Abstract

The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical tuning of dielectric properties of La0.7Sr0.3MnO3/SrTiO3 superlattices in the terahertz range

Honglei Cai, Haoliang Huang, Qiuping Huang, Xiang Hu, Jie Zhang, Xiaofang Zhai, and Yalin Lu
Opt. Express 26(6) 7842-7851 (2018)

Modulation of dielectric properties of KTaO3 in terahertz region via 532nm continuous-wave laser

L. Wu, H. Li, L. Jiang, C. Ding, Q. Sheng, X. Ding, and J. Yao
Opt. Mater. Express 4(12) 2595-2601 (2014)

Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range

Liang Wu, Linkun Jiang, Quan Sheng, Xin Ding, and Jianquan Yao
Opt. Lett. 38(14) 2581-2583 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  2. L. Fekete, F. Kadlec, H. Nemec, and P. Kužel, “Fast one-dimensional photonic crystal modulators for the terahertz range,” Opt. Express 15(14), 8898–8912 (2007).
    [Crossref] [PubMed]
  3. P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
    [Crossref]
  4. P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
    [Crossref]
  5. A. Ahmed, I. A. Goldthorpe, and A. K. Khandani, “Electrically tunable materials for microwave applications,” Appl. Phys. Rev. 2(1), 011302 (2015).
    [Crossref]
  6. B. He and Z. Wang, “Enhancement of the Electrical properties in BaTiO3/PbZrTiO3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 8(10), 6736–6742 (2016).
    [Crossref]
  7. Q. Lin, D. Wang, Z. Chen, W. Liu, S. Lim, and S. Li, “Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 7(47), 26301–26306 (2015).
    [Crossref] [PubMed]
  8. J. Weerasinghe, L. Bellaiche, T. Ostapchuk, P. Kužel, C. Kadlec, S. Lisenkov, I. Ponomareva, and J. Hlinka, “Emergence of central mode in the paraelectric phase of ferroelectric perovskites,” MRS Commun. 3(01), 41–45 (2013).
    [Crossref]
  9. L. Mazet, S. M. Yang, S. V. Kalinin, S. Schamm-Chardon, and C. Dubourdieu, “A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications,” Sci. Technol. Adv. Mater. 16(3), 1-21 (2016).
  10. B. He and Z. Wang, “Enhancement of the electrical properties in BaTiO3/PbZr0.52Ti0.48O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 8(10), 6736–6742 (2016).
    [Crossref] [PubMed]
  11. R. S. Katiyar and Y. I. Yuzyuk, “Stress manipulation in ferroelectric thin films and superlattices,” Vib. Spectrosc. 45(2), 108–111 (2007).
    [Crossref]
  12. M. Li, J. Li, L.-Q. Chen, B.-L. Gu, and W. Duan, “Effects of strain and oxygen vacancies on the ferroelectric and antiferrodistortive distortions in PbTiO3/SrTiO3 superlattice,” Phys. Rev. B 92(11), 115435 (2015).
    [Crossref]
  13. D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, “Elastic strain engineering of ferroic oxides,” MRS Bull. 39(02), 118–130 (2014).
    [Crossref]
  14. G. Burns and B. A. Scott, “Lattice modes in ferroelectric perovskites: PbTiO3,” Phys. Rev. B 7(7), 3088–3101 (1973).
    [Crossref]
  15. I. Fedorov, J. Petzelt, V. Zelezny, G. Komandin, A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films,” J. Phys. Condens. Matter 7(22), 4313–4323 (1995).
    [Crossref]
  16. C. M. Foster, Z. Li, M. Grimsditch, S. Chan, and D. J. Lam, “Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3.,” Phys. Rev. B Condens. Matter 48(14), 10160–10167 (1993).
    [Crossref] [PubMed]
  17. G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, “Soft ferroelectric modes in lead titanate,” Phys. Rev. B 2(1), 155–159 (1970).
    [Crossref]
  18. A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).
  19. C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80(17), 174116 (2009).
    [Crossref]
  20. P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
    [Crossref]
  21. A. S. Barker, “Temperature dependence of the transverse and longitudinal optic mode frequencies and charges in SrTiO3 and BaTiO3,” Phys. Rev. 145(2), 391–399 (1966).
    [Crossref]
  22. L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
    [Crossref]
  23. P. Irvin, J. Haeni, D. G. Schlom, and J. Levy, “Localized microwave resonances in strained SrTiO3 thin films,” arXiv 0412714 (2004).
  24. A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
    [Crossref] [PubMed]
  25. V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
    [Crossref]
  26. F. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
    [Crossref]
  27. H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
    [Crossref]
  28. R. Schafranek, S. Li, F. Chen, W. Wu, and A. Klein, “PbTiO3/SrTiO3interface: Energy band alignment and its relation to the limits of Fermi level variation,” Phys. Rev. B 84(4), 045317 (2011).
    [Crossref]
  29. L. Pintilie, I. Vrejoiu, G. Le Rhun, and M. Alexe, “Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films,” J. Appl. Phys. 101(6), 064109 (2007).
    [Crossref]
  30. R. Takahashi, T. Tybell, and M. Lippmaa, “Sub-bandgap photocurrent effects on dynamic pyroelectric measurement in Pt/PbTiO3/Nb:SrTiO3 heterostructures,” J. Appl. Phys. 112(1), 014111 (2012).
    [Crossref]

