Abstract

The operation of a cascaded second-order mode-locked Nd:YVO4 laser has been investigated considering it as a soft-aperture Kerr lens type and using complex beam parameters. A self consistent complex beam propagation method is used to incorporate the effect of cascaded Kerr nonlinearity on radially varying gain aperturing. The analysis deduces a stable pulsewidth of ~9.5 ps which agrees well with the experimental value of 10.3 ps.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual colour cw mode-locking through soft aperture based on second order cascaded nonlinearity

Sourabh Mukhopadhyay, Shyamal Mondal, Satya Pratap Singh, Aditya Date, Kamal Hussain, and Prasanta Kumar Datta
Opt. Express 21(1) 454-462 (2013)

All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers

Alexander Klenner and Ursula Keller
Opt. Express 23(7) 8532-8544 (2015)

Observation of strong cascaded Kerr-lens dynamics in an optimally-coupled cw intracavity frequency-doubled Nd:YLF ring laser

Jean-Jacques Zondy, Fabiola A. Camargo, Thomas Zanon, Valentin Petrov, and Niklaus U. Wetter
Opt. Express 18(5) 4796-4815 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. Brabec, C. Spielmann, P. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17, 1292–1294 (1992).
    [Crossref] [PubMed]
  2. J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36, 4008–4010 (2011).
    [Crossref] [PubMed]
  3. J. D. Kafka, M. L. Watts, and J.-W. Pieterse, “Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti: sapphire laser,” IEEE J. Quantum Electron. 28, 2151–2162 (1992).
    [Crossref]
  4. Y.-X. Fan, J.-L. He, Y.-G. Wang, S. Liu, H.-T. Wang, and X.-Y. Ma, “2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
    [Crossref]
  5. G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
    [Crossref] [PubMed]
  6. H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photonics Technol. Lett. 11, 328–330 (1999).
    [Crossref]
  7. G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Topics Quantum Electron. 6, 1419–1427 (2000).
    [Crossref]
  8. F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.
  9. G. Banfi, P. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. Sherwood, “Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
    [Crossref]
  10. G. Banfi, P. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
    [Crossref]
  11. S. Mondal, S. P. Singh, S. Mukherjee, S. Mukhopadhyay, and P. K. Datta, “Widely tunable intracavity phase-matched cascaded second-order interaction for generation of multi-color radiation,” IEEE J. Quantum Electron. 51, 9000105 (2015).
    [Crossref]
  12. P. Datta, S. Mukhopadhyay, G. Samanta, S. Das, and A. Agnesi, “Realization of inverse saturable absorption by intracavity third-harmonic generation for efficient nonlinear mirror mode-locking,” Appl. Phys. Lett. 86, 151105 (2005).
    [Crossref]
  13. P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO4 oscillator by an active Q-switch,” Opt. Express 12, 4041–4046 (2004).
    [Crossref] [PubMed]
  14. A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89, 221119 (2006).
    [Crossref]
  15. S. Mukhopadhyay, S. Mondal, S. P. Singh, A. Date, K. Hussain, and P. K. Datta, “Dual colour cw mode-locking through soft aperture based on second order cascaded nonlinearity,” Opt. Express 21, 454–462 (2013).
    [Crossref] [PubMed]
  16. S. Mondal, S. P. Singh, S. Mukhopadhyay, A. Date, K. Hussain, S. Mukherjee, and P. K. Datta, “A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals,” Pramana 82, 313–319 (2014).
    [Crossref]
  17. S. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd: GdVO4 laser with defocusing cascaded kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
    [Crossref] [PubMed]
  18. H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18, 5754–5762 (2010).
    [Crossref] [PubMed]
  19. H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “High-power picosecond Nd: GdVO4 laser mode locked by SHG in periodically poled stoichiometric lithium tantalate,” Opt. Lett. 35, 1016–1018 (2010).
    [Crossref] [PubMed]
  20. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, and E. W. V. Stryland, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
    [Crossref] [PubMed]
  21. M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34, 61–70 (1998).
    [Crossref]
  22. K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
    [Crossref]
  23. M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, “Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser,” Opt. Commun. 183, 485–491 (2000).
    [Crossref]
  24. P. G. Kryukov and V. S. Letokhov, “Fluctuation mechanism of ultrashort pulse generation by laser with saturable absorber,” J. Appl. Phys. 38, 4057 (1967).
  25. M. J. Digonnet and C. Gaeta, “Theoretical analysis of optical fiber laser amplifiers and oscillators,” Appl. Opt. 24, 333–342 (1985).
    [Crossref] [PubMed]
  26. J. Herrmann, “Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain,” J. Opt. Soc. Am. B 11, 498–512 (1994).
    [Crossref]
  27. S. Gatz and J. Hermann, “Geometrical threshold zones and gaussian modes in lasers with radially varying gain,” Opt. Lett. 19, 1696–1698 (1994).
    [Crossref] [PubMed]
  28. R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14, 6069–6074 (2006).
    [Crossref] [PubMed]
  29. F. Salin, M. Piché, and J. Squier, “Mode locking of Ti:Al2O3 lasers and self-focusing: a gaussian approximation,” Opt. Lett. 16, 1674–1676 (1991).
    [Crossref] [PubMed]
  30. H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
    [Crossref]
  31. D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
    [Crossref]
  32. V. Magni, G. Cerullo, and S. De Silvestri, “ABCD matrix analysis of propagation of Gaussian beams through Kerr media,” Opt. Commun. 96, 348–355 (1993).
    [Crossref]
  33. A. Weiner, Ultrafast Optics, vol. 72 (John Wiley and Sons, 2011).
  34. J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
    [Crossref]
  35. H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65, 063811 (2002).
    [Crossref]
  36. J. D. Moores, “On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term,” Opt. Commun. 96, 65–70 (1993).
    [Crossref]
  37. A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
    [Crossref]
  38. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
    [Crossref]
  39. Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express 20, 23201–23214 (2012).
    [Crossref] [PubMed]
  40. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
    [Crossref] [PubMed]
  41. H. Zhang, S. Lu, J. Zheng, J. Du, S. Wen, D. Tang, and K. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
    [Crossref] [PubMed]
  42. T. Schibli, E. Thoen, F. Kärtner, and E. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).
    [Crossref]

