

Lenka Procházková, Václav Čuba, Alena Beitlerová, Vítězslav Jarý, Sergey Omelkov, and Martin Nikl
Opt. Express 26(22) 29482-29494 (2018)

Highly efficient Na5Gd9F32:Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging

WeiPing Chen, JiangKun Cao, FangFang Hu, RongFei Wei, LiPing Chen, XinYuan Sun, and Hai Guo
Opt. Mater. Express 8(1) 41-49 (2018)

Development of ZnO-based nanorod arrays as scintillator layer for ultrafast and high-spatial-resolution X-ray imaging system

Qianli Li, Xiaolin Liu, Mu Gu, Yahua Hu, Fengrui Li, Si Liu, Qiang Wu, Zhixiang Sun, Juannan Zhang, Shiming Huang, Zhijun Zhang, and Jingtai Zhao
Opt. Express 26(24) 31290-31298 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. A. L. Roy, A. B. Djurišić, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83(1), 141 (2003).
    [Crossref]
  2. J. Wilkinson, K. B. Ucer, and R. T. Williams, “Picosecond excitonic luminescence in ZnO and other wide-gap semiconductors,” Radiat. Meas. 38(4–6), 501–505 (2004).
    [Crossref]
  3. V. A. Demidenko, E. I. Gorokhova, I. V. Khodyuk, O. A. Khristich, S. B. Mikhrin, and P. A. Rodnyi, “Scintillation properties of ceramics based on zinc oxide,” Radiat. Meas. 42(4–5), 549–552 (2007).
    [Crossref]
  4. R. Li, G. R. Fern, R. Withnall, J. Silver, P. Bishop, and B. Thiebaut, “Incorporation of luminescent zinc oxide nanoparticles into polystyrene,” MRS Proc. 1509, 1509 (2013).
  5. J. J. Huang, Y. B. Ye, Z. Q. Lei, X. J. Ye, M. Z. Rong, and M. Q. Zhang, “Highly luminescent and transparent ZnO quantum dots-epoxy composite used for white light emitting diodes,” Phys. Chem. Chem. Phys. 16(12), 5480–5484 (2014).
    [Crossref] [PubMed]
  6. M. Cuba and G. Muralidharan, “Enhanced luminescence properties of hybrid Alq3/ZnO (organic/inorganic) composite films,” J. Lumin. 156, 1–7 (2014).
    [Crossref]
  7. M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/poly(ethyleneglycol) nanocomposites prepared using an in-situ method,” Adv. Funct. Mater. 13(10), 800–804 (2003).
    [Crossref]
  8. G. Kiliani, R. Schneider, D. Litvinov, D. Gerthsen, M. Fonin, U. Rüdiger, A. Leitenstorfer, and R. Bratschitsch, “Ultraviolet photoluminescence of ZnO quantum dots sputtered at room-temperature,” Opt. Express 19(2), 1641–1647 (2011).
    [Crossref] [PubMed]
  9. Y. Kumar, M. Herrera, F. Singh, S. F. Olive-Méndez, D. Kanjilal, S. Kumar, and V. Agarwal, “Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite,” Mater. Sci. Eng. B 177(16), 1476–1481 (2012).
    [Crossref]
  10. V. O. Pankratov, A. L. Nylandsted, and B. N. Bech, “ZnO nanocrystals/SiO2 multilayer structures fabricated by RF-magnetron sputtering,” Physica B 404(23–24), 4827–4830 (2009).
    [Crossref]
  11. P. Thiyagarajan, M. Kottaisamy, N. Rama, and M. S. Ramachandra Rao, “White light emitting diode synthesis using near ultraviolet light excitation on Zinc oxide–Silicon dioxide nanocomposite,” Scr. Mater. 59(7), 722–725 (2008).
    [Crossref]
  12. L. Procházková, T. Gbur, V. Čuba, V. Jarý, and M. Nikl, “Fabrication of highly efficient ZnO nanoscintillators,” Opt. Mater. 47, 67–71 (2015).
    [Crossref]
  13. E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber, “Development of ZnO:Ga as an ultra-fast scintillator,” Nucl. Instrum. Meth. A 601(3), 358–363 (2009).
    [Crossref]
  14. Calculation was performed using the data available at http://physics.nist.gov/PhysRefData/XrayMassCoeff/
  15. K. E. Bower, Y. A. Barbanel, Y. G. Shreter, and G. W. Bohnert, Polymers, Phosphors and Voltaics for Radioisotope Microbatteries (CRC Press, 2002).
  16. J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
    [Crossref] [PubMed]
  17. P. Lecoq, “Fast Timing with Scintillators: Towards 10 ps Time Resolution? Invited talk at SCINT2015 conference, June 8-12, 2015, Berkeley, USA
  18. A.-L. Bulin, A. Vasil’ev, A. Belsky, D. Amans, G. Ledoux, and C. Dujardin, “Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect,” Nanoscale 7(13), 5744–5751 (2015).
    [Crossref] [PubMed]
  19. A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
    [Crossref]
  20. L.-Y. Chen, J.-Q. Xu, H. Choi, H. Konishi, S. Jin, and X.-Ch. Li, “Rapid control of phase growth by nanoparticles,” Nat. Commun. 5, 3879 (2014).
    [PubMed]

