Abstract

Metal/TiO2 hybrid nanostructures offer more efficient charge separation and a broader range of working wavelengths for photocatalytic reactions. The sizes and shapes of such hybrid nanostructures can affect the charge separation performance when the structures interact with light, but assessments of the interaction of light with these metal-TiO2 nanostructures have only been carried out on ensemble averages, hindering both systematic descriptions of such hybrid structures and the design of new ones. Here, we fabricated TiO2 nanotubes (NTs) with and without core Au nanowires (NWs), and used spectroscopy and calculations to assess their scattering and absorption of light at the single NW level. According to the results of spectral imaging and numerical calculations, the Au/TiO2 NWs scattered and absorbed light substantially more strongly than did the plain TiO2 NTs. Measurements of the degradation of the AO7 dye to assess the photocatalytic performance of the Au/TiO2 NWs were consistent with optical measurements demonstrating a two-fold improvement over plain TiO2 NTs under 360-nm-wavelength UV illumination. Our results suggests that nanoscale optical imaging can be used to visualize the performance of the photocatalytic reaction at the single nano-object level.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of plasmonic Au/TiO2 nanofiber films with enhanced photocatalytic activities

Hua Li, Enzhou Liu, Jun Fan, Xiaoyun Hu, Jun Wan, Lin Sun, and Yang Hu
Appl. Opt. 55(2) 221-227 (2016)

Bacteria-directed construction of hollow TiO2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity

Han Zhou, Tongxiang Fan, Jian Ding, Di Zhang, and Qixin Guo
Opt. Express 20(S2) A340-A350 (2012)

Exploiting defects in TiO2 inverse opal for enhanced photoelectrochemical water splitting

Rowena Yew, Siva Krishna Karuturi, Jiaqin Liu, Hark Hoe Tan, Yucheng Wu, and Chennupati Jagadish
Opt. Express 27(2) 761-773 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
    [Crossref]
  2. Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, “Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation,” Adv. Mater. 24(17), 2310–2314 (2012).
    [Crossref] [PubMed]
  3. H. Wang, T. You, W. Shi, J. Li, and L. Guo, “Au/TiO2/Au as a plasmonic coupling photocatalyst,” J. Phys. Chem. C 116(10), 6490–6494 (2012).
    [Crossref]
  4. H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, and H. Shin, “Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging,” Nano Lett. 14(8), 4413–4417 (2014).
    [Crossref] [PubMed]
  5. S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. Van Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
    [Crossref]
  6. Y. Wang, J. Yu, W. Xiao, and Q. Li, “Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3847–3855 (2014).
    [Crossref]
  7. B. Tahir, M. Tahir, and N. S. Amin, “Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor,” Appl. Surf. Sci. 338, 1–14 (2015).
    [Crossref]
  8. M. Tahir, B. Tahir, and N. A. S. Amin, “Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation,” Appl. Surf. Sci. 356, 1289–1299 (2015).
    [Crossref]
  9. Q. Deng, X. Xia, M. Guo, Y. Gao, and G. Shao, “Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity,” Mater. Lett. 65(13), 2051–2054 (2011).
    [Crossref]
  10. S. Kim, S. J. Hwang, and W. Choi, “Visible light active platinum-ion-doped TiO2 photocatalyst,” J. Phys. Chem. B 109(51), 24260–24267 (2005).
    [Crossref] [PubMed]
  11. W. C. Hung, Y. C. Chen, H. Chu, and T. K. Tseng, “Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1, 2-dichloroethane,” Appl. Surf. Sci. 255(5), 2205–2213 (2008).
    [Crossref]
  12. Q. Xiao and L. Ouyang, “Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature,” Chem. Eng. J. 148(2–3), 248–253 (2009).
    [Crossref]
  13. K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, and M. Rekas, “Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder,” Catal. Today 144(1–2), 7–12 (2009).
    [Crossref]
  14. O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light,” J. Phys. Chem. B 108(19), 6004–6008 (2004).
    [Crossref]
  15. A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, “Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes,” Nano Lett. 6(5), 1080–1082 (2006).
    [Crossref]
  16. Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
    [Crossref] [PubMed]
  17. S. S. Latthe, S. An, S. Jin, and S. S. Yoon, “High energy electron beam irradiated TiO2 photoanodes for improved water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 1(43), 13567–13575 (2013).
    [Crossref]
  18. A. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys. 107(7), 071301 (2010).
    [Crossref]
  19. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
    [Crossref]
  20. P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, “Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors,” Nano Lett. 10(9), 3267–3271 (2010).
    [Crossref] [PubMed]
  21. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  22. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
    [Crossref] [PubMed]