2015 (1)

S. Mondal, S. P. Singh, S. Mukherjee, S. Mukhopadhyay, and P. K. Datta, “Widely tunable intracavity phase-matched cascaded second-order interaction for generation of multi-color radiation,” IEEE J. Quantum Electron. 51, 9000105 (2015).
[Crossref]

2014 (2)

S. Mondal, S. P. Singh, S. Mukhopadhyay, A. Date, K. Hussain, S. Mukherjee, and P. K. Datta, “A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals,” Pramana 82, 313–319 (2014).
[Crossref]

H. Zhang, S. Lu, J. Zheng, J. Du, S. Wen, D. Tang, and K. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

2011 (1)

2010 (2)

2006 (2)

R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14, 6069–6074 (2006).
[Crossref] [PubMed]

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89, 221119 (2006).
[Crossref]

2005 (3)

P. Datta, S. Mukhopadhyay, G. Samanta, S. Das, and A. Agnesi, “Realization of inverse saturable absorption by intracavity third-harmonic generation for efficient nonlinear mirror mode-locking,” Appl. Phys. Lett. 86, 151105 (2005).
[Crossref]

Y.-X. Fan, J.-L. He, Y.-G. Wang, S. Liu, H.-T. Wang, and X.-Y. Ma, “2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

S. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd: GdVO4 laser with defocusing cascaded kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

2002 (1)

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65, 063811 (2002).
[Crossref]

2000 (3)

M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, “Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser,” Opt. Commun. 183, 485–491 (2000).
[Crossref]

G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Topics Quantum Electron. 6, 1419–1427 (2000).
[Crossref]

T. Schibli, E. Thoen, F. Kärtner, and E. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).
[Crossref]

1999 (1)

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photonics Technol. Lett. 11, 328–330 (1999).
[Crossref]

1998 (3)

G. Banfi, P. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
[Crossref]

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34, 61–70 (1998).
[Crossref]

G. Banfi, P. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. Sherwood, “Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
[Crossref]

1997 (1)

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

1994 (2)

1993 (3)

G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
[Crossref] [PubMed]

J. D. Moores, “On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term,” Opt. Commun. 96, 65–70 (1993).
[Crossref]

V. Magni, G. Cerullo, and S. De Silvestri, “ABCD matrix analysis of propagation of Gaussian beams through Kerr media,” Opt. Commun. 96, 348–355 (1993).
[Crossref]

1992 (3)

1991 (2)

1988 (1)

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[Crossref]

1985 (1)

1975 (1)

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[Crossref]

1967 (1)

P. G. Kryukov and V. S. Letokhov, “Fluctuation mechanism of ultrashort pulse generation by laser with saturable absorber,” J. Appl. Phys. 38, 4057 (1967).