2015 (2)

L. Procházková, T. Gbur, V. Čuba, V. Jarý, and M. Nikl, “Fabrication of highly efficient ZnO nanoscintillators,” Opt. Mater. 47, 67–71 (2015).
[Crossref]

A.-L. Bulin, A. Vasil’ev, A. Belsky, D. Amans, G. Ledoux, and C. Dujardin, “Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect,” Nanoscale 7(13), 5744–5751 (2015).
[Crossref] [PubMed]

2014 (5)

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

L.-Y. Chen, J.-Q. Xu, H. Choi, H. Konishi, S. Jin, and X.-Ch. Li, “Rapid control of phase growth by nanoparticles,” Nat. Commun. 5, 3879 (2014).
[PubMed]

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

J. J. Huang, Y. B. Ye, Z. Q. Lei, X. J. Ye, M. Z. Rong, and M. Q. Zhang, “Highly luminescent and transparent ZnO quantum dots-epoxy composite used for white light emitting diodes,” Phys. Chem. Chem. Phys. 16(12), 5480–5484 (2014).
[Crossref] [PubMed]

M. Cuba and G. Muralidharan, “Enhanced luminescence properties of hybrid Alq3/ZnO (organic/inorganic) composite films,” J. Lumin. 156, 1–7 (2014).
[Crossref]

2013 (1)

R. Li, G. R. Fern, R. Withnall, J. Silver, P. Bishop, and B. Thiebaut, “Incorporation of luminescent zinc oxide nanoparticles into polystyrene,” MRS Proc. 1509, 1509 (2013).

2012 (1)

Y. Kumar, M. Herrera, F. Singh, S. F. Olive-Méndez, D. Kanjilal, S. Kumar, and V. Agarwal, “Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite,” Mater. Sci. Eng. B 177(16), 1476–1481 (2012).
[Crossref]

2011 (1)

2009 (2)

E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber, “Development of ZnO:Ga as an ultra-fast scintillator,” Nucl. Instrum. Meth. A 601(3), 358–363 (2009).
[Crossref]

V. O. Pankratov, A. L. Nylandsted, and B. N. Bech, “ZnO nanocrystals/SiO2 multilayer structures fabricated by RF-magnetron sputtering,” Physica B 404(23–24), 4827–4830 (2009).
[Crossref]

2008 (1)

P. Thiyagarajan, M. Kottaisamy, N. Rama, and M. S. Ramachandra Rao, “White light emitting diode synthesis using near ultraviolet light excitation on Zinc oxide–Silicon dioxide nanocomposite,” Scr. Mater. 59(7), 722–725 (2008).
[Crossref]

2007 (1)

V. A. Demidenko, E. I. Gorokhova, I. V. Khodyuk, O. A. Khristich, S. B. Mikhrin, and P. A. Rodnyi, “Scintillation properties of ceramics based on zinc oxide,” Radiat. Meas. 42(4–5), 549–552 (2007).
[Crossref]

2004 (1)

J. Wilkinson, K. B. Ucer, and R. T. Williams, “Picosecond excitonic luminescence in ZnO and other wide-gap semiconductors,” Radiat. Meas. 38(4–6), 501–505 (2004).
[Crossref]

2003 (2)

V. A. L. Roy, A. B. Djurišić, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83(1), 141 (2003).
[Crossref]

M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/poly(ethyleneglycol) nanocomposites prepared using an in-situ method,” Adv. Funct. Mater. 13(10), 800–804 (2003).
[Crossref]

Abdullah, M.