2015 (2)

B. Tahir, M. Tahir, and N. S. Amin, “Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor,” Appl. Surf. Sci. 338, 1–14 (2015).
[Crossref]

M. Tahir, B. Tahir, and N. A. S. Amin, “Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation,” Appl. Surf. Sci. 356, 1289–1299 (2015).
[Crossref]

2014 (3)

H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, and H. Shin, “Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging,” Nano Lett. 14(8), 4413–4417 (2014).
[Crossref] [PubMed]

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. Van Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Y. Wang, J. Yu, W. Xiao, and Q. Li, “Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3847–3855 (2014).
[Crossref]

2013 (3)

M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
[Crossref]

S. S. Latthe, S. An, S. Jin, and S. S. Yoon, “High energy electron beam irradiated TiO2 photoanodes for improved water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 1(43), 13567–13575 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

2012 (2)

Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, “Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation,” Adv. Mater. 24(17), 2310–2314 (2012).
[Crossref] [PubMed]

H. Wang, T. You, W. Shi, J. Li, and L. Guo, “Au/TiO2/Au as a plasmonic coupling photocatalyst,” J. Phys. Chem. C 116(10), 6490–6494 (2012).
[Crossref]

2011 (2)

Q. Deng, X. Xia, M. Guo, Y. Gao, and G. Shao, “Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity,” Mater. Lett. 65(13), 2051–2054 (2011).
[Crossref]

Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
[Crossref] [PubMed]

2010 (3)

A. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys. 107(7), 071301 (2010).
[Crossref]

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, “Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors,” Nano Lett. 10(9), 3267–3271 (2010).
[Crossref] [PubMed]

2009 (2)

Q. Xiao and L. Ouyang, “Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature,” Chem. Eng. J. 148(2–3), 248–253 (2009).
[Crossref]

K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, and M. Rekas, “Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder,” Catal. Today 144(1–2), 7–12 (2009).
[Crossref]

2008 (1)

W. C. Hung, Y. C. Chen, H. Chu, and T. K. Tseng, “Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1, 2-dichloroethane,” Appl. Surf. Sci. 255(5), 2205–2213 (2008).
[Crossref]

2006 (1)

A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, “Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes,” Nano Lett. 6(5), 1080–1082 (2006).
[Crossref]

2005 (1)

S. Kim, S. J. Hwang, and W. Choi, “Visible light active platinum-ion-doped TiO2 photocatalyst,” J. Phys. Chem. B 109(51), 24260–24267 (2005).
[Crossref] [PubMed]

2004 (1)

O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light,” J. Phys. Chem. B 108(19), 6004–6008 (2004).
[Crossref]

2001 (1)

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

Amberg, M.

K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, and M. Rekas, “Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder,” Catal. Today 144(1–2), 7–12 (2009).
[Crossref]

Amin, N. A. S.

M. Tahir, B. Tahir, and N. A. S. Amin, “Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation,” Appl. Surf. Sci. 356, 1289–1299 (2015).
[Crossref]

Amin, N. S.

B. Tahir, M. Tahir, and N. S. Amin, “Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor,” Appl. Surf. Sci. 338, 1–14 (2015).
[Crossref]

An, S.

S. S. Latthe, S. An, S. Jin, and S. S. Yoon, “High energy electron beam irradiated TiO2 photoanodes for improved water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 1(43), 13567–13575 (2013).
[Crossref]

Bachmann, J.

