Abstract

Miniaturized passively q-switched laser ignition systems are a promising alternative to conventional ignition sources to ensure a reliable ignition under difficult conditions. In this study the influences of focal point properties on energy transfer from laser to plasma as well as plasma formation and propagation are investigated as the first steps of the laser induced ignition process. Maximum fluence and fluence volume are introduced to characterize focal point properties for varying laser pulse energies and focusing configurations. The results show that the transferred laser energy increases with increasing maximum fluence. During laser emission plasma propagates along the beam path of the focused laser beam. Rising maximum fluence results in increased plasma volume, but expansion saturates when fluence volume reaches its maximum.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of energy transfer for passively Q-switched laser ignition

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann
Opt. Express 23(3) 2647-2659 (2015)

A novel miniaturized passively Q-switched pulse-burst laser for engine ignition

Yufei Ma, Xudong Li, Xin Yu, Rongwei Fan, Renpeng Yan, Jiangbo Peng, Xinrui Xu, Rui Sun, and Deying Chen
Opt. Express 22(20) 24655-24665 (2014)

Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping

Yufei Ma, Ying He, Xin Yu, Xudong Li, Jiang Li, Renpeng Yan, Jiangbo Peng, Xinlu Zhang, Rui Sun, Yubai Pan, and Deying Chen
Opt. Express 23(19) 24955-24961 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(S6Suppl 6), A1113–A1125 (2013).
    [Crossref] [PubMed]
  2. J. Fuchs, A. Leitner, G. Tinschmann, and C. Trapp, “Concept for high-performance direct ignition gas engines,” MTZ worldwide 74(5), 18–23 (2013).
    [Crossref]
  3. J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
    [Crossref]
  4. E. Albin, H. Nawroth, S. Göke, Y. D’Angelo, and C. O. Paschereit, “Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures,” Fuel Process. Technol. 107, 27–35 (2013).
    [Crossref]
  5. E. Mastorakos, “Ignition of turbulent non-premixed flames,” Prog. Energ. Combust. 35(1), 57–97 (2009).
    [Crossref]
  6. S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
    [Crossref]
  7. M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane–air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
    [Crossref]
  8. N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
    [Crossref]
  9. C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Energy absorption and propagation in laser-created sparks,” Appl. Spectrosc. 58(6), 719–726 (2004).
    [Crossref] [PubMed]
  10. J.-L. Beduneau and Y. Ikeda, “Spatial characterization of laser-induced sparks in air,” J. Quant. Spectrosc. Radiat. Transf. 84(2), 123–139 (2004).
    [Crossref]
  11. M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
    [Crossref]
  12. H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
    [Crossref]
  13. D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine,” Opt. Eng. 53(5), 056120 (2014).
    [Crossref]
  14. D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
    [Crossref]
  15. J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
    [Crossref]
  16. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
    [Crossref]
  17. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  18. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  19. G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
    [Crossref]
  20. J. Schwarz, K. Stoppel, K.-H. Nübel, and J. Engelhardt, “Pumping concepts for laser spark plugs - requirements, options, solutions,“ presented at OPIC 2014 – 2nd Laser Ignition Conference (2014).
  21. S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
    [Crossref] [PubMed]
  22. D. Y. Tang, S. P. Ng, L. J. Qin, and X. L. Meng, “Deterministic chaos in a diode-pumped Nd:YAG laser passively Q switched by a Cr4+:YAG crystal,” Opt. Lett. 28(5), 325–327 (2003).
    [Crossref] [PubMed]
  23. N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices,” Opt. Express 23(26), 33028–33037 (2015).
    [Crossref] [PubMed]
  24. T. Alger, D. Mehta, C. Chadwell, and C. Roberts, “Laser ignition in a pre-mixed engine: The effect of focal volume and energy density on stability and the lean operating limit,” SAE Technical Paper, 2005–01–3752 (2005).
    [Crossref]
  25. J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
    [Crossref]
  26. M. Börner, C. Manfletti, and M. Oschwald, “Laser re-ignition of a cryogenic multi-injector rocket engine,“ in 6th European Conference for Aeronautics and Space Sciences (2015).
  27. S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
    [Crossref]
  28. ISO 11146–1:2005(E), “Lasers and laser-related equipment - Test methods for laser beam widths, divergence angles and beam propagation ratios - Part 1: Stigmatic and simple astigmatic beams,“ (2005).
  29. J. Ostrinsky and H. Ridderbusch, and Robert Bosch GmbH, “Laser Ignition System,“ WO/2014/122281 (07.02.2014).
  30. E. Hecht, Optics (Addison-Wesley, 2002).
  31. W. M. Steen and J. Mazumder, Laser Material Processing (Springer London, 2010).
  32. S. Brieschenk, H. Kleine, and S. O’Byrne, “On the measurement of laser-induced plasma breakdown thresholds,” J. Appl. Phys. 114(9), 093101 (2013).
    [Crossref]
  33. L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (M. Dekker, 1989).
  34. T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
    [Crossref]
  35. Y. P. Raĭzer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8(5), 650–673 (1966).
    [Crossref]
  36. E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10(5), 1888–1895 (1974).
    [Crossref]
  37. Y. P. Raizer, “Heating of a gas by a powerful light pulse,” J. Exp. Theor. Phys. 21, 1009–1017 (1965).
  38. T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4–6), 419–423 (2000).
    [Crossref]
  39. S. A. Ramsden and P. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature 203(4951), 1217–1219 (1964).
    [Crossref]
  40. T. X. Phuoc, “An experimental and numerical study of laser-induced spark in air,” Opt. Lasers Eng. 43(2), 113–129 (2005).
    [Crossref]
  41. N. Glumac, G. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43(9), 1984–1994 (2005).
    [Crossref]
  42. Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
    [Crossref]
  43. J. Tang, D. Zuo, T. Wu, and Z. Cheng, “Spatio-temporal evolution of laser-induced air plasma in the stage of laser pulse action,” Opt. Commun. 289, 114–118 (2013).
    [Crossref]
  44. S. Brieschenk, S. O’Byrne, and H. Kleine, “Visualization of jet development in laser-induced plasmas,” Opt. Lett. 38(5), 664–666 (2013).
    [Crossref] [PubMed]
  45. C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
    [Crossref]
  46. L. R. Evans and C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22(21), 1099–1102 (1969).
    [Crossref]