M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/poly(ethyleneglycol) nanocomposites prepared using an in-situ method,” Adv. Funct. Mater. 13(10), 800–804 (2003).
[Crossref]

Agarwal, V.

Y. Kumar, M. Herrera, F. Singh, S. F. Olive-Méndez, D. Kanjilal, S. Kumar, and V. Agarwal, “Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite,” Mater. Sci. Eng. B 177(16), 1476–1481 (2012).
[Crossref]

Amans, D.

A.-L. Bulin, A. Vasil’ev, A. Belsky, D. Amans, G. Ledoux, and C. Dujardin, “Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect,” Nanoscale 7(13), 5744–5751 (2015).
[Crossref] [PubMed]

Bech, B. N.

V. O. Pankratov, A. L. Nylandsted, and B. N. Bech, “ZnO nanocrystals/SiO2 multilayer structures fabricated by RF-magnetron sputtering,” Physica B 404(23–24), 4827–4830 (2009).
[Crossref]

Belsky, A.

A.-L. Bulin, A. Vasil’ev, A. Belsky, D. Amans, G. Ledoux, and C. Dujardin, “Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect,” Nanoscale 7(13), 5744–5751 (2015).
[Crossref] [PubMed]

Bishop, P.

R. Li, G. R. Fern, R. Withnall, J. Silver, P. Bishop, and B. Thiebaut, “Incorporation of luminescent zinc oxide nanoparticles into polystyrene,” MRS Proc. 1509, 1509 (2013).

Bourret-Courchesne, E. D.

E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber, “Development of ZnO:Ga as an ultra-fast scintillator,” Nucl. Instrum. Meth. A 601(3), 358–363 (2009).
[Crossref]

Bratschitsch, R.

Bulin, A.-L.

A.-L. Bulin, A. Vasil’ev, A. Belsky, D. Amans, G. Ledoux, and C. Dujardin, “Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect,” Nanoscale 7(13), 5744–5751 (2015).
[Crossref] [PubMed]

Chan, W. K.

V. A. L. Roy, A. B. Djurišić, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83(1), 141 (2003).
[Crossref]

Chen, L.-Y.

L.-Y. Chen, J.-Q. Xu, H. Choi, H. Konishi, S. Jin, and X.-Ch. Li, “Rapid control of phase growth by nanoparticles,” Nat. Commun. 5, 3879 (2014).
[PubMed]

Choi, H.

L.-Y. Chen, J.-Q. Xu, H. Choi, H. Konishi, S. Jin, and X.-Ch. Li, “Rapid control of phase growth by nanoparticles,” Nat. Commun. 5, 3879 (2014).
[PubMed]

Christodoulou, S.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Cingolani, R.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Cuba, M.

M. Cuba and G. Muralidharan, “Enhanced luminescence properties of hybrid Alq3/ZnO (organic/inorganic) composite films,” J. Lumin. 156, 1–7 (2014).
[Crossref]

Cuba, V.

L. Procházková, T. Gbur, V. Čuba, V. Jarý, and M. Nikl, “Fabrication of highly efficient ZnO nanoscintillators,” Opt. Mater. 47, 67–71 (2015).
[Crossref]

Demidenko, V. A.

V. A. Demidenko, E. I. Gorokhova, I. V. Khodyuk, O. A. Khristich, S. B. Mikhrin, and P. A. Rodnyi, “Scintillation properties of ceramics based on zinc oxide,” Radiat. Meas. 42(4–5), 549–552 (2007).
[Crossref]

Derenzo, S. E.

E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber, “Development of ZnO:Ga as an ultra-fast scintillator,” Nucl. Instrum. Meth. A 601(3), 358–363 (2009).
[Crossref]

Di Stasio, F.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Djurišic, A. B.

V. A. L. Roy, A. B. Djurišić, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83(1), 141 (2003).
[Crossref]

Dujardin, C.