M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
[Crossref]

Bae, C.

H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, and H. Shin, “Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging,” Nano Lett. 14(8), 4413–4417 (2014).
[Crossref] [PubMed]

M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
[Crossref]

Chen, L. J.

P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, “Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors,” Nano Lett. 10(9), 3267–3271 (2010).
[Crossref] [PubMed]

Chen, P. H.

P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, “Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors,” Nano Lett. 10(9), 3267–3271 (2010).
[Crossref] [PubMed]

Chen, S. Y.

P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, “Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors,” Nano Lett. 10(9), 3267–3271 (2010).
[Crossref] [PubMed]

Chen, Y. C.

W. C. Hung, Y. C. Chen, H. Chu, and T. K. Tseng, “Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1, 2-dichloroethane,” Appl. Surf. Sci. 255(5), 2205–2213 (2008).
[Crossref]

Choi, W.

S. Kim, S. J. Hwang, and W. Choi, “Visible light active platinum-ion-doped TiO2 photocatalyst,” J. Phys. Chem. B 109(51), 24260–24267 (2005).
[Crossref] [PubMed]

Chou, L. J.

P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, “Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors,” Nano Lett. 10(9), 3267–3271 (2010).
[Crossref] [PubMed]

Chu, H.

W. C. Hung, Y. C. Chen, H. Chu, and T. K. Tseng, “Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1, 2-dichloroethane,” Appl. Surf. Sci. 255(5), 2205–2213 (2008).
[Crossref]

Cui, Y.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

Deng, Q.

Q. Deng, X. Xia, M. Guo, Y. Gao, and G. Shao, “Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity,” Mater. Lett. 65(13), 2051–2054 (2011).
[Crossref]

Diwald, O.

O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light,” J. Phys. Chem. B 108(19), 6004–6008 (2004).
[Crossref]

Duan, X.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

Filippousi, M.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. Van Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Flahaut, D.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. Van Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Fortunato, G.

K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, and M. Rekas, “Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder,” Catal. Today 144(1–2), 7–12 (2009).
[Crossref]

Frey, L.

A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, “Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes,” Nano Lett. 6(5), 1080–1082 (2006).
[Crossref]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Gao, Y.

Q. Deng, X. Xia, M. Guo, Y. Gao, and G. Shao, “Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity,” Mater. Lett. 65(13), 2051–2054 (2011).
[Crossref]

Ghicov, A.

A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, “Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes,” Nano Lett. 6(5), 1080–1082 (2006).
[Crossref]

Goralski, E. G.

O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light,” J. Phys. Chem. B 108(19), 6004–6008 (2004).
[Crossref]

Graule, T.

K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, and M. Rekas, “Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder,” Catal. Today 144(1–2), 7–12 (2009).
[Crossref]

Gudiksen, M. S.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

Guo, L.

H. Wang, T. You, W. Shi, J. Li, and L. Guo, “Au/TiO2/Au as a plasmonic coupling photocatalyst,” J. Phys. Chem. C 116(10), 6490–6494 (2012).
[Crossref]

Guo, M.

Q. Deng, X. Xia, M. Guo, Y. Gao, and G. Shao, “Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity,” Mater. Lett. 65(13), 2051–2054 (2011).
[Crossref]

Haeublein, V.

A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, “Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes,” Nano Lett. 6(5), 1080–1082 (2006).
[Crossref]

Han, M. Y.

Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, “Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation,” Adv. Mater. 24(17), 2310–2314 (2012).
[Crossref] [PubMed]

Heel, A.

K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, and M. Rekas, “Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder,” Catal. Today 144(1–2), 7–12 (2009).
[Crossref]

Hong, Y. K.

Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
[Crossref] [PubMed]

Hsieh, C. H.

P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, “Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors,” Nano Lett. 10(9), 3267–3271 (2010).
[Crossref] [PubMed]

Hung, W. C.

W. C. Hung, Y. C. Chen, H. Chu, and T. K. Tseng, “Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1, 2-dichloroethane,” Appl. Surf. Sci. 255(5), 2205–2213 (2008).
[Crossref]

Hwang, S. J.