2016 (3)

B. He and Z. Wang, “Enhancement of the Electrical properties in BaTiO3/PbZrTiO3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 8(10), 6736–6742 (2016).
[Crossref]

L. Mazet, S. M. Yang, S. V. Kalinin, S. Schamm-Chardon, and C. Dubourdieu, “A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications,” Sci. Technol. Adv. Mater. 16(3), 1-21 (2016).

B. He and Z. Wang, “Enhancement of the electrical properties in BaTiO3/PbZr0.52Ti0.48O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 8(10), 6736–6742 (2016).
[Crossref] [PubMed]

2015 (4)

Q. Lin, D. Wang, Z. Chen, W. Liu, S. Lim, and S. Li, “Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 7(47), 26301–26306 (2015).
[Crossref] [PubMed]

M. Li, J. Li, L.-Q. Chen, B.-L. Gu, and W. Duan, “Effects of strain and oxygen vacancies on the ferroelectric and antiferrodistortive distortions in PbTiO3/SrTiO3 superlattice,” Phys. Rev. B 92(11), 115435 (2015).
[Crossref]

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

A. Ahmed, I. A. Goldthorpe, and A. K. Khandani, “Electrically tunable materials for microwave applications,” Appl. Phys. Rev. 2(1), 011302 (2015).
[Crossref]

2014 (2)

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, “Elastic strain engineering of ferroic oxides,” MRS Bull. 39(02), 118–130 (2014).
[Crossref]

2013 (2)

J. Weerasinghe, L. Bellaiche, T. Ostapchuk, P. Kužel, C. Kadlec, S. Lisenkov, I. Ponomareva, and J. Hlinka, “Emergence of central mode in the paraelectric phase of ferroelectric perovskites,” MRS Commun. 3(01), 41–45 (2013).
[Crossref]

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

2012 (1)

R. Takahashi, T. Tybell, and M. Lippmaa, “Sub-bandgap photocurrent effects on dynamic pyroelectric measurement in Pt/PbTiO3/Nb:SrTiO3 heterostructures,” J. Appl. Phys. 112(1), 014111 (2012).
[Crossref]

2011 (1)

R. Schafranek, S. Li, F. Chen, W. Wu, and A. Klein, “PbTiO3/SrTiO3interface: Energy band alignment and its relation to the limits of Fermi level variation,” Phys. Rev. B 84(4), 045317 (2011).
[Crossref]

2009 (1)

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80(17), 174116 (2009).
[Crossref]

2008 (1)

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

2007 (4)

R. S. Katiyar and Y. I. Yuzyuk, “Stress manipulation in ferroelectric thin films and superlattices,” Vib. Spectrosc. 45(2), 108–111 (2007).
[Crossref]

L. Fekete, F. Kadlec, H. Nemec, and P. Kužel, “Fast one-dimensional photonic crystal modulators for the terahertz range,” Opt. Express 15(14), 8898–8912 (2007).
[Crossref] [PubMed]

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[Crossref]

L. Pintilie, I. Vrejoiu, G. Le Rhun, and M. Alexe, “Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films,” J. Appl. Phys. 101(6), 064109 (2007).
[Crossref]

2006 (3)

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

2005 (1)

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

1995 (1)

I. Fedorov, J. Petzelt, V. Zelezny, G. Komandin, A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films,” J. Phys. Condens. Matter 7(22), 4313–4323 (1995).
[Crossref]

1993 (1)

C. M. Foster, Z. Li, M. Grimsditch, S. Chan, and D. J. Lam, “Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3.,” Phys. Rev. B Condens. Matter 48(14), 10160–10167 (1993).
[Crossref] [PubMed]

1973 (1)

G. Burns and B. A. Scott, “Lattice modes in ferroelectric perovskites: PbTiO3,” Phys. Rev. B 7(7), 3088–3101 (1973).
[Crossref]

1970 (1)

G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, “Soft ferroelectric modes in lead titanate,” Phys. Rev. B 2(1), 155–159 (1970).
[Crossref]

1969 (1)

F. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[Crossref]

1966 (1)

A. S. Barker, “Temperature dependence of the transverse and longitudinal optic mode frequencies and charges in SrTiO3 and BaTiO3,” Phys. Rev. 145(2), 391–399 (1966).
[Crossref]

Ahmed, A.