1966 (1)

D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[Crossref]

Afanasjev, V.

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

Agnesi, A.

P. Datta, S. Mukhopadhyay, G. Samanta, S. Das, and A. Agnesi, “Realization of inverse saturable absorption by intracavity third-harmonic generation for efficient nonlinear mirror mode-locking,” Appl. Phys. Lett. 86, 151105 (2005).
[Crossref]

P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO4 oscillator by an active Q-switch,” Opt. Express 12, 4041–4046 (2004).
[Crossref] [PubMed]

Akhmediev, N.

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

Asobe, M.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photonics Technol. Lett. 11, 328–330 (1999).
[Crossref]

Assanto, G.

Banfi, G.

G. Banfi, P. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. Sherwood, “Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
[Crossref]

G. Banfi, P. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
[Crossref]

Brabec, T.

Brunel, M.

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65, 063811 (2002).
[Crossref]

Buchvarov, I.

Cerullo, G.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34, 61–70 (1998).
[Crossref]

V. Magni, G. Cerullo, and S. De Silvestri, “ABCD matrix analysis of propagation of Gaussian beams through Kerr media,” Opt. Commun. 96, 348–355 (1993).
[Crossref]

Chartier, T.

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65, 063811 (2002).
[Crossref]

Chen, Y.

Christodoulides, D. N.

G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Topics Quantum Electron. 6, 1419–1427 (2000).
[Crossref]

Chuchumishev, D.

Clay, R.

D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[Crossref]

Curley, P.

Das, S.

P. Datta, S. Mukhopadhyay, G. Samanta, S. Das, and A. Agnesi, “Realization of inverse saturable absorption by intracavity third-harmonic generation for efficient nonlinear mirror mode-locking,” Appl. Phys. Lett. 86, 151105 (2005).
[Crossref]

P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO4 oscillator by an active Q-switch,” Opt. Express 12, 4041–4046 (2004).
[Crossref] [PubMed]

Das, S. K.

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89, 221119 (2006).
[Crossref]

Date, A.

S. Mondal, S. P. Singh, S. Mukhopadhyay, A. Date, K. Hussain, S. Mukherjee, and P. K. Datta, “A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals,” Pramana 82, 313–319 (2014).
[Crossref]

S. Mukhopadhyay, S. Mondal, S. P. Singh, A. Date, K. Hussain, and P. K. Datta, “Dual colour cw mode-locking through soft aperture based on second order cascaded nonlinearity,” Opt. Express 21, 454–462 (2013).
[Crossref] [PubMed]

Datta, P.

P. Datta, S. Mukhopadhyay, G. Samanta, S. Das, and A. Agnesi, “Realization of inverse saturable absorption by intracavity third-harmonic generation for efficient nonlinear mirror mode-locking,” Appl. Phys. Lett. 86, 151105 (2005).
[Crossref]

P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO4 oscillator by an active Q-switch,” Opt. Express 12, 4041–4046 (2004).
[Crossref] [PubMed]

G. Banfi, P. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. Sherwood, “Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
[Crossref]

G. Banfi, P. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
[Crossref]

Datta, P. K.

S. Mondal, S. P. Singh, S. Mukherjee, S. Mukhopadhyay, and P. K. Datta, “Widely tunable intracavity phase-matched cascaded second-order interaction for generation of multi-color radiation,” IEEE J. Quantum Electron. 51, 9000105 (2015).
[Crossref]

S. Mondal, S. P. Singh, S. Mukhopadhyay, A. Date, K. Hussain, S. Mukherjee, and P. K. Datta, “A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals,” Pramana 82, 313–319 (2014).
[Crossref]

S. Mukhopadhyay, S. Mondal, S. P. Singh, A. Date, K. Hussain, and P. K. Datta, “Dual colour cw mode-locking through soft aperture based on second order cascaded nonlinearity,” Opt. Express 21, 454–462 (2013).
[Crossref] [PubMed]

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89, 221119 (2006).
[Crossref]

De Silvestri, S.