2016 (2)

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
[Crossref]

2015 (2)

2014 (3)

M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane–air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
[Crossref]

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine,” Opt. Eng. 53(5), 056120 (2014).
[Crossref]

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
[Crossref]

2013 (6)

G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(S6Suppl 6), A1113–A1125 (2013).
[Crossref] [PubMed]

J. Fuchs, A. Leitner, G. Tinschmann, and C. Trapp, “Concept for high-performance direct ignition gas engines,” MTZ worldwide 74(5), 18–23 (2013).
[Crossref]

E. Albin, H. Nawroth, S. Göke, Y. D’Angelo, and C. O. Paschereit, “Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures,” Fuel Process. Technol. 107, 27–35 (2013).
[Crossref]

S. Brieschenk, H. Kleine, and S. O’Byrne, “On the measurement of laser-induced plasma breakdown thresholds,” J. Appl. Phys. 114(9), 093101 (2013).
[Crossref]

J. Tang, D. Zuo, T. Wu, and Z. Cheng, “Spatio-temporal evolution of laser-induced air plasma in the stage of laser pulse action,” Opt. Commun. 289, 114–118 (2013).
[Crossref]

S. Brieschenk, S. O’Byrne, and H. Kleine, “Visualization of jet development in laser-induced plasmas,” Opt. Lett. 38(5), 664–666 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (2)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

2009 (2)

E. Mastorakos, “Ignition of turbulent non-premixed flames,” Prog. Energ. Combust. 35(1), 57–97 (2009).
[Crossref]

G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

2007 (3)

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[Crossref]

2005 (3)

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

T. X. Phuoc, “An experimental and numerical study of laser-induced spark in air,” Opt. Lasers Eng. 43(2), 113–129 (2005).
[Crossref]

N. Glumac, G. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43(9), 1984–1994 (2005).
[Crossref]

2004 (2)

C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Energy absorption and propagation in laser-created sparks,” Appl. Spectrosc. 58(6), 719–726 (2004).
[Crossref] [PubMed]

J.-L. Beduneau and Y. Ikeda, “Spatial characterization of laser-induced sparks in air,” J. Quant. Spectrosc. Radiat. Transf. 84(2), 123–139 (2004).
[Crossref]

2003 (2)

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

D. Y. Tang, S. P. Ng, L. J. Qin, and X. L. Meng, “Deterministic chaos in a diode-pumped Nd:YAG laser passively Q switched by a Cr4+:YAG crystal,” Opt. Lett. 28(5), 325–327 (2003).
[Crossref] [PubMed]