A.-L. Bulin, A. Vasil’ev, A. Belsky, D. Amans, G. Ledoux, and C. Dujardin, “Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect,” Nanoscale 7(13), 5744–5751 (2015).
[Crossref] [PubMed]

Dzhagan, V. M.

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Fern, G. R.

R. Li, G. R. Fern, R. Withnall, J. Silver, P. Bishop, and B. Thiebaut, “Incorporation of luminescent zinc oxide nanoparticles into polystyrene,” MRS Proc. 1509, 1509 (2013).

Fonin, M.

Gao, J.

V. A. L. Roy, A. B. Djurišić, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83(1), 141 (2003).
[Crossref]

Gbur, T.

L. Procházková, T. Gbur, V. Čuba, V. Jarý, and M. Nikl, “Fabrication of highly efficient ZnO nanoscintillators,” Opt. Mater. 47, 67–71 (2015).
[Crossref]

Gerthsen, D.

Gorokhova, E. I.

V. A. Demidenko, E. I. Gorokhova, I. V. Khodyuk, O. A. Khristich, S. B. Mikhrin, and P. A. Rodnyi, “Scintillation properties of ceramics based on zinc oxide,” Radiat. Meas. 42(4–5), 549–552 (2007).
[Crossref]

Grim, J. Q.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Herrera, M.

Y. Kumar, M. Herrera, F. Singh, S. F. Olive-Méndez, D. Kanjilal, S. Kumar, and V. Agarwal, “Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite,” Mater. Sci. Eng. B 177(16), 1476–1481 (2012).
[Crossref]

Huang, J. J.

J. J. Huang, Y. B. Ye, Z. Q. Lei, X. J. Ye, M. Z. Rong, and M. Q. Zhang, “Highly luminescent and transparent ZnO quantum dots-epoxy composite used for white light emitting diodes,” Phys. Chem. Chem. Phys. 16(12), 5480–5484 (2014).
[Crossref] [PubMed]

Jarý, V.

L. Procházková, T. Gbur, V. Čuba, V. Jarý, and M. Nikl, “Fabrication of highly efficient ZnO nanoscintillators,” Opt. Mater. 47, 67–71 (2015).
[Crossref]

Jin, S.

L.-Y. Chen, J.-Q. Xu, H. Choi, H. Konishi, S. Jin, and X.-Ch. Li, “Rapid control of phase growth by nanoparticles,” Nat. Commun. 5, 3879 (2014).
[PubMed]

Kanjilal, D.

Y. Kumar, M. Herrera, F. Singh, S. F. Olive-Méndez, D. Kanjilal, S. Kumar, and V. Agarwal, “Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite,” Mater. Sci. Eng. B 177(16), 1476–1481 (2012).
[Crossref]

Khodyuk, I. V.

V. A. Demidenko, E. I. Gorokhova, I. V. Khodyuk, O. A. Khristich, S. B. Mikhrin, and P. A. Rodnyi, “Scintillation properties of ceramics based on zinc oxide,” Radiat. Meas. 42(4–5), 549–552 (2007).
[Crossref]

Khristich, O. A.

V. A. Demidenko, E. I. Gorokhova, I. V. Khodyuk, O. A. Khristich, S. B. Mikhrin, and P. A. Rodnyi, “Scintillation properties of ceramics based on zinc oxide,” Radiat. Meas. 42(4–5), 549–552 (2007).
[Crossref]

Kiliani, G.

Konishi, H.

L.-Y. Chen, J.-Q. Xu, H. Choi, H. Konishi, S. Jin, and X.-Ch. Li, “Rapid control of phase growth by nanoparticles,” Nat. Commun. 5, 3879 (2014).
[PubMed]

Kottaisamy, M.

P. Thiyagarajan, M. Kottaisamy, N. Rama, and M. S. Ramachandra Rao, “White light emitting diode synthesis using near ultraviolet light excitation on Zinc oxide–Silicon dioxide nanocomposite,” Scr. Mater. 59(7), 722–725 (2008).
[Crossref]

Krahne, R.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Kuchmiy, S. Ya.

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Kumar, S.

Y. Kumar, M. Herrera, F. Singh, S. F. Olive-Méndez, D. Kanjilal, S. Kumar, and V. Agarwal, “Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite,” Mater. Sci. Eng. B 177(16), 1476–1481 (2012).
[Crossref]

Kumar, Y.