A. Ahmed, I. A. Goldthorpe, and A. K. Khandani, “Electrically tunable materials for microwave applications,” Appl. Phys. Rev. 2(1), 011302 (2015).
[Crossref]

Alexe, M.

L. Pintilie, I. Vrejoiu, G. Le Rhun, and M. Alexe, “Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films,” J. Appl. Phys. 101(6), 064109 (2007).
[Crossref]

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Axe, J. D.

G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, “Soft ferroelectric modes in lead titanate,” Phys. Rev. B 2(1), 155–159 (1970).
[Crossref]

Barker, A. S.

A. S. Barker, “Temperature dependence of the transverse and longitudinal optic mode frequencies and charges in SrTiO3 and BaTiO3,” Phys. Rev. 145(2), 391–399 (1966).
[Crossref]

Bellaiche, L.

J. Weerasinghe, L. Bellaiche, T. Ostapchuk, P. Kužel, C. Kadlec, S. Lisenkov, I. Ponomareva, and J. Hlinka, “Emergence of central mode in the paraelectric phase of ferroelectric perovskites,” MRS Commun. 3(01), 41–45 (2013).
[Crossref]

Brooks, K.

I. Fedorov, J. Petzelt, V. Zelezny, G. Komandin, A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films,” J. Phys. Condens. Matter 7(22), 4313–4323 (1995).
[Crossref]

Burns, G.

G. Burns and B. A. Scott, “Lattice modes in ferroelectric perovskites: PbTiO3,” Phys. Rev. B 7(7), 3088–3101 (1973).
[Crossref]

Chan, S.

C. M. Foster, Z. Li, M. Grimsditch, S. Chan, and D. J. Lam, “Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3.,” Phys. Rev. B Condens. Matter 48(14), 10160–10167 (1993).
[Crossref] [PubMed]

Chen, F.

R. Schafranek, S. Li, F. Chen, W. Wu, and A. Klein, “PbTiO3/SrTiO3interface: Energy band alignment and its relation to the limits of Fermi level variation,” Phys. Rev. B 84(4), 045317 (2011).
[Crossref]

F. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[Crossref]

Chen, H. T.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, L. Q.

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Chen, L.-Q.

M. Li, J. Li, L.-Q. Chen, B.-L. Gu, and W. Duan, “Effects of strain and oxygen vacancies on the ferroelectric and antiferrodistortive distortions in PbTiO3/SrTiO3 superlattice,” Phys. Rev. B 92(11), 115435 (2015).
[Crossref]

D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, “Elastic strain engineering of ferroic oxides,” MRS Bull. 39(02), 118–130 (2014).
[Crossref]

Chen, Z.

Q. Lin, D. Wang, Z. Chen, W. Liu, S. Lim, and S. Li, “Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 7(47), 26301–26306 (2015).
[Crossref] [PubMed]

Cho, S.-J.

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

Ding, X.

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

Drahokoupil, J.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

Duan, W.

M. Li, J. Li, L.-Q. Chen, B.-L. Gu, and W. Duan, “Effects of strain and oxygen vacancies on the ferroelectric and antiferrodistortive distortions in PbTiO3/SrTiO3 superlattice,” Phys. Rev. B 92(11), 115435 (2015).
[Crossref]

Dubourdieu, C.

L. Mazet, S. M. Yang, S. V. Kalinin, S. Schamm-Chardon, and C. Dubourdieu, “A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications,” Sci. Technol. Adv. Mater. 16(3), 1-21 (2016).

Eklund, C.-J.

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

El Marssi, M.

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

Evans, J. T.

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

Fedorov, I.

I. Fedorov, J. Petzelt, V. Zelezny, G. Komandin, A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films,” J. Phys. Condens. Matter 7(22), 4313–4323 (1995).
[Crossref]

Fekete, L.

Fennie, C. J.

D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, “Elastic strain engineering of ferroic oxides,” MRS Bull. 39(02), 118–130 (2014).
[Crossref]

Foster, C. M.

C. M. Foster, Z. Li, M. Grimsditch, S. Chan, and D. J. Lam, “Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3.,” Phys. Rev. B Condens. Matter 48(14), 10160–10167 (1993).
[Crossref] [PubMed]

Goldthorpe, I. A.

A. Ahmed, I. A. Goldthorpe, and A. K. Khandani, “Electrically tunable materials for microwave applications,” Appl. Phys. Rev. 2(1), 011302 (2015).
[Crossref]

Gopalan, V.