S. Kim, S. J. Hwang, and W. Choi, “Visible light active platinum-ion-doped TiO2 photocatalyst,” J. Phys. Chem. B 109(51), 24260–24267 (2005).
[Crossref] [PubMed]

Jang, S. Y.

Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
[Crossref] [PubMed]

Jin, S.

S. S. Latthe, S. An, S. Jin, and S. S. Yoon, “High energy electron beam irradiated TiO2 photoanodes for improved water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 1(43), 13567–13575 (2013).
[Crossref]

Jo, S. G.

Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
[Crossref] [PubMed]

Joo, J.

Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
[Crossref] [PubMed]

Jung, H. S.

M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
[Crossref]

Keulemans, M.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. Van Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Kim, D. C.

Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
[Crossref] [PubMed]

Kim, H.

H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, and H. Shin, “Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging,” Nano Lett. 14(8), 4413–4417 (2014).
[Crossref] [PubMed]

M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
[Crossref]

Kim, J.

Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
[Crossref] [PubMed]

Kim, J. S.

Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
[Crossref] [PubMed]

Kim, M.

H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, and H. Shin, “Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging,” Nano Lett. 14(8), 4413–4417 (2014).
[Crossref] [PubMed]

M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
[Crossref]

Kim, S.

S. Kim, S. J. Hwang, and W. Choi, “Visible light active platinum-ion-doped TiO2 photocatalyst,” J. Phys. Chem. B 109(51), 24260–24267 (2005).
[Crossref] [PubMed]

Kim, Y.

H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, and H. Shin, “Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging,” Nano Lett. 14(8), 4413–4417 (2014).
[Crossref] [PubMed]

Koo, M. H.

Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
[Crossref] [PubMed]

Krasheninnikov, A.

A. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys. 107(7), 071301 (2010).
[Crossref]

Kunze, J.

A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, “Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes,” Nano Lett. 6(5), 1080–1082 (2006).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Lacombe, S.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. Van Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Latthe, S. S.

S. S. Latthe, S. An, S. Jin, and S. S. Yoon, “High energy electron beam irradiated TiO2 photoanodes for improved water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 1(43), 13567–13575 (2013).
[Crossref]

Lee, S.

H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, and H. Shin, “Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging,” Nano Lett. 14(8), 4413–4417 (2014).
[Crossref] [PubMed]

Lenaerts, S.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. Van Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Li, J.

H. Wang, T. You, W. Shi, J. Li, and L. Guo, “Au/TiO2/Au as a plasmonic coupling photocatalyst,” J. Phys. Chem. C 116(10), 6490–6494 (2012).
[Crossref]

Li, Q.

Y. Wang, J. Yu, W. Xiao, and Q. Li, “Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3847–3855 (2014).
[Crossref]

Lieber, C. M.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

Liu, S.

Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, “Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation,” Adv. Mater. 24(17), 2310–2314 (2012).
[Crossref] [PubMed]

Liu, Z.

Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, “Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation,” Adv. Mater. 24(17), 2310–2314 (2012).
[Crossref] [PubMed]

Logvinovich, D.

K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, and M. Rekas, “Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder,” Catal. Today 144(1–2), 7–12 (2009).
[Crossref]

Low, M.

Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, “Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation,” Adv. Mater. 24(17), 2310–2314 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Macak, J. M.

A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, “Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes,” Nano Lett. 6(5), 1080–1082 (2006).
[Crossref]

Martens, J. A.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. Van Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Michalow, K. A.

K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, and M. Rekas, “Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder,” Catal. Today 144(1–2), 7–12 (2009).
[Crossref]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Misawa, H.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Mlayah, A.

Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, “Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation,” Adv. Mater. 24(17), 2310–2314 (2012).
[Crossref] [PubMed]

Montero Moreno, J. M.

M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
[Crossref]

Murakoshi, K.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Nielsch, K.

M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
[Crossref]

Nishijima, Y.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Nordlund, K.

A. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys. 107(7), 071301 (2010).
[Crossref]

Ouyang, L.