Y. Kumar, M. Herrera, F. Singh, S. F. Olive-Méndez, D. Kanjilal, S. Kumar, and V. Agarwal, “Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite,” Mater. Sci. Eng. B 177(16), 1476–1481 (2012).
[Crossref]

Ledoux, G.

A.-L. Bulin, A. Vasil’ev, A. Belsky, D. Amans, G. Ledoux, and C. Dujardin, “Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect,” Nanoscale 7(13), 5744–5751 (2015).
[Crossref] [PubMed]

Lei, Z. Q.

J. J. Huang, Y. B. Ye, Z. Q. Lei, X. J. Ye, M. Z. Rong, and M. Q. Zhang, “Highly luminescent and transparent ZnO quantum dots-epoxy composite used for white light emitting diodes,” Phys. Chem. Chem. Phys. 16(12), 5480–5484 (2014).
[Crossref] [PubMed]

Leitenstorfer, A.

Li, R.

R. Li, G. R. Fern, R. Withnall, J. Silver, P. Bishop, and B. Thiebaut, “Incorporation of luminescent zinc oxide nanoparticles into polystyrene,” MRS Proc. 1509, 1509 (2013).

Li, X.-Ch.

L.-Y. Chen, J.-Q. Xu, H. Choi, H. Konishi, S. Jin, and X.-Ch. Li, “Rapid control of phase growth by nanoparticles,” Nat. Commun. 5, 3879 (2014).
[PubMed]

Litvinov, D.

Lui, H. F.

V. A. L. Roy, A. B. Djurišić, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83(1), 141 (2003).
[Crossref]

Manna, L.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Mikhrin, S. B.

V. A. Demidenko, E. I. Gorokhova, I. V. Khodyuk, O. A. Khristich, S. B. Mikhrin, and P. A. Rodnyi, “Scintillation properties of ceramics based on zinc oxide,” Radiat. Meas. 42(4–5), 549–552 (2007).
[Crossref]

Milekhin, A. G.

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Moreels, I.

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Morimoto, T.

M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/poly(ethyleneglycol) nanocomposites prepared using an in-situ method,” Adv. Funct. Mater. 13(10), 800–804 (2003).
[Crossref]

Muralidharan, G.

M. Cuba and G. Muralidharan, “Enhanced luminescence properties of hybrid Alq3/ZnO (organic/inorganic) composite films,” J. Lumin. 156, 1–7 (2014).
[Crossref]

Nikl, M.

L. Procházková, T. Gbur, V. Čuba, V. Jarý, and M. Nikl, “Fabrication of highly efficient ZnO nanoscintillators,” Opt. Mater. 47, 67–71 (2015).
[Crossref]

Nylandsted, A. L.

V. O. Pankratov, A. L. Nylandsted, and B. N. Bech, “ZnO nanocrystals/SiO2 multilayer structures fabricated by RF-magnetron sputtering,” Physica B 404(23–24), 4827–4830 (2009).
[Crossref]

Okuyama, K.

M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/poly(ethyleneglycol) nanocomposites prepared using an in-situ method,” Adv. Funct. Mater. 13(10), 800–804 (2003).
[Crossref]

Olive-Méndez, S. F.

Y. Kumar, M. Herrera, F. Singh, S. F. Olive-Méndez, D. Kanjilal, S. Kumar, and V. Agarwal, “Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite,” Mater. Sci. Eng. B 177(16), 1476–1481 (2012).
[Crossref]

Panasiuk, Ya. V.

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Pankratov, V. O.

V. O. Pankratov, A. L. Nylandsted, and B. N. Bech, “ZnO nanocrystals/SiO2 multilayer structures fabricated by RF-magnetron sputtering,” Physica B 404(23–24), 4827–4830 (2009).
[Crossref]

Plyusnin, V. F.

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Procházková, L.

L. Procházková, T. Gbur, V. Čuba, V. Jarý, and M. Nikl, “Fabrication of highly efficient ZnO nanoscintillators,” Opt. Mater. 47, 67–71 (2015).
[Crossref]

Raevskaya, A. E.

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Rama, N.