2000 (2)

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4–6), 419–423 (2000).
[Crossref]

Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
[Crossref]

1999 (1)

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

1998 (1)

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

1975 (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[Crossref]

1974 (1)

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10(5), 1888–1895 (1974).
[Crossref]

1969 (1)

L. R. Evans and C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22(21), 1099–1102 (1969).
[Crossref]

1966 (1)

Y. P. Raĭzer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8(5), 650–673 (1966).
[Crossref]

1965 (1)

Y. P. Raizer, “Heating of a gas by a powerful light pulse,” J. Exp. Theor. Phys. 21, 1009–1017 (1965).

1964 (1)

S. A. Ramsden and P. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature 203(4951), 1217–1219 (1964).
[Crossref]

Agarwal, A. K.

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine,” Opt. Eng. 53(5), 056120 (2014).
[Crossref]

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
[Crossref]

Albin, E.

E. Albin, H. Nawroth, S. Göke, Y. D’Angelo, and C. O. Paschereit, “Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures,” Fuel Process. Technol. 107, 27–35 (2013).
[Crossref]

Alexander, D. R.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Bak, M. S.

M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane–air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
[Crossref]

Bärwinkel, M.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
[Crossref] [PubMed]

Beduneau, J. L.

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[Crossref]

Beduneau, J.-L.

J.-L. Beduneau and Y. Ikeda, “Spatial characterization of laser-induced sparks in air,” J. Quant. Spectrosc. Radiat. Transf. 84(2), 123–139 (2004).
[Crossref]

Bindhu, C. V.

Birtas, A.

Boguszko, M.

N. Glumac, G. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43(9), 1984–1994 (2005).
[Crossref]

Boicea, N.

Börner, M.

M. Börner, C. Manfletti, and M. Oschwald, “Laser re-ignition of a cryogenic multi-injector rocket engine,“ in 6th European Conference for Aeronautics and Space Sciences (2015).

Brieschenk, S.

S. Brieschenk, H. Kleine, and S. O’Byrne, “On the measurement of laser-induced plasma breakdown thresholds,” J. Appl. Phys. 114(9), 093101 (2013).
[Crossref]

S. Brieschenk, S. O’Byrne, and H. Kleine, “Visualization of jet development in laser-induced plasmas,” Opt. Lett. 38(5), 664–666 (2013).
[Crossref] [PubMed]

Brüggemann, D.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
[Crossref] [PubMed]

Cappelli, M. A.

M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane–air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
[Crossref]

Carroll, S. D.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Chen, Y.-L.

Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
[Crossref]

Cheng, Z.

J. Tang, D. Zuo, T. Wu, and Z. Cheng, “Spatio-temporal evolution of laser-induced air plasma in the stage of laser pulse action,” Opt. Commun. 289, 114–118 (2013).
[Crossref]

D’Angelo, Y.

E. Albin, H. Nawroth, S. Göke, Y. D’Angelo, and C. O. Paschereit, “Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures,” Fuel Process. Technol. 107, 27–35 (2013).
[Crossref]

Dascalu, T.

Dearden, G.

G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(S6Suppl 6), A1113–A1125 (2013).
[Crossref] [PubMed]

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Dinca, M.

Do, H.

S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
[Crossref]

Dodd, R.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Elliott, G.

N. Glumac, G. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43(9), 1984–1994 (2005).
[Crossref]

Ernst, W.

G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Evans, L. R.

L. R. Evans and C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22(21), 1099–1102 (1969).
[Crossref]

Fuchs, J.

J. Fuchs, A. Leitner, G. Tinschmann, and C. Trapp, “Concept for high-performance direct ignition gas engines,” MTZ worldwide 74(5), 18–23 (2013).
[Crossref]

Gaeris, A. C.

Georg, F.

G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Glumac, N.

N. Glumac, G. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43(9), 1984–1994 (2005).
[Crossref]

Göke, S.

E. Albin, H. Nawroth, S. Göke, Y. D’Angelo, and C. O. Paschereit, “Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures,” Fuel Process. Technol. 107, 27–35 (2013).
[Crossref]

Harilal, S. S.

Heinz, P.

Herdin, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Ikeda, Y.