V. Magni, G. Cerullo, and S. De Silvestri, “ABCD matrix analysis of propagation of Gaussian beams through Kerr media,” Opt. Commun. 96, 348–355 (1993).
[Crossref]

Degiorgio, V.

DeSalvo, R.

Digonnet, M. J.

Diodati, F. P.

M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, “Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser,” Opt. Commun. 183, 485–491 (2000).
[Crossref]

Donelli, G.

Du, J.

Fan, Y.-X.

Y.-X. Fan, J.-L. He, Y.-G. Wang, S. Liu, H.-T. Wang, and X.-Y. Ma, “2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

Findlay, D.

D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[Crossref]

Fortusini, D.

G. Banfi, P. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
[Crossref]

G. Banfi, P. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. Sherwood, “Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
[Crossref]

Fujimoto, J. G.

Gaeta, C.

Gatz, S.

Hagan, D. J.

Haus, H. A.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
[Crossref]

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[Crossref]

He, J.-L.

Y.-X. Fan, J.-L. He, Y.-G. Wang, S. Liu, H.-T. Wang, and X.-Y. Ma, “2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

Hermann, J.

Herrmann, J.

Hideur, A.

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65, 063811 (2002).
[Crossref]

Hnilo, A. A.

M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, “Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser,” Opt. Commun. 183, 485–491 (2000).
[Crossref]

Holmgren, S.

Hussain, K.

S. Mondal, S. P. Singh, S. Mukhopadhyay, A. Date, K. Hussain, S. Mukherjee, and P. K. Datta, “A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals,” Pramana 82, 313–319 (2014).
[Crossref]

S. Mukhopadhyay, S. Mondal, S. P. Singh, A. Date, K. Hussain, and P. K. Datta, “Dual colour cw mode-locking through soft aperture based on second order cascaded nonlinearity,” Opt. Express 21, 454–462 (2013).
[Crossref] [PubMed]

Iliev, H.

Ippen, E.

T. Schibli, E. Thoen, F. Kärtner, and E. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).
[Crossref]

Ippen, E. P.

Itoh, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photonics Technol. Lett. 11, 328–330 (1999).
[Crossref]

Jethwa, J.

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[Crossref]

Kafka, J. D.

J. D. Kafka, M. L. Watts, and J.-W. Pieterse, “Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti: sapphire laser,” IEEE J. Quantum Electron. 28, 2151–2162 (1992).
[Crossref]

Kanbara, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photonics Technol. Lett. 11, 328–330 (1999).
[Crossref]

Kärtner, F.

T. Schibli, E. Thoen, F. Kärtner, and E. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).
[Crossref]

Kivshar, Y. S.

F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.

Krausz, F.

Kryukov, P. G.

P. G. Kryukov and V. S. Letokhov, “Fluctuation mechanism of ultrashort pulse generation by laser with saturable absorber,” J. Appl. Phys. 38, 4057 (1967).

Kurimura, S.

Larotonda, M. A.

M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, “Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser,” Opt. Commun. 183, 485–491 (2000).
[Crossref]

Laurell, F.

Leblond, H.

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65, 063811 (2002).
[Crossref]

Letokhov, V. S.

P. G. Kryukov and V. S. Letokhov, “Fluctuation mechanism of ultrashort pulse generation by laser with saturable absorber,” J. Appl. Phys. 38, 4057 (1967).

Li, Y.

Liu, J.

Liu, S.

Y.-X. Fan, J.-L. He, Y.-G. Wang, S. Liu, H.-T. Wang, and X.-Y. Ma, “2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

Loh, K.

Lu, S.

Ma, X.-Y.

Y.-X. Fan, J.-L. He, Y.-G. Wang, S. Liu, H.-T. Wang, and X.-Y. Ma, “2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

Magni, V.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34, 61–70 (1998).
[Crossref]

V. Magni, G. Cerullo, and S. De Silvestri, “ABCD matrix analysis of propagation of Gaussian beams through Kerr media,” Opt. Commun. 96, 348–355 (1993).
[Crossref]

Min, Y.

F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.