D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, “Elastic strain engineering of ferroic oxides,” MRS Bull. 39(02), 118–130 (2014).
[Crossref]

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grimsditch, M.

C. M. Foster, Z. Li, M. Grimsditch, S. Chan, and D. J. Lam, “Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3.,” Phys. Rev. B Condens. Matter 48(14), 10160–10167 (1993).
[Crossref] [PubMed]

Gu, B.-L.

M. Li, J. Li, L.-Q. Chen, B.-L. Gu, and W. Duan, “Effects of strain and oxygen vacancies on the ferroelectric and antiferrodistortive distortions in PbTiO3/SrTiO3 superlattice,” Phys. Rev. B 92(11), 115435 (2015).
[Crossref]

Haeni, J. H.

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Harada, J.

G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, “Soft ferroelectric modes in lead titanate,” Phys. Rev. B 2(1), 155–159 (1970).
[Crossref]

He, B.

B. He and Z. Wang, “Enhancement of the electrical properties in BaTiO3/PbZr0.52Ti0.48O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 8(10), 6736–6742 (2016).
[Crossref] [PubMed]

B. He and Z. Wang, “Enhancement of the Electrical properties in BaTiO3/PbZrTiO3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 8(10), 6736–6742 (2016).
[Crossref]

Hlinka, J.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

J. Weerasinghe, L. Bellaiche, T. Ostapchuk, P. Kužel, C. Kadlec, S. Lisenkov, I. Ponomareva, and J. Hlinka, “Emergence of central mode in the paraelectric phase of ferroelectric perovskites,” MRS Commun. 3(01), 41–45 (2013).
[Crossref]

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80(17), 174116 (2009).
[Crossref]

Hollmann, E.

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Huang, Y.

I. Fedorov, J. Petzelt, V. Zelezny, G. Komandin, A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films,” J. Phys. Condens. Matter 7(22), 4313–4323 (1995).
[Crossref]

Jia, Q. X.

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Jiang, L.

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

Kadlec, C.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

J. Weerasinghe, L. Bellaiche, T. Ostapchuk, P. Kužel, C. Kadlec, S. Lisenkov, I. Ponomareva, and J. Hlinka, “Emergence of central mode in the paraelectric phase of ferroelectric perovskites,” MRS Commun. 3(01), 41–45 (2013).
[Crossref]

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80(17), 174116 (2009).
[Crossref]

Kadlec, F.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80(17), 174116 (2009).
[Crossref]

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[Crossref]

L. Fekete, F. Kadlec, H. Nemec, and P. Kužel, “Fast one-dimensional photonic crystal modulators for the terahertz range,” Opt. Express 15(14), 8898–8912 (2007).
[Crossref] [PubMed]

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Kalinin, S. V.

L. Mazet, S. M. Yang, S. V. Kalinin, S. Schamm-Chardon, and C. Dubourdieu, “A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications,” Sci. Technol. Adv. Mater. 16(3), 1-21 (2016).

Kang, T. D.

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

Kang, Y. S.

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

Katiyar, R. S.

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

R. S. Katiyar and Y. I. Yuzyuk, “Stress manipulation in ferroelectric thin films and superlattices,” Vib. Spectrosc. 45(2), 108–111 (2007).
[Crossref]

Khandani, A. K.

A. Ahmed, I. A. Goldthorpe, and A. K. Khandani, “Electrically tunable materials for microwave applications,” Appl. Phys. Rev. 2(1), 011302 (2015).
[Crossref]

Klein, A.

R. Schafranek, S. Li, F. Chen, W. Wu, and A. Klein, “PbTiO3/SrTiO3interface: Energy band alignment and its relation to the limits of Fermi level variation,” Phys. Rev. B 84(4), 045317 (2011).
[Crossref]

Klein, N.

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Komandin, G.

I. Fedorov, J. Petzelt, V. Zelezny, G. Komandin, A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films,” J. Phys. Condens. Matter 7(22), 4313–4323 (1995).
[Crossref]

Kumar, A.

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Kužel, P.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

J. Weerasinghe, L. Bellaiche, T. Ostapchuk, P. Kužel, C. Kadlec, S. Lisenkov, I. Ponomareva, and J. Hlinka, “Emergence of central mode in the paraelectric phase of ferroelectric perovskites,” MRS Commun. 3(01), 41–45 (2013).
[Crossref]

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80(17), 174116 (2009).
[Crossref]

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[Crossref]

L. Fekete, F. Kadlec, H. Nemec, and P. Kužel, “Fast one-dimensional photonic crystal modulators for the terahertz range,” Opt. Express 15(14), 8898–8912 (2007).
[Crossref] [PubMed]

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Lam, D. J.