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[Crossref]

J.-L. Beduneau and Y. Ikeda, “Spatial characterization of laser-induced sparks in air,” J. Quant. Spectrosc. Radiat. Transf. 84(2), 123–139 (2004).
[Crossref]

Im, S.

M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane–air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Iskra, K.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kawahara, N.

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[Crossref]

Keen, S.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Klausner, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Kleine, H.

S. Brieschenk, H. Kleine, and S. O’Byrne, “On the measurement of laser-induced plasma breakdown thresholds,” J. Appl. Phys. 114(9), 093101 (2013).
[Crossref]

S. Brieschenk, S. O’Byrne, and H. Kleine, “Visualization of jet development in laser-induced plasmas,” Opt. Lett. 38(5), 664–666 (2013).
[Crossref] [PubMed]

Kofler, H.

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Kopecek, H.

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Kroupa, G.

G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Lackner, M.

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

Lee, S. H.

S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
[Crossref]

Lehmann, S.

Leitner, A.

J. Fuchs, A. Leitner, G. Tinschmann, and C. Trapp, “Concept for high-performance direct ignition gas engines,” MTZ worldwide 74(5), 18–23 (2013).
[Crossref]

Lewis, J.

Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
[Crossref]

Lorenz, S.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
[Crossref] [PubMed]

Ma, J. X.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

Maier, H.

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Manfletti, C.

M. Börner, C. Manfletti, and M. Oschwald, “Laser re-ignition of a cryogenic multi-injector rocket engine,“ in 6th European Conference for Aeronautics and Space Sciences (2015).

Mastorakos, E.

E. Mastorakos, “Ignition of turbulent non-premixed flames,” Prog. Energ. Combust. 35(1), 57–97 (2009).
[Crossref]

Meng, X. L.

Morgan, C. G.

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[Crossref]

L. R. Evans and C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22(21), 1099–1102 (1969).
[Crossref]

Mühlbauer, W.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
[Crossref] [PubMed]

Mullett, J. D.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Najmabadi, F.

Nakayama, T.

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[Crossref]

Nawroth, H.

E. Albin, H. Nawroth, S. Göke, Y. D’Angelo, and C. O. Paschereit, “Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures,” Fuel Process. Technol. 107, 27–35 (2013).
[Crossref]

Ng, S. P.

O’Byrne, S.

S. Brieschenk, S. O’Byrne, and H. Kleine, “Visualization of jet development in laser-induced plasmas,” Opt. Lett. 38(5), 664–666 (2013).
[Crossref] [PubMed]

S. Brieschenk, H. Kleine, and S. O’Byrne, “On the measurement of laser-induced plasma breakdown thresholds,” J. Appl. Phys. 114(9), 093101 (2013).
[Crossref]

Oschwald, M.

M. Börner, C. Manfletti, and M. Oschwald, “Laser re-ignition of a cryogenic multi-injector rocket engine,“ in 6th European Conference for Aeronautics and Space Sciences (2015).

Parigger, C.

Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
[Crossref]

Paschereit, C. O.

E. Albin, H. Nawroth, S. Göke, Y. D’Angelo, and C. O. Paschereit, “Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures,” Fuel Process. Technol. 107, 27–35 (2013).
[Crossref]

Pavel, N.

Phuoc, T. X.

T. X. Phuoc, “An experimental and numerical study of laser-induced spark in air,” Opt. Lasers Eng. 43(2), 113–129 (2005).
[Crossref]

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4–6), 419–423 (2000).
[Crossref]

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

Poulain, D. E.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

Qin, L. J.

Raizer, Y. P.

Y. P. Raĭzer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8(5), 650–673 (1966).
[Crossref]

Y. P. Raizer, “Heating of a gas by a powerful light pulse,” J. Exp. Theor. Phys. 21, 1009–1017 (1965).

Ramsden, S. A.

S. A. Ramsden and P. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature 203(4951), 1217–1219 (1964).
[Crossref]

Reider, G.

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Salamu, G.

Savic, P.

S. A. Ramsden and P. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature 203(4951), 1217–1219 (1964).
[Crossref]

Scarisbrick, A. D.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Shenton, A. T.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Shenton, T.

Srivastava, D. K.

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
[Crossref]

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine,” Opt. Eng. 53(5), 056120 (2014).
[Crossref]

Stäglich, R.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

Taira, T.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Tang, D. Y.

Tang, J.