Miyazawa, H.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photonics Technol. Lett. 11, 328–330 (1999).
[Crossref]

Mondal, S.

S. Mondal, S. P. Singh, S. Mukherjee, S. Mukhopadhyay, and P. K. Datta, “Widely tunable intracavity phase-matched cascaded second-order interaction for generation of multi-color radiation,” IEEE J. Quantum Electron. 51, 9000105 (2015).
[Crossref]

S. Mondal, S. P. Singh, S. Mukhopadhyay, A. Date, K. Hussain, S. Mukherjee, and P. K. Datta, “A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals,” Pramana 82, 313–319 (2014).
[Crossref]

S. Mukhopadhyay, S. Mondal, S. P. Singh, A. Date, K. Hussain, and P. K. Datta, “Dual colour cw mode-locking through soft aperture based on second order cascaded nonlinearity,” Opt. Express 21, 454–462 (2013).
[Crossref] [PubMed]

Moores, J. D.

J. D. Moores, “On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term,” Opt. Commun. 96, 65–70 (1993).
[Crossref]

Mukherjee, S.

S. Mondal, S. P. Singh, S. Mukherjee, S. Mukhopadhyay, and P. K. Datta, “Widely tunable intracavity phase-matched cascaded second-order interaction for generation of multi-color radiation,” IEEE J. Quantum Electron. 51, 9000105 (2015).
[Crossref]

S. Mondal, S. P. Singh, S. Mukhopadhyay, A. Date, K. Hussain, S. Mukherjee, and P. K. Datta, “A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals,” Pramana 82, 313–319 (2014).
[Crossref]

Mukhopadhyay, S.

S. Mondal, S. P. Singh, S. Mukherjee, S. Mukhopadhyay, and P. K. Datta, “Widely tunable intracavity phase-matched cascaded second-order interaction for generation of multi-color radiation,” IEEE J. Quantum Electron. 51, 9000105 (2015).
[Crossref]

S. Mondal, S. P. Singh, S. Mukhopadhyay, A. Date, K. Hussain, S. Mukherjee, and P. K. Datta, “A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals,” Pramana 82, 313–319 (2014).
[Crossref]

S. Mukhopadhyay, S. Mondal, S. P. Singh, A. Date, K. Hussain, and P. K. Datta, “Dual colour cw mode-locking through soft aperture based on second order cascaded nonlinearity,” Opt. Express 21, 454–462 (2013).
[Crossref] [PubMed]

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89, 221119 (2006).
[Crossref]

P. Datta, S. Mukhopadhyay, G. Samanta, S. Das, and A. Agnesi, “Realization of inverse saturable absorption by intracavity third-harmonic generation for efficient nonlinear mirror mode-locking,” Appl. Phys. Lett. 86, 151105 (2005).
[Crossref]

P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO4 oscillator by an active Q-switch,” Opt. Express 12, 4041–4046 (2004).
[Crossref] [PubMed]

Neshev, D. N.

F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.

Noguchi, K.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photonics Technol. Lett. 11, 328–330 (1999).
[Crossref]

Ortaç, B.

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

Paschotta, R.

Pasiskevicius, V.

Pertsch, T.

F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.

Petrov, V.

Piché, M.

Pieterse, J.-W.

J. D. Kafka, M. L. Watts, and J.-W. Pieterse, “Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti: sapphire laser,” IEEE J. Quantum Electron. 28, 2151–2162 (1992).
[Crossref]

Ray, A.

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89, 221119 (2006).
[Crossref]

Ricken, R.

F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.

Salhi, M.

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65, 063811 (2002).
[Crossref]

Salin, F.

Samanta, G.

P. Datta, S. Mukhopadhyay, G. Samanta, S. Das, and A. Agnesi, “Realization of inverse saturable absorption by intracavity third-harmonic generation for efficient nonlinear mirror mode-locking,” Appl. Phys. Lett. 86, 151105 (2005).
[Crossref]

Sanchez, F.

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65, 063811 (2002).
[Crossref]

Schibli, T.

T. Schibli, E. Thoen, F. Kärtner, and E. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).
[Crossref]

Schiek, R.

F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.

Segev, M.

G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Topics Quantum Electron. 6, 1419–1427 (2000).
[Crossref]

Setzpfandt, F.

F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.

Sheik-Bahae, M.