C. M. Foster, Z. Li, M. Grimsditch, S. Chan, and D. J. Lam, “Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3.,” Phys. Rev. B Condens. Matter 48(14), 10160–10167 (1993).
[Crossref] [PubMed]

Le Rhun, G.

L. Pintilie, I. Vrejoiu, G. Le Rhun, and M. Alexe, “Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films,” J. Appl. Phys. 101(6), 064109 (2007).
[Crossref]

Lee, G. S.

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

Lee, H.

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

Li, J.

M. Li, J. Li, L.-Q. Chen, B.-L. Gu, and W. Duan, “Effects of strain and oxygen vacancies on the ferroelectric and antiferrodistortive distortions in PbTiO3/SrTiO3 superlattice,” Phys. Rev. B 92(11), 115435 (2015).
[Crossref]

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

Li, M.

M. Li, J. Li, L.-Q. Chen, B.-L. Gu, and W. Duan, “Effects of strain and oxygen vacancies on the ferroelectric and antiferrodistortive distortions in PbTiO3/SrTiO3 superlattice,” Phys. Rev. B 92(11), 115435 (2015).
[Crossref]

Li, S.

Q. Lin, D. Wang, Z. Chen, W. Liu, S. Lim, and S. Li, “Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 7(47), 26301–26306 (2015).
[Crossref] [PubMed]

R. Schafranek, S. Li, F. Chen, W. Wu, and A. Klein, “PbTiO3/SrTiO3interface: Energy band alignment and its relation to the limits of Fermi level variation,” Phys. Rev. B 84(4), 045317 (2011).
[Crossref]

Li, Y. L.

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Li, Z.

C. M. Foster, Z. Li, M. Grimsditch, S. Chan, and D. J. Lam, “Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3.,” Phys. Rev. B Condens. Matter 48(14), 10160–10167 (1993).
[Crossref] [PubMed]

Lim, S.

Q. Lin, D. Wang, Z. Chen, W. Liu, S. Lim, and S. Li, “Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 7(47), 26301–26306 (2015).
[Crossref] [PubMed]

Lin, Q.

Q. Lin, D. Wang, Z. Chen, W. Liu, S. Lim, and S. Li, “Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 7(47), 26301–26306 (2015).
[Crossref] [PubMed]

Lippmaa, M.

R. Takahashi, T. Tybell, and M. Lippmaa, “Sub-bandgap photocurrent effects on dynamic pyroelectric measurement in Pt/PbTiO3/Nb:SrTiO3 heterostructures,” J. Appl. Phys. 112(1), 014111 (2012).
[Crossref]

Lisenkov, S.

J. Weerasinghe, L. Bellaiche, T. Ostapchuk, P. Kužel, C. Kadlec, S. Lisenkov, I. Ponomareva, and J. Hlinka, “Emergence of central mode in the paraelectric phase of ferroelectric perovskites,” MRS Commun. 3(01), 41–45 (2013).
[Crossref]

Liu, W.

Q. Lin, D. Wang, Z. Chen, W. Liu, S. Lim, and S. Li, “Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 7(47), 26301–26306 (2015).
[Crossref] [PubMed]

Lukyanchuk, I. A.

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

Mazet, L.

L. Mazet, S. M. Yang, S. V. Kalinin, S. Schamm-Chardon, and C. Dubourdieu, “A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications,” Sci. Technol. Adv. Mater. 16(3), 1-21 (2016).

Morkoç, H.

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

Muller, D. A.

D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, “Elastic strain engineering of ferroic oxides,” MRS Bull. 39(02), 118–130 (2014).
[Crossref]

Nemec, H.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80(17), 174116 (2009).
[Crossref]

L. Fekete, F. Kadlec, H. Nemec, and P. Kužel, “Fast one-dimensional photonic crystal modulators for the terahertz range,” Opt. Express 15(14), 8898–8912 (2007).
[Crossref] [PubMed]

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Ortega, N.

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

Ostapchuk, T.

J. Weerasinghe, L. Bellaiche, T. Ostapchuk, P. Kužel, C. Kadlec, S. Lisenkov, I. Ponomareva, and J. Hlinka, “Emergence of central mode in the paraelectric phase of ferroelectric perovskites,” MRS Commun. 3(01), 41–45 (2013).
[Crossref]

Ott, R.

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Pan, X.

D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, “Elastic strain engineering of ferroic oxides,” MRS Bull. 39(02), 118–130 (2014).
[Crossref]

Panaitov, G.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80(17), 174116 (2009).
[Crossref]

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[Crossref]

Petzelt, J.

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[Crossref]

I. Fedorov, J. Petzelt, V. Zelezny, G. Komandin, A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films,” J. Phys. Condens. Matter 7(22), 4313–4323 (1995).
[Crossref]

Pintilie, L.