Q. Xiao and L. Ouyang, “Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature,” Chem. Eng. J. 148(2–3), 248–253 (2009).
[Crossref]

Park, D. H.

Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
[Crossref] [PubMed]

Rekas, M.

K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, and M. Rekas, “Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder,” Catal. Today 144(1–2), 7–12 (2009).
[Crossref]

Schmuki, P.

A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, “Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes,” Nano Lett. 6(5), 1080–1082 (2006).
[Crossref]

Seh, Z. W.

Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, “Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation,” Adv. Mater. 24(17), 2310–2314 (2012).
[Crossref] [PubMed]

Shao, G.

Q. Deng, X. Xia, M. Guo, Y. Gao, and G. Shao, “Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity,” Mater. Lett. 65(13), 2051–2054 (2011).
[Crossref]

Shi, W.

H. Wang, T. You, W. Shi, J. Li, and L. Guo, “Au/TiO2/Au as a plasmonic coupling photocatalyst,” J. Phys. Chem. C 116(10), 6490–6494 (2012).
[Crossref]

Shin, H.

H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, and H. Shin, “Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging,” Nano Lett. 14(8), 4413–4417 (2014).
[Crossref] [PubMed]

M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
[Crossref]

Tahir, B.

M. Tahir, B. Tahir, and N. A. S. Amin, “Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation,” Appl. Surf. Sci. 356, 1289–1299 (2015).
[Crossref]

B. Tahir, M. Tahir, and N. S. Amin, “Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor,” Appl. Surf. Sci. 338, 1–14 (2015).
[Crossref]

Tahir, M.

B. Tahir, M. Tahir, and N. S. Amin, “Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor,” Appl. Surf. Sci. 338, 1–14 (2015).
[Crossref]

M. Tahir, B. Tahir, and N. A. S. Amin, “Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation,” Appl. Surf. Sci. 356, 1289–1299 (2015).
[Crossref]

Thompson, T. L.

O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light,” J. Phys. Chem. B 108(19), 6004–6008 (2004).
[Crossref]

Tseng, T. K.

W. C. Hung, Y. C. Chen, H. Chu, and T. K. Tseng, “Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1, 2-dichloroethane,” Appl. Surf. Sci. 255(5), 2205–2213 (2008).
[Crossref]

Tsuchiya, H.

A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, “Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes,” Nano Lett. 6(5), 1080–1082 (2006).
[Crossref]

Ueno, K.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Van Tendeloo, G.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. Van Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Verbruggen, S. W.

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. Van Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Walck, S. D.

O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light,” J. Phys. Chem. B 108(19), 6004–6008 (2004).
[Crossref]

Wang, H.

H. Wang, T. You, W. Shi, J. Li, and L. Guo, “Au/TiO2/Au as a plasmonic coupling photocatalyst,” J. Phys. Chem. C 116(10), 6490–6494 (2012).
[Crossref]

Wang, J.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, J. Yu, W. Xiao, and Q. Li, “Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3847–3855 (2014).
[Crossref]

Weidenkaff, A.

K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, and M. Rekas, “Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder,” Catal. Today 144(1–2), 7–12 (2009).
[Crossref]

Wu, C. H.

P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, “Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors,” Nano Lett. 10(9), 3267–3271 (2010).
[Crossref] [PubMed]

Wu, Y. J.

P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, “Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors,” Nano Lett. 10(9), 3267–3271 (2010).
[Crossref] [PubMed]

Xia, X.

Q. Deng, X. Xia, M. Guo, Y. Gao, and G. Shao, “Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity,” Mater. Lett. 65(13), 2051–2054 (2011).
[Crossref]

Xiao, Q.

Q. Xiao and L. Ouyang, “Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature,” Chem. Eng. J. 148(2–3), 248–253 (2009).
[Crossref]

Xiao, W.

Y. Wang, J. Yu, W. Xiao, and Q. Li, “Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3847–3855 (2014).
[Crossref]

Yang, Y.