Sherwood, J.

Singh, S. P.

S. Mondal, S. P. Singh, S. Mukherjee, S. Mukhopadhyay, and P. K. Datta, “Widely tunable intracavity phase-matched cascaded second-order interaction for generation of multi-color radiation,” IEEE J. Quantum Electron. 51, 9000105 (2015).
[Crossref]

S. Mondal, S. P. Singh, S. Mukhopadhyay, A. Date, K. Hussain, S. Mukherjee, and P. K. Datta, “A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals,” Pramana 82, 313–319 (2014).
[Crossref]

S. Mukhopadhyay, S. Mondal, S. P. Singh, A. Date, K. Hussain, and P. K. Datta, “Dual colour cw mode-locking through soft aperture based on second order cascaded nonlinearity,” Opt. Express 21, 454–462 (2013).
[Crossref] [PubMed]

Sohler, W.

F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.

Solntsev, A. S.

F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.

Soto-Crespo, J.

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

Spielmann, C.

Squier, J.

Stankov, K. A.

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[Crossref]

Stegeman, G.

Stegeman, G. I.

G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Topics Quantum Electron. 6, 1419–1427 (2000).
[Crossref]

G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
[Crossref] [PubMed]

Stryland, E. W. V.

Sukhorukov, A. A.

F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.

Tang, D.

Tartara, L.

Thoen, E.

T. Schibli, E. Thoen, F. Kärtner, and E. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).
[Crossref]

Van Stryland, E.

Wabnitz, S.

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

Wang, H.-T.

Y.-X. Fan, J.-L. He, Y.-G. Wang, S. Liu, H.-T. Wang, and X.-Y. Ma, “2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

Wang, P.

Wang, Y.-G.

Y.-X. Fan, J.-L. He, Y.-G. Wang, S. Liu, H.-T. Wang, and X.-Y. Ma, “2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

Wang, Z.

Watts, M. L.

J. D. Kafka, M. L. Watts, and J.-W. Pieterse, “Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti: sapphire laser,” IEEE J. Quantum Electron. 28, 2151–2162 (1992).
[Crossref]

Weiner, A.

A. Weiner, Ultrafast Optics, vol. 72 (John Wiley and Sons, 2011).

Wen, S.

Wu, S.

Yanagawa, T.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photonics Technol. Lett. 11, 328–330 (1999).
[Crossref]

Yang, Q.-H.

Yokohama, I.

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photonics Technol. Lett. 11, 328–330 (1999).
[Crossref]

Zavelani-Rossi, M.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34, 61–70 (1998).
[Crossref]

Zhang, H.

Zhao, C.

Zheng, J.

Zheng, Z.

Zou, Y.

Appl. Opt. (1)

Appl. Phys. B (1)

T. Schibli, E. Thoen, F. Kärtner, and E. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).
[Crossref]

Appl. Phys. Lett. (4)

Y.-X. Fan, J.-L. He, Y.-G. Wang, S. Liu, H.-T. Wang, and X.-Y. Ma, “2-ps passively mode-locked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

G. Banfi, P. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998).
[Crossref]

P. Datta, S. Mukhopadhyay, G. Samanta, S. Das, and A. Agnesi, “Realization of inverse saturable absorption by intracavity third-harmonic generation for efficient nonlinear mirror mode-locking,” Appl. Phys. Lett. 86, 151105 (2005).
[Crossref]

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89, 221119 (2006).
[Crossref]

IEEE J. Quantum Electron. (3)

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34, 61–70 (1998).
[Crossref]

J. D. Kafka, M. L. Watts, and J.-W. Pieterse, “Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti: sapphire laser,” IEEE J. Quantum Electron. 28, 2151–2162 (1992).
[Crossref]

S. Mondal, S. P. Singh, S. Mukherjee, S. Mukhopadhyay, and P. K. Datta, “Widely tunable intracavity phase-matched cascaded second-order interaction for generation of multi-color radiation,” IEEE J. Quantum Electron. 51, 9000105 (2015).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

G. I. Stegeman, D. N. Christodoulides, and M. Segev, “Optical spatial solitons: historical perspectives,” IEEE J. Sel. Topics Quantum Electron. 6, 1419–1427 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photonics Technol. Lett. 11, 328–330 (1999).
[Crossref]

J. Appl. Phys. (2)

P. G. Kryukov and V. S. Letokhov, “Fluctuation mechanism of ultrashort pulse generation by laser with saturable absorber,” J. Appl. Phys. 38, 4057 (1967).