L. Pintilie, I. Vrejoiu, G. Le Rhun, and M. Alexe, “Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films,” J. Appl. Phys. 101(6), 064109 (2007).
[Crossref]

Ponomareva, I.

J. Weerasinghe, L. Bellaiche, T. Ostapchuk, P. Kužel, C. Kadlec, S. Lisenkov, I. Ponomareva, and J. Hlinka, “Emergence of central mode in the paraelectric phase of ferroelectric perovskites,” MRS Commun. 3(01), 41–45 (2013).
[Crossref]

Rabe, K. M.

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Ramesh, R.

D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, “Elastic strain engineering of ferroic oxides,” MRS Bull. 39(02), 118–130 (2014).
[Crossref]

Razumnaya, A. G.

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

Reiche, P.

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Remeika, J. P.

G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, “Soft ferroelectric modes in lead titanate,” Phys. Rev. B 2(1), 155–159 (1970).
[Crossref]

Schafranek, R.

R. Schafranek, S. Li, F. Chen, W. Wu, and A. Klein, “PbTiO3/SrTiO3interface: Energy band alignment and its relation to the limits of Fermi level variation,” Phys. Rev. B 84(4), 045317 (2011).
[Crossref]

Schamm-Chardon, S.

L. Mazet, S. M. Yang, S. V. Kalinin, S. Schamm-Chardon, and C. Dubourdieu, “A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications,” Sci. Technol. Adv. Mater. 16(3), 1-21 (2016).

Schlom, D. G.

D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, “Elastic strain engineering of ferroic oxides,” MRS Bull. 39(02), 118–130 (2014).
[Crossref]

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Schubert, J.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80(17), 174116 (2009).
[Crossref]

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[Crossref]

Scott, B. A.

G. Burns and B. A. Scott, “Lattice modes in ferroelectric perovskites: PbTiO3,” Phys. Rev. B 7(7), 3088–3101 (1973).
[Crossref]

Setter, N.

I. Fedorov, J. Petzelt, V. Zelezny, G. Komandin, A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films,” J. Phys. Condens. Matter 7(22), 4313–4323 (1995).
[Crossref]

Shirane, G.

G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, “Soft ferroelectric modes in lead titanate,” Phys. Rev. B 2(1), 155–159 (1970).
[Crossref]

Skoromets, V.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80(17), 174116 (2009).
[Crossref]

Snyder, P. G.

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

Takahashi, R.

R. Takahashi, T. Tybell, and M. Lippmaa, “Sub-bandgap photocurrent effects on dynamic pyroelectric measurement in Pt/PbTiO3/Nb:SrTiO3 heterostructures,” J. Appl. Phys. 112(1), 014111 (2012).
[Crossref]

Taylor, A. J.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tian, L.

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Tikhonov, Y. A.

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

Torgashev, V. I.

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

Tybell, T.

R. Takahashi, T. Tybell, and M. Lippmaa, “Sub-bandgap photocurrent effects on dynamic pyroelectric measurement in Pt/PbTiO3/Nb:SrTiO3 heterostructures,” J. Appl. Phys. 112(1), 014111 (2012).
[Crossref]

Uecker, R.

D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, “Elastic strain engineering of ferroic oxides,” MRS Bull. 39(02), 118–130 (2014).
[Crossref]

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Vasudevarao, A.

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Volkov, A.

I. Fedorov, J. Petzelt, V. Zelezny, G. Komandin, A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films,” J. Phys. Condens. Matter 7(22), 4313–4323 (1995).
[Crossref]

Vrejoiu, I.

L. Pintilie, I. Vrejoiu, G. Le Rhun, and M. Alexe, “Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films,” J. Appl. Phys. 101(6), 064109 (2007).
[Crossref]

Wang, D.

Q. Lin, D. Wang, Z. Chen, W. Liu, S. Lim, and S. Li, “Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 7(47), 26301–26306 (2015).
[Crossref] [PubMed]

Wang, Z.

B. He and Z. Wang, “Enhancement of the Electrical properties in BaTiO3/PbZrTiO3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 8(10), 6736–6742 (2016).
[Crossref]

B. He and Z. Wang, “Enhancement of the electrical properties in BaTiO3/PbZr0.52Ti0.48O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 8(10), 6736–6742 (2016).
[Crossref] [PubMed]

Weerasinghe, J.

J. Weerasinghe, L. Bellaiche, T. Ostapchuk, P. Kužel, C. Kadlec, S. Lisenkov, I. Ponomareva, and J. Hlinka, “Emergence of central mode in the paraelectric phase of ferroelectric perovskites,” MRS Commun. 3(01), 41–45 (2013).
[Crossref]

Wei, S.-H.

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

Wu, L.

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

Wu, W.