J. Tang, D. Zuo, T. Wu, and Z. Cheng, “Spatio-temporal evolution of laser-induced air plasma in the stage of laser pulse action,” Opt. Commun. 289, 114–118 (2013).
[Crossref]

Tartar, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Tauer, J.

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Tillack, M. S.

Tinschmann, G.

J. Fuchs, A. Leitner, G. Tinschmann, and C. Trapp, “Concept for high-performance direct ignition gas engines,” MTZ worldwide 74(5), 18–23 (2013).
[Crossref]

Tomita, E.

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[Crossref]

Trapp, C.

J. Fuchs, A. Leitner, G. Tinschmann, and C. Trapp, “Concept for high-performance direct ignition gas engines,” MTZ worldwide 74(5), 18–23 (2013).
[Crossref]

Triantos, G.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Tsunekane, M.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Watkins, K. G.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Weinrotter, M.

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

White, F. P.

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

Williams, C. J.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Winter, F.

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Wintner, E.

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine,” Opt. Eng. 53(5), 056120 (2014).
[Crossref]

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
[Crossref]

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Wu, T.

J. Tang, D. Zuo, T. Wu, and Z. Cheng, “Spatio-temporal evolution of laser-induced air plasma in the stage of laser pulse action,” Opt. Commun. 289, 114–118 (2013).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10(5), 1888–1895 (1974).
[Crossref]

Yoh, J. J.

S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
[Crossref]

Zuo, D.

J. Tang, D. Zuo, T. Wu, and Z. Cheng, “Spatio-temporal evolution of laser-induced air plasma in the stage of laser pulse action,” Opt. Commun. 289, 114–118 (2013).
[Crossref]

AIAA J. (1)

N. Glumac, G. Elliott, and M. Boguszko, “Temporal and spatial evolution of a laser spark in air,” AIAA J. 43(9), 1984–1994 (2005).
[Crossref]

Appl. Phys. B (1)

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, “Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air,” Appl. Phys. B 86(4), 605–614 (2007).
[Crossref]

Appl. Spectrosc. (1)

Combust. Flame (4)

M. S. Bak, S. Im, and M. A. Cappelli, “Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane–air mixtures,” Combust. Flame 161(7), 1744–1751 (2014).
[Crossref]

S. H. Lee, H. Do, and J. J. Yoh, “Simultaneous optical ignition and spectroscopy of a two-phase spray flame,” Combust. Flame 165, 334–345 (2016).
[Crossref]

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

Exp. Therm. Fluid Sci. (1)

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Fuel Process. Technol. (1)

E. Albin, H. Nawroth, S. Göke, Y. D’Angelo, and C. O. Paschereit, “Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures,” Fuel Process. Technol. 107, 27–35 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Int. J. Engine Res. (1)

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

Int. J. Hydrogen Energy (1)

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

J. Appl. Phys. (1)

S. Brieschenk, H. Kleine, and S. O’Byrne, “On the measurement of laser-induced plasma breakdown thresholds,” J. Appl. Phys. 114(9), 093101 (2013).
[Crossref]

J. Exp. Theor. Phys. (1)

Y. P. Raizer, “Heating of a gas by a powerful light pulse,” J. Exp. Theor. Phys. 21, 1009–1017 (1965).

J. Phys. D Appl. Phys. (1)

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

J.-L. Beduneau and Y. Ikeda, “Spatial characterization of laser-induced sparks in air,” J. Quant. Spectrosc. Radiat. Transf. 84(2), 123–139 (2004).
[Crossref]

Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
[Crossref]

Laser Photonics Rev. (1)

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

Laser Phys. Lett. (1)

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

MTZ worldwide (1)

J. Fuchs, A. Leitner, G. Tinschmann, and C. Trapp, “Concept for high-performance direct ignition gas engines,” MTZ worldwide 74(5), 18–23 (2013).
[Crossref]

Nature (1)

S. A. Ramsden and P. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature 203(4951), 1217–1219 (1964).
[Crossref]

Opt. Commun. (2)

J. Tang, D. Zuo, T. Wu, and Z. Cheng, “Spatio-temporal evolution of laser-induced air plasma in the stage of laser pulse action,” Opt. Commun. 289, 114–118 (2013).
[Crossref]

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4–6), 419–423 (2000).
[Crossref]

Opt. Eng. (2)

G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine,” Opt. Eng. 53(5), 056120 (2014).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (2)

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
[Crossref]

T. X. Phuoc, “An experimental and numerical study of laser-induced spark in air,” Opt. Lasers Eng. 43(2), 113–129 (2005).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (1)