P. Thiyagarajan, M. Kottaisamy, N. Rama, and M. S. Ramachandra Rao, “White light emitting diode synthesis using near ultraviolet light excitation on Zinc oxide–Silicon dioxide nanocomposite,” Scr. Mater. 59(7), 722–725 (2008).
[Crossref]

Ramachandra Rao, M. S.

P. Thiyagarajan, M. Kottaisamy, N. Rama, and M. S. Ramachandra Rao, “White light emitting diode synthesis using near ultraviolet light excitation on Zinc oxide–Silicon dioxide nanocomposite,” Scr. Mater. 59(7), 722–725 (2008).
[Crossref]

Rodnyi, P. A.

V. A. Demidenko, E. I. Gorokhova, I. V. Khodyuk, O. A. Khristich, S. B. Mikhrin, and P. A. Rodnyi, “Scintillation properties of ceramics based on zinc oxide,” Radiat. Meas. 42(4–5), 549–552 (2007).
[Crossref]

Rodyakina, E. E.

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Rong, M. Z.

J. J. Huang, Y. B. Ye, Z. Q. Lei, X. J. Ye, M. Z. Rong, and M. Q. Zhang, “Highly luminescent and transparent ZnO quantum dots-epoxy composite used for white light emitting diodes,” Phys. Chem. Chem. Phys. 16(12), 5480–5484 (2014).
[Crossref] [PubMed]

Roy, V. A. L.

V. A. L. Roy, A. B. Djurišić, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83(1), 141 (2003).
[Crossref]

Rüdiger, U.

Schneider, R.

Silver, J.

R. Li, G. R. Fern, R. Withnall, J. Silver, P. Bishop, and B. Thiebaut, “Incorporation of luminescent zinc oxide nanoparticles into polystyrene,” MRS Proc. 1509, 1509 (2013).

Singh, F.

Y. Kumar, M. Herrera, F. Singh, S. F. Olive-Méndez, D. Kanjilal, S. Kumar, and V. Agarwal, “Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite,” Mater. Sci. Eng. B 177(16), 1476–1481 (2012).
[Crossref]

Stroyuk, O. L.

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Surya, C.

V. A. L. Roy, A. B. Djurišić, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83(1), 141 (2003).
[Crossref]

Sveshnikova, L. A.

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Thiebaut, B.

R. Li, G. R. Fern, R. Withnall, J. Silver, P. Bishop, and B. Thiebaut, “Incorporation of luminescent zinc oxide nanoparticles into polystyrene,” MRS Proc. 1509, 1509 (2013).

Thiyagarajan, P.

P. Thiyagarajan, M. Kottaisamy, N. Rama, and M. S. Ramachandra Rao, “White light emitting diode synthesis using near ultraviolet light excitation on Zinc oxide–Silicon dioxide nanocomposite,” Scr. Mater. 59(7), 722–725 (2008).
[Crossref]

Ucer, K. B.

J. Wilkinson, K. B. Ucer, and R. T. Williams, “Picosecond excitonic luminescence in ZnO and other wide-gap semiconductors,” Radiat. Meas. 38(4–6), 501–505 (2004).
[Crossref]

Vasil’ev, A.

A.-L. Bulin, A. Vasil’ev, A. Belsky, D. Amans, G. Ledoux, and C. Dujardin, “Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect,” Nanoscale 7(13), 5744–5751 (2015).
[Crossref] [PubMed]

Weber, M. J.

E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber, “Development of ZnO:Ga as an ultra-fast scintillator,” Nucl. Instrum. Meth. A 601(3), 358–363 (2009).
[Crossref]

Wilkinson, J.

J. Wilkinson, K. B. Ucer, and R. T. Williams, “Picosecond excitonic luminescence in ZnO and other wide-gap semiconductors,” Radiat. Meas. 38(4–6), 501–505 (2004).
[Crossref]

Williams, R. T.

J. Wilkinson, K. B. Ucer, and R. T. Williams, “Picosecond excitonic luminescence in ZnO and other wide-gap semiconductors,” Radiat. Meas. 38(4–6), 501–505 (2004).
[Crossref]

Withnall, R.

R. Li, G. R. Fern, R. Withnall, J. Silver, P. Bishop, and B. Thiebaut, “Incorporation of luminescent zinc oxide nanoparticles into polystyrene,” MRS Proc. 1509, 1509 (2013).