R. Schafranek, S. Li, F. Chen, W. Wu, and A. Klein, “PbTiO3/SrTiO3interface: Energy band alignment and its relation to the limits of Fermi level variation,” Phys. Rev. B 84(4), 045317 (2011).
[Crossref]

Xiao, B.

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

Xu, Y.

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

Yang, S. M.

L. Mazet, S. M. Yang, S. V. Kalinin, S. Schamm-Chardon, and C. Dubourdieu, “A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications,” Sci. Technol. Adv. Mater. 16(3), 1-21 (2016).

Yao, J.

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

Yuzyuk, Y. I.

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

R. S. Katiyar and Y. I. Yuzyuk, “Stress manipulation in ferroelectric thin films and superlattices,” Vib. Spectrosc. 45(2), 108–111 (2007).
[Crossref]

Zakharchenko, I. N.

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

Zelezny, V.

I. Fedorov, J. Petzelt, V. Zelezny, G. Komandin, A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films,” J. Phys. Condens. Matter 7(22), 4313–4323 (1995).
[Crossref]

Zide, J. M.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (3)

B. He and Z. Wang, “Enhancement of the Electrical properties in BaTiO3/PbZrTiO3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 8(10), 6736–6742 (2016).
[Crossref]

Q. Lin, D. Wang, Z. Chen, W. Liu, S. Lim, and S. Li, “Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 7(47), 26301–26306 (2015).
[Crossref] [PubMed]

B. He and Z. Wang, “Enhancement of the electrical properties in BaTiO3/PbZr0.52Ti0.48O3 ferroelectric superlattices,” ACS Appl. Mater. Interfaces 8(10), 6736–6742 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

P. Kužel, F. Kadlec, J. Petzelt, J. Schubert, and G. Panaitov, “Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range,” Appl. Phys. Lett. 91(23), 232911 (2007).
[Crossref]

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

Appl. Phys. Rev. (1)

A. Ahmed, I. A. Goldthorpe, and A. K. Khandani, “Electrically tunable materials for microwave applications,” Appl. Phys. Rev. 2(1), 011302 (2015).
[Crossref]

C. R. Phys. (1)

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

J. Appl. Phys. (4)

F. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[Crossref]

H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98(9), 094108 (2005).
[Crossref]

L. Pintilie, I. Vrejoiu, G. Le Rhun, and M. Alexe, “Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films,” J. Appl. Phys. 101(6), 064109 (2007).
[Crossref]

R. Takahashi, T. Tybell, and M. Lippmaa, “Sub-bandgap photocurrent effects on dynamic pyroelectric measurement in Pt/PbTiO3/Nb:SrTiO3 heterostructures,” J. Appl. Phys. 112(1), 014111 (2012).
[Crossref]

J. Phys. Condens. Matter (1)

I. Fedorov, J. Petzelt, V. Zelezny, G. Komandin, A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films,” J. Phys. Condens. Matter 7(22), 4313–4323 (1995).
[Crossref]

MRS Bull. (1)

D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, “Elastic strain engineering of ferroic oxides,” MRS Bull. 39(02), 118–130 (2014).
[Crossref]

MRS Commun. (1)

J. Weerasinghe, L. Bellaiche, T. Ostapchuk, P. Kužel, C. Kadlec, S. Lisenkov, I. Ponomareva, and J. Hlinka, “Emergence of central mode in the paraelectric phase of ferroelectric perovskites,” MRS Commun. 3(01), 41–45 (2013).
[Crossref]

Nature (1)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. (1)

A. S. Barker, “Temperature dependence of the transverse and longitudinal optic mode frequencies and charges in SrTiO3 and BaTiO3,” Phys. Rev. 145(2), 391–399 (1966).
[Crossref]

Phys. Rev. B (6)

M. Li, J. Li, L.-Q. Chen, B.-L. Gu, and W. Duan, “Effects of strain and oxygen vacancies on the ferroelectric and antiferrodistortive distortions in PbTiO3/SrTiO3 superlattice,” Phys. Rev. B 92(11), 115435 (2015).
[Crossref]

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B 80(17), 174116 (2009).
[Crossref]

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

R. Schafranek, S. Li, F. Chen, W. Wu, and A. Klein, “PbTiO3/SrTiO3interface: Energy band alignment and its relation to the limits of Fermi level variation,” Phys. Rev. B 84(4), 045317 (2011).
[Crossref]

G. Burns and B. A. Scott, “Lattice modes in ferroelectric perovskites: PbTiO3,” Phys. Rev. B 7(7), 3088–3101 (1973).
[Crossref]

G. Shirane, J. D. Axe, J. Harada, and J. P. Remeika, “Soft ferroelectric modes in lead titanate,” Phys. Rev. B 2(1), 155–159 (1970).
[Crossref]