H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, and H. Shin, “Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging,” Nano Lett. 14(8), 4413–4417 (2014).
[Crossref] [PubMed]

Yates, J. T.

O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light,” J. Phys. Chem. B 108(19), 6004–6008 (2004).
[Crossref]

Yokota, Y.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Yoo, H.

H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, and H. Shin, “Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging,” Nano Lett. 14(8), 4413–4417 (2014).
[Crossref] [PubMed]

M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
[Crossref]

Yoon, S. S.

S. S. Latthe, S. An, S. Jin, and S. S. Yoon, “High energy electron beam irradiated TiO2 photoanodes for improved water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 1(43), 13567–13575 (2013).
[Crossref]

You, T.

H. Wang, T. You, W. Shi, J. Li, and L. Guo, “Au/TiO2/Au as a plasmonic coupling photocatalyst,” J. Phys. Chem. C 116(10), 6490–6494 (2012).
[Crossref]

Yu, J.

Y. Wang, J. Yu, W. Xiao, and Q. Li, “Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3847–3855 (2014).
[Crossref]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Zhang, S. Y.

Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, “Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation,” Adv. Mater. 24(17), 2310–2314 (2012).
[Crossref] [PubMed]

Zubkov, T.

O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light,” J. Phys. Chem. B 108(19), 6004–6008 (2004).
[Crossref]

Adv. Mater. (1)

Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, “Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation,” Adv. Mater. 24(17), 2310–2314 (2012).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Y. K. Hong, D. H. Park, S. G. Jo, M. H. Koo, D. C. Kim, J. Kim, J. S. Kim, S. Y. Jang, and J. Joo, “Fine characteristics tailoring of organic and inorganic nanowires using focused electron-beam irradiation,” Angew. Chem. Int. Ed. Engl. 50(16), 3734–3738 (2011).
[Crossref] [PubMed]

Appl. Catal. B (1)

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. Van Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B 156–157, 116–121 (2014).
[Crossref]

Appl. Surf. Sci. (3)

B. Tahir, M. Tahir, and N. S. Amin, “Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor,” Appl. Surf. Sci. 338, 1–14 (2015).
[Crossref]

M. Tahir, B. Tahir, and N. A. S. Amin, “Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation,” Appl. Surf. Sci. 356, 1289–1299 (2015).
[Crossref]

W. C. Hung, Y. C. Chen, H. Chu, and T. K. Tseng, “Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1, 2-dichloroethane,” Appl. Surf. Sci. 255(5), 2205–2213 (2008).
[Crossref]

Catal. Today (1)

K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule, and M. Rekas, “Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder,” Catal. Today 144(1–2), 7–12 (2009).
[Crossref]

Chem. Eng. J. (1)

Q. Xiao and L. Ouyang, “Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature,” Chem. Eng. J. 148(2–3), 248–253 (2009).
[Crossref]

J. Appl. Phys. (1)

A. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys. 107(7), 071301 (2010).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (3)

M. Kim, C. Bae, H. Kim, H. Yoo, J. M. Montero Moreno, H. S. Jung, J. Bachmann, K. Nielsch, and H. Shin, “Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties,” J. Mater. Chem. A Mater. Energy Sustain. 1(45), 14080–14088 (2013).
[Crossref]

Y. Wang, J. Yu, W. Xiao, and Q. Li, “Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production,” J. Mater. Chem. A Mater. Energy Sustain. 2(11), 3847–3855 (2014).
[Crossref]

S. S. Latthe, S. An, S. Jin, and S. S. Yoon, “High energy electron beam irradiated TiO2 photoanodes for improved water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 1(43), 13567–13575 (2013).
[Crossref]

J. Phys. Chem. B (2)

S. Kim, S. J. Hwang, and W. Choi, “Visible light active platinum-ion-doped TiO2 photocatalyst,” J. Phys. Chem. B 109(51), 24260–24267 (2005).
[Crossref] [PubMed]

O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light,” J. Phys. Chem. B 108(19), 6004–6008 (2004).
[Crossref]