Xu, J.-Q.

L.-Y. Chen, J.-Q. Xu, H. Choi, H. Konishi, S. Jin, and X.-Ch. Li, “Rapid control of phase growth by nanoparticles,” Nat. Commun. 5, 3879 (2014).
[PubMed]

Ye, X. J.

J. J. Huang, Y. B. Ye, Z. Q. Lei, X. J. Ye, M. Z. Rong, and M. Q. Zhang, “Highly luminescent and transparent ZnO quantum dots-epoxy composite used for white light emitting diodes,” Phys. Chem. Chem. Phys. 16(12), 5480–5484 (2014).
[Crossref] [PubMed]

Ye, Y. B.

J. J. Huang, Y. B. Ye, Z. Q. Lei, X. J. Ye, M. Z. Rong, and M. Q. Zhang, “Highly luminescent and transparent ZnO quantum dots-epoxy composite used for white light emitting diodes,” Phys. Chem. Chem. Phys. 16(12), 5480–5484 (2014).
[Crossref] [PubMed]

Yeryukov, N. A.

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Zahn, D. R. T.

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Zhang, M. Q.

J. J. Huang, Y. B. Ye, Z. Q. Lei, X. J. Ye, M. Z. Rong, and M. Q. Zhang, “Highly luminescent and transparent ZnO quantum dots-epoxy composite used for white light emitting diodes,” Phys. Chem. Chem. Phys. 16(12), 5480–5484 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/poly(ethyleneglycol) nanocomposites prepared using an in-situ method,” Adv. Funct. Mater. 13(10), 800–804 (2003).
[Crossref]

Appl. Phys. Lett. (1)

V. A. L. Roy, A. B. Djurišić, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83(1), 141 (2003).
[Crossref]

J. Lumin. (1)

M. Cuba and G. Muralidharan, “Enhanced luminescence properties of hybrid Alq3/ZnO (organic/inorganic) composite films,” J. Lumin. 156, 1–7 (2014).
[Crossref]

Mater. Sci. Eng. B (1)

Y. Kumar, M. Herrera, F. Singh, S. F. Olive-Méndez, D. Kanjilal, S. Kumar, and V. Agarwal, “Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite,” Mater. Sci. Eng. B 177(16), 1476–1481 (2012).
[Crossref]

MRS Proc. (1)

R. Li, G. R. Fern, R. Withnall, J. Silver, P. Bishop, and B. Thiebaut, “Incorporation of luminescent zinc oxide nanoparticles into polystyrene,” MRS Proc. 1509, 1509 (2013).

Nanoscale (1)

A.-L. Bulin, A. Vasil’ev, A. Belsky, D. Amans, G. Ledoux, and C. Dujardin, “Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect,” Nanoscale 7(13), 5744–5751 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

L.-Y. Chen, J.-Q. Xu, H. Choi, H. Konishi, S. Jin, and X.-Ch. Li, “Rapid control of phase growth by nanoparticles,” Nat. Commun. 5, 3879 (2014).
[PubMed]

Nat. Nanotechnol. (1)

J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, and I. Moreels, “Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells,” Nat. Nanotechnol. 9(11), 891–895 (2014).
[Crossref] [PubMed]

Nucl. Instrum. Meth. A (1)

E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber, “Development of ZnO:Ga as an ultra-fast scintillator,” Nucl. Instrum. Meth. A 601(3), 358–363 (2009).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

L. Procházková, T. Gbur, V. Čuba, V. Jarý, and M. Nikl, “Fabrication of highly efficient ZnO nanoscintillators,” Opt. Mater. 47, 67–71 (2015).
[Crossref]

Phys. Chem. Chem. Phys. (1)

J. J. Huang, Y. B. Ye, Z. Q. Lei, X. J. Ye, M. Z. Rong, and M. Q. Zhang, “Highly luminescent and transparent ZnO quantum dots-epoxy composite used for white light emitting diodes,” Phys. Chem. Chem. Phys. 16(12), 5480–5484 (2014).
[Crossref] [PubMed]

Physica B (1)