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (5)

J. D. Moores, “On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term,” Opt. Commun. 96, 65–70 (1993).
[Crossref]

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

V. Magni, G. Cerullo, and S. De Silvestri, “ABCD matrix analysis of propagation of Gaussian beams through Kerr media,” Opt. Commun. 96, 348–355 (1993).
[Crossref]

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[Crossref]

M. A. Larotonda, A. A. Hnilo, and F. P. Diodati, “Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser,” Opt. Commun. 183, 485–491 (2000).
[Crossref]

Opt. Express (8)

P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO4 oscillator by an active Q-switch,” Opt. Express 12, 4041–4046 (2004).
[Crossref] [PubMed]

S. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd: GdVO4 laser with defocusing cascaded kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
[Crossref] [PubMed]

R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14, 6069–6074 (2006).
[Crossref] [PubMed]

H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18, 5754–5762 (2010).
[Crossref] [PubMed]

Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express 20, 23201–23214 (2012).
[Crossref] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref] [PubMed]

S. Mukhopadhyay, S. Mondal, S. P. Singh, A. Date, K. Hussain, and P. K. Datta, “Dual colour cw mode-locking through soft aperture based on second order cascaded nonlinearity,” Opt. Express 21, 454–462 (2013).
[Crossref] [PubMed]

H. Zhang, S. Lu, J. Zheng, J. Du, S. Wen, D. Tang, and K. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref] [PubMed]

Opt. Lett. (8)

H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “High-power picosecond Nd: GdVO4 laser mode locked by SHG in periodically poled stoichiometric lithium tantalate,” Opt. Lett. 35, 1016–1018 (2010).
[Crossref] [PubMed]

J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36, 4008–4010 (2011).
[Crossref] [PubMed]

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, and E. W. V. Stryland, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref] [PubMed]

T. Brabec, C. Spielmann, P. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17, 1292–1294 (1992).
[Crossref] [PubMed]

G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993).
[Crossref] [PubMed]

S. Gatz and J. Hermann, “Geometrical threshold zones and gaussian modes in lasers with radially varying gain,” Opt. Lett. 19, 1696–1698 (1994).
[Crossref] [PubMed]

G. Banfi, P. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. Sherwood, “Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
[Crossref]

F. Salin, M. Piché, and J. Squier, “Mode locking of Ti:Al2O3 lasers and self-focusing: a gaussian approximation,” Opt. Lett. 16, 1674–1676 (1991).
[Crossref] [PubMed]

Phys. Lett. (1)

D. Findlay and R. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[Crossref]

Phys. Rev. A (1)

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65, 063811 (2002).
[Crossref]

Phys. Rev. E (1)

J. Soto-Crespo, N. Akhmediev, V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783 (1997).
[Crossref]

Pramana (1)

S. Mondal, S. P. Singh, S. Mukhopadhyay, A. Date, K. Hussain, S. Mukherjee, and P. K. Datta, “A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals,” Pramana 82, 313–319 (2014).
[Crossref]

Other (2)

F. Setzpfandt, A. A. Sukhorukov, D. N. Neshev, R. Schiek, A. S. Solntsev, R. Ricken, Y. Min, W. Sohler, Y. S. Kivshar, and T. Pertsch, “Spatio-temporal dynamics of laser pulses in lithium niobate waveguide arrays,” in International Quantum Electron. Conference (2011), p. I930.