J. Phys. Chem. C (1)

H. Wang, T. You, W. Shi, J. Li, and L. Guo, “Au/TiO2/Au as a plasmonic coupling photocatalyst,” J. Phys. Chem. C 116(10), 6490–6494 (2012).
[Crossref]

J. Phys. Chem. Lett. (1)

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Mater. Lett. (1)

Q. Deng, X. Xia, M. Guo, Y. Gao, and G. Shao, “Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity,” Mater. Lett. 65(13), 2051–2054 (2011).
[Crossref]

Nano Lett. (3)

H. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, and H. Shin, “Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging,” Nano Lett. 14(8), 4413–4417 (2014).
[Crossref] [PubMed]

P. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, and L. J. Chen, “Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors,” Nano Lett. 10(9), 3267–3271 (2010).
[Crossref] [PubMed]

A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, and P. Schmuki, “Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes,” Nano Lett. 6(5), 1080–1082 (2006).
[Crossref]

Nat. Commun. (1)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Science (1)

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293(5534), 1455–1457 (2001).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (3686 KB)      Real-time view of Au growth along hybrid nanowires driven by local UV illumination.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SEM, TEM and EDS analyses of the TiO2 and Au/TiO2 nanostructures. (a) Schematic diagrams of the TiO2 NT (left) and Au/TiO2 NW (right). The Au core (yellow) formed in the interior of the Au/TiO2 NW. (b) HR-TEM image of an Au/TiO2 NW. (c, d) SEM image and EDS spectrum of a TiO2 NT and Au/TiO2 NW, respectively. Scale bars indicate 1μm.
Fig. 2
Fig. 2 UV absorption images obtained from (a,b) a single TiO2 NT and (c,d) a single Au/TiO2 hybrid NW whose long axes were approximately (a,c) perpendicular and (b,d) parallel to the direction of polarization of the incident light (white arrows). The insets show the schematic cross sections of the samples. Cross-sectional line profile of absorption intensity are shown (red curves). Scale bars are 2μm.
Fig. 3
Fig. 3 UV dark-field scattering image obtained from (a,b) a single TiO2 NT and (c,d) a single Au/TiO2 hybrid NW whose long axes were approximately (a,c) perpendicular and (b,d) parallel to the polarization direction of the incident light (white arrows). The insets show the schematics of the NW. Scale bars are 2μm.
Fig. 4
Fig. 4 Visible dark-field scattering images and representative scattering spectra obtained from single TiO2 and Au/TiO2 NWs. (a, b) Dark-field scattering CCD image and spectrum of TiO2 NWs and Au/TiO2 NWs, respectively. Scale bars indicate 30μm. (c) Dark-field color CCD image and AFM topography of an Au/TiO2 NW in the red square area. Scale bar indicates 3μm. (d) Scattering spectrum of the TiO2 NW with an Au core and that without an Au core obtained selectively from the upper part and the lower part. Note the distinct difference (presence of LSPR Au peak at ~600 nm) in scattering spectra depending on the presence of Au core inside the TiO2 NT.
Fig. 5
Fig. 5 Visible dark-field scattering CCD images during the photodeposition process. (a) Dark-field scattering CCD image before UV irradiation. Scale bar indicates 20μm. The red circle indicates the primary region irradiated with UV light. (b) Dark-field scattering CCD image after UV irradiation (see Visualization 1).
Fig. 6
Fig. 6 The FDTD simulation results of (a, b) absorption profile of TiO2 NT and Au/TiO2 NW with transverse polarization, respectively. White arrows indicate the wave vector and polarization state of the incident light. (c, d) Calculated absorption spectra of TiO2 NT and Au/TiO2 NW in longitudinal polarization and transverse polarization, respectively.
Fig. 7
Fig. 7 The photocatalytic performance of each NW was analyzed by illuminating a 1mm2 area of the sample immersed in an aqueous solution of 35 ul of an azo dye (AO7) placed in a quartz cuvette with a 5-mW 355-nm-wavelength laser. Reference data obtained from the sample without TiO2 NTs or Au/TiO2 NWs are also provided.

Metrics