V. O. Pankratov, A. L. Nylandsted, and B. N. Bech, “ZnO nanocrystals/SiO2 multilayer structures fabricated by RF-magnetron sputtering,” Physica B 404(23–24), 4827–4830 (2009).
[Crossref]

Radiat. Meas. (2)

J. Wilkinson, K. B. Ucer, and R. T. Williams, “Picosecond excitonic luminescence in ZnO and other wide-gap semiconductors,” Radiat. Meas. 38(4–6), 501–505 (2004).
[Crossref]

V. A. Demidenko, E. I. Gorokhova, I. V. Khodyuk, O. A. Khristich, S. B. Mikhrin, and P. A. Rodnyi, “Scintillation properties of ceramics based on zinc oxide,” Radiat. Meas. 42(4–5), 549–552 (2007).
[Crossref]

RSC Advances (1)

A. E. Raevskaya, Ya. V. Panasiuk, O. L. Stroyuk, S. Ya. Kuchmiy, V. M. Dzhagan, A. G. Milekhin, N. A. Yeryukov, L. A. Sveshnikova, E. E. Rodyakina, V. F. Plyusnin, and D. R. T. Zahn, “Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores,” RSC Advances 4(108), 63393–63401 (2014).
[Crossref]

Scr. Mater. (1)

P. Thiyagarajan, M. Kottaisamy, N. Rama, and M. S. Ramachandra Rao, “White light emitting diode synthesis using near ultraviolet light excitation on Zinc oxide–Silicon dioxide nanocomposite,” Scr. Mater. 59(7), 722–725 (2008).
[Crossref]

Other (3)

P. Lecoq, “Fast Timing with Scintillators: Towards 10 ps Time Resolution? Invited talk at SCINT2015 conference, June 8-12, 2015, Berkeley, USA

Calculation was performed using the data available at http://physics.nist.gov/PhysRefData/XrayMassCoeff/

K. E. Bower, Y. A. Barbanel, Y. G. Shreter, and G. W. Bohnert, Polymers, Phosphors and Voltaics for Radioisotope Microbatteries (CRC Press, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Image of (a) 1 mm and (b) 0.17 mm thick ZnO:Ga-PS composite with the 10 wt% fraction of ZnO:Ga.
Fig. 2
Fig. 2 A - RL spectra of ZnO:Ga free standing powder and BGO reference scintillator; B PL decay of ZnO:Ga free standing powder. Instrumental response is also shown. Solid line is a convolution of instrumental response and the function I(t) displayed in the figure.
Fig. 3
Fig. 3 A – Absorption, photoluminescence excitation (PLE) and radioluminescence (RL) spectra of polystyrene matrix (with no ZnO:Ga powder added). In the inset, absolute comparison of RL spectra of PS and BGO single crystal plates of the same thickness; B – PL decay of polystyrene matrix (with no ZnO:Ga powder added). Instrumental response is also shown. Solid line is a convolution of instrumental response and the function I(t) displayed in the figure.
Fig. 4
Fig. 4 A – RL spectra of ZnO:Ga-PS at room temperature, absolute comparison of the nanocomposite to the single crystalline powder BGO reference scintillator; B – absorption and normalized RL spectra of the ZnO:Ga-PS composite.
Fig. 5
Fig. 5 Non-radiative energy transfer between polystyrene matrix and ZnO:Ga
Fig. 6
Fig. 6 A – PL decay at the excitation by the nanoLED source, ex = 339 nm. B – PL decay at the excitation by the nanoLED source, ex = 281 nm. Instrumental response is also shown. Solid line is a convolution of instrumental response and the function I(t) in the figure.
Fig. 7
Fig. 7 Spectrally unresolved scintillation decay of PS-ZnO:Ga composite under the picosecond X-ray pulse excitation, U = 40 kV. Instrumental response (IRF) is also shown in the figure. Lines (1), (2) and (3) are convolutions of IRF and functions I(t) displayed in the figure, for details, see the text.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d N 1 /dt= k 1 N 1 d N 2 /dt= k 2 N 2
d N 1 /dt= k 1 N 1 + k 2 N 2 f dN 2 /dt= k 2 N 2 (1f) k 2 N 2 f= k 2 N 2
I( t )=4.× exp(t/0.5 ns)+exp(t/11.8 ns)

Metrics