Phys. Rev. B Condens. Matter (1)

C. M. Foster, Z. Li, M. Grimsditch, S. Chan, and D. J. Lam, “Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3.,” Phys. Rev. B Condens. Matter 48(14), 10160–10167 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Vasudevarao, A. Kumar, L. Tian, J. H. Haeni, Y. L. Li, C.-J. Eklund, Q. X. Jia, R. Uecker, P. Reiche, K. M. Rabe, L. Q. Chen, D. G. Schlom, and V. Gopalan, “Multiferroic domain dynamics in strained strontium titanate,” Phys. Rev. Lett. 97(25), 257602 (2006).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

L. Mazet, S. M. Yang, S. V. Kalinin, S. Schamm-Chardon, and C. Dubourdieu, “A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications,” Sci. Technol. Adv. Mater. 16(3), 1-21 (2016).

Superlattices Microstruct. (1)

A. G. Razumnaya, Y. A. Tikhonov, Y. I. Yuzyuk, I. N. Zakharchenko, V. I. Torgashev, N. Ortega, A. Kumar, R. S. Katiyar, M. El Marssi, and I. A. Lukyanchuk, “Coexistence of the soft mode and sub-THz central peak in ferroelectric BaTiO3/(Ba,Sr)TiO3 superlattices,” Superlattices Microstruct. 87, 8719–8724 (2015).

Vib. Spectrosc. (1)

R. S. Katiyar and Y. I. Yuzyuk, “Stress manipulation in ferroelectric thin films and superlattices,” Vib. Spectrosc. 45(2), 108–111 (2007).
[Crossref]

Other (1)

P. Irvin, J. Haeni, D. G. Schlom, and J. Levy, “Localized microwave resonances in strained SrTiO3 thin films,” arXiv 0412714 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the THz-TDS system. A green laser is obliquely incident upon the surface of the film at 45° with regard to the polar axis.
Fig. 2
Fig. 2 (a) Time-domain signal waveforms of the substrate and air at room temperature. (b), (c), (d) are the time-domain signal waveforms of the single-layer PT, single-layer PZT, and multilayer PZT/PT thin films, respectively. The black lines represent the data of each sample without optical pumping, the red lines represent the data at P = 150 mW, the blue lines represent the data at P = 300 mW, and the magenta lines represent the data at P = 450 mW.
Fig. 3
Fig. 3 Measured dielectric spectra of thin films with different optical powers at room temperature. Symbols are experimental data and lines indicate fitting with Eq. (2). Here, Re(ε) is the real part of permittivity and Im(ε) is the imaginary part of permittivity. (a) Single-layer PT thin film; (b) single-layer PZT thin film; (c) multilayer PZT/PT thin film.
Fig. 4
Fig. 4 variation of refractive index dependent on the optical power at 0.4 THz for the three thin films samples. Symbols represent measured data, solid lines are the fits by using Eq. (3).
Fig. 5
Fig. 5 the dielectric spectra of the PZT/PT multilayer thin film with external 1064nm optical power. (a) is the real part of permittivity; (b) is the imaginary part of permittivity.
Fig. 6
Fig. 6 Variation of refractive for the PZT/PT with external 532 nm and 1064 nm optical pump at 0.4THz. The red line represents variation of refractive with 1064 nm optical pump and the black line represents with external 532 nm optical pump. Symbols are experimental data and the lines are fitted with Eq. (3).
Fig. 7
Fig. 7 Tunability of the ferroelectric thin films under different optical field powers at (a) 0.4 THz, (b) 0.5THz, (c) 0.6THz and (d) 0.8THz. The black, blue, and red symbols represent the experimental data of the single-layer PT, single-layer PZT, and multilayer PZT/PT thin films, respectively.

Tables (2)

Tables Icon

Table 1 Estimated characteristics of the central mode under different optical pumping power

Tables Icon

Table 2 Estimated characteristics of the soft model under different optical pumping power

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t ( ω ) = 2 N f ( N s + 1 ) e x p ( i ω ( N f 1 ) d f / c ) ( 1 + N f ) ( N f + N s ) ( 1 N f ) ( N f N s ) e x p ( 2 i ω N f d f / c ) ,
ε ( ω ) = f ( 1 i ω / γ ) + g ( ω 0 2 ω 2 i ω Γ ) + 2 δ f g ( ω 0 2 ω 2 i ω Γ ) ( 1 i ω / γ ) δ 2 ,
Δ n E N P
n ¯ ( q = 0 ) = 1 e ω q = 0 / k T 1 .
t u n a b i l i t y = Δ ε / ε = ε ( P ) ε ( 0 ) ε ( 0 ) ,

Metrics