A. Weiner, Ultrafast Optics, vol. 72 (John Wiley and Sons, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the soft aperture CSM laser: LDA, laser diode array; L1 and L2, focusing lenses; RM, rear mirror; M1 and M2, folding mirrors; OC, output coupler; NLC, nonlinear crystal.
Fig. 2
Fig. 2 (a) Non collinear SHG intensity auto-correlation trace, Dots: experimental data. Continuous line: sech2 fit; (b) Measured line-width of the output pulse
Fig. 3
Fig. 3 Variation of output power with input pump power for different crystals at 1064 nm and 532 nm
Fig. 4
Fig. 4 Stability of modelocked pulses in milisecond time scale; (a) KTP, (b) BBO and (c) LBO
Fig. 5
Fig. 5 Variation of Nonlinear refractive index with ΔkL
Fig. 6
Fig. 6 Variation of spot size with input pump power at the gain medium
Fig. 7
Fig. 7 Constraint surfaces of pulse parameters for a sech2 pulses as a function of ΔkL and intracavity intensity by considering radially varying gain: (a) chirp parameter β, (b) Pulsewidth τp, (c) Normalized Bandwidth wLn, and (d) Stability S
Fig. 8
Fig. 8 Variation of nonlinear loss with intracavity intensity at different phase-mismatch
Fig. 9
Fig. 9 Constraint surfaces of pulse parameters for a sech2 pulses as a function of ΔkL and intracavity intensity by considering normal gain: (a) chirp parameter β, (b) Pulsewidth τp, (c) Normalized Bandwidth wLn, and (d) Stability S

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

[ l + 2 Ω ( 1 + 1 ω L 2 d 2 d t 2 ) + ( γ i δ ) | A | 2 + i D d 2 d t 2 ] A = 0
A z + i 2 k ( 2 A x 2 + 2 A y 2 ) = g exp ( 2 r 2 w p 2 ) A
A ( z ) = α ( z ) A 0 e [ G ( z ) + i Q ( z ) r 2 ]
Q ( z ) = k 2 1 q ( z ) a n d 1 q ( z ) = 1 R ( z ) + i λ π w s 2 ( z )
d G d z + 1 α d α d z + i ( d Q d z 2 k Q 2 ) 1 2 Q 2 k Q g Q w p 2 1 + Q w p 2 = 0
d G d z + 1 α d α d z + i ( d Q d z 2 k Q 2 ) 1 Q 2 k Q g ( Q w p 2 1 + Q w p 2 ) 2 = 0
1 α d α d z = 2 k Q ( z )
d G d z = g Q w p 2 1 + Q w p 2 ( 2 + Q w p 2 1 + Q w p 2 )
A 1 z = i ω f 4 n f c χ ( 2 ) ( ω f ; 2 ω f , ω f ) A 2 A 1 * e i ( Δ k z )
A 2 z = i ω f 4 n s h c χ ( 2 ) ( 2 ω f ; ω f , ω f ) A 1 2 e i ( Δ k z )
M K e r r = [ 1 ζ d e / 4 ζ / d e 1 ]
A n + 1 ( t ) = C [ 1 l + G t o t + i D d 2 d t 2 i δ | A n | 2 ] A n ( t )
G t o t 2 G ( P 0 ) + 2 G P | P = P 0 Δ P 2 G ( P 0 ) + γ | A n | 2
G ( P 0 ) = g [ ( w p w s ( P 0 ) ) 2 2 + ( w p w s ( P 0 ) ) 2 { 1 + ( w p w s ( P 0 ) ) 2 } 2 ] L g
g = g 0 1 + 2 I c i r I s a t ( ω )
( ω ) = ( 1 + j ω ω 0 ω L ) 1 1 j ω ω 0 ω L ( ω ω 0 ω L ) 2
G ˜ ( P 0 ) = g 0 1 + 2 I c i r I s a t [ ( w p w s ) 2 2 + ( w p w s ) 2 { 1 + ( w p w s ) 2 } 2 ] L g
g 0 = 2 σ L τ L η Q η S η s y s η B P i n h π v p × 2 w p 2 + w s i n 2
l + 2 Ω + 2 Ω ( 1 β 2 ) ω L 2 τ p 2 2 β D τ p 2 = 0
4 Ω β ω L 2 + D ( 1 β 2 ) = 0
2 Ω ω L 2 ( β 2 2 ) + 3 β D + γ τ p 2 | A 0 | 2 = 0
6 β Ω ω L 2 + D ( 2 β 2 ) + δ τ p 2 | A 0 | 2 = 0
( 1 + i D n ) ( 2 + 3 i β β 2 ) τ n = γ i δ
β = 3 2 X ± ( 3 2 X ) 2 + 2
τ p 2 = 2 ( β D Ω ( 1 β 2 ) ω L 2 l + 2 Ω )
w L n = ( 1 + β 2 ) τ n
S = ( 1 β 2 ) 2 β D ω L 2 2 Ω > 0

Metrics