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10(5), 1888–1895 (1974).
[Crossref]

Phys. Rev. Lett. (1)

L. R. Evans and C. G. Morgan, “Lens aberration effects in optical-frequency breakdown of gases,” Phys. Rev. Lett. 22(21), 1099–1102 (1969).
[Crossref]

Prog. Energ. Combust. (1)

E. Mastorakos, “Ignition of turbulent non-premixed flames,” Prog. Energ. Combust. 35(1), 57–97 (2009).
[Crossref]

Rep. Prog. Phys. (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38(5), 621–665 (1975).
[Crossref]

Sov. Phys. Usp. (1)

Y. P. Raĭzer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8(5), 650–673 (1966).
[Crossref]

Other (8)

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (M. Dekker, 1989).

M. Börner, C. Manfletti, and M. Oschwald, “Laser re-ignition of a cryogenic multi-injector rocket engine,“ in 6th European Conference for Aeronautics and Space Sciences (2015).

T. Alger, D. Mehta, C. Chadwell, and C. Roberts, “Laser ignition in a pre-mixed engine: The effect of focal volume and energy density on stability and the lean operating limit,” SAE Technical Paper, 2005–01–3752 (2005).
[Crossref]

ISO 11146–1:2005(E), “Lasers and laser-related equipment - Test methods for laser beam widths, divergence angles and beam propagation ratios - Part 1: Stigmatic and simple astigmatic beams,“ (2005).

J. Ostrinsky and H. Ridderbusch, and Robert Bosch GmbH, “Laser Ignition System,“ WO/2014/122281 (07.02.2014).

E. Hecht, Optics (Addison-Wesley, 2002).

W. M. Steen and J. Mazumder, Laser Material Processing (Springer London, 2010).

J. Schwarz, K. Stoppel, K.-H. Nübel, and J. Engelhardt, “Pumping concepts for laser spark plugs - requirements, options, solutions,“ presented at OPIC 2014 – 2nd Laser Ignition Conference (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Design of the passively q-switched laser ignition system
Fig. 2
Fig. 2 Experimental setup for energy transfer measurements.
Fig. 3
Fig. 3 Experimental setup for plasma imaging
Fig. 4
Fig. 4 Cross-sectional beam intensity profiles for different laser energies. (* indicates different pulse properties)
Fig. 5
Fig. 5 Temporal laser profiles of laser pulses with different energies. (* indicates different pulse properties)
Fig. 6
Fig. 6 Calculated focal point properties. (a) beam waist, power density and fluence volume at different lens distances (dimensions: vertical 0.08 mm, horizontal 0.4 mm). (b) focus width, maximum fluence and fluence volume for different lens distances. (* indicates different pulse properties)
Fig. 7
Fig. 7 (a) Temporal pulse profile of the 4.7 mJ laser pulse at different lens distances and without focusing. (b) Transferred energy at different lens distances for various laser energies. (* indicates different pulse properties)
Fig. 8
Fig. 8 Transmitted energy at different lens distances. (* indicates different pulse properties)
Fig. 9
Fig. 9 Temporal laser pulse profile with and without focusing and temporal evolution of total intensity of plasma emission after breakdown (3 mJ, lens distance 29.2 mm).
Fig. 10
Fig. 10 Temporal series of plasma images at different lens distances (laser energy 6.2 mJ, dimension of images: 0.53 mm x 0.95 mm).
Fig. 11
Fig. 11 Temporal expansion of length and height of plasma emission referred to a threshold of 10% of maximum intensity (laser pulse energy 9.0 mJ*).
Fig. 12
Fig. 12 Temporal expansion of plasma volume referred to a threshold of 10% of maximum intensity (laser pulse energy 9.0 mJ*).
Fig. 13
Fig. 13 Temporal evolution of plasma volume for different laser energies referred to a threshold of 10% of maximum intensity (distance between lenses 26.2 mm). (* indicates different pulse properties)

Tables (1)

Tables Icon

Table 1 Properties of different laser beams.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H max =H(z=0)= 2Q π ω 0 2
1 f eff = 1 f 1 + 1 f 2 d lens f 1 f 2
ω 0 = 2λ f eff M 2 π d laser
R(z)= ω 0 ( 1+ z z R ) 2 1 2 ln H max H min ( 1+ z z R ) 2
V=2π 0 z(R=0) ( R(z) ) 2 dz

Metrics