Abstract

Wavelength tuning of conventional mirror-based optical parametric oscillators (OPOs) exhibits parabolically-shaped tuning curves (type-0 and type-I phase matching) or tuning branches that cross each other with a finite slope (type-II phase matching). We predict and experimentally prove that whispering gallery OPOs based on type-0 phase matching show both tuning behaviors, depending on whether the mode numbers of the generated waves coincide or differ. We investigate the wavelength tuning of optical parametric oscillation in a millimeter-sized radially-poled lithium niobate disk pumped at 1 μm wavelength generating signal and idler waves between 1.7 and 2.6 μm wavelength. Our experimental findings excellently coincide with the theoretical predictions. The investigated whispering gallery optical parametric oscillator combines the employment of the highest nonlinear-optical coefficient of the material with a controlled type-II-like wavelength tuning and with the possibility of self-phase locking.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband infrared spectroscopy using optical parametric oscillation in a radially-poled whispering gallery resonator

Sarah-Katharina Meisenheimer, Josef Urban Fürst, Christoph Werner, Tobias Beckmann, Karsten Buse, and Ingo Breunig
Opt. Express 23(18) 24042-24047 (2015)

Continuous-wave whispering-gallery optical parametric oscillator based on CdSiP2

Yuechen Jia, Kevin Hanka, Kevin T. Zawilski, Peter G. Schunemann, Karsten Buse, and Ingo Breunig
Opt. Express 26(8) 10833-10841 (2018)

Upper temperature limit and multi-channel effects in ellipsoidal lithium-niobate optical parametric oscillators

Wenbo Mao, Wei Deng, Fang Bo, Feng Gao, Guoquan Zhang, and Jingjun Xu
Opt. Express 26(12) 15268-15275 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Ebrahim-Zadeh, OSA Handbook of Optics, vol. IV (McGraw-Hill, 2010).
  2. D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7188–206 (2013).
    [Crossref]
  3. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
    [Crossref]
  4. C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, “Coherence properties of a doubly resonant monolithic optical parametroc oscillator,” J. Opt. Soc. Am. B 7, 815 (1990).
    [Crossref]
  5. J. J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, “Theory of self-phase-locked optical parametric oscillators,” Phys. Rev. A 63, 023814 (2001).
    [Crossref]
  6. H. R. Telle, D. Meschede, and T. W. Hänsch, “Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies,” Opt. Lett. 15, 532–534 (1990).
    [Crossref] [PubMed]
  7. N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105, 239–244 (2011).
    [Crossref]
  8. E. J. Mason and N. C. Wong, “Observation of two distinct phase states in a self-phase-locked type II phase-matched optical parametric oscillator,” Opt. Lett. 23, 1733–1735 (1998).
    [Crossref]
  9. J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105, 263904 (2010).
    [Crossref]
  10. T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
    [Crossref] [PubMed]
  11. S.-K. Meisenheimer, J. U. Fürst, C. Werner, T. Beckmann, K. Buse, and I. Breunig, “Broadband infrared spectroscopy using optical parametric oscillation in a radially-poled whispering gallery resonator,” Opt. Express 23, 24042–24047 (2015).
    [Crossref] [PubMed]
  12. G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).
    [Crossref]
  13. G. Schunk, U. Vogl, F. Sedlmeir, D. V. Strekalov, A. Otterpohl, V. Averchenko, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions,” J. Mod. Opt., in press (2016).
    [Crossref]
  14. I. Breunig, “Three-wave mixing in whispering gallery resonators,” Laser Photonics Rev., in press (2016).
    [Crossref]
  15. M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Topics Quantum Electron. 12, 33–39 (2006).
    [Crossref]
  16. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Science, 2005).
  17. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [Crossref]
  18. S. Schiller and R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991).
    [Crossref] [PubMed]
  19. G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U. Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern,” Opt. Express 22, 30795–30806 (2014).
    [Crossref]
  20. M. Leidinger, S. Fieberg, N. Waasem, F. Kühnemann, K. Buse, and I. Breunig, “Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range,” Opt. Express 23, 21690 (2015).
    [Crossref] [PubMed]

2015 (3)

2014 (1)

2013 (1)

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7188–206 (2013).
[Crossref]

2011 (2)

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105, 239–244 (2011).
[Crossref]

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref] [PubMed]

2010 (1)

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

2009 (1)

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

2006 (1)

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Topics Quantum Electron. 12, 33–39 (2006).
[Crossref]

2001 (1)

J. J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, “Theory of self-phase-locked optical parametric oscillators,” Phys. Rev. A 63, 023814 (2001).
[Crossref]

1998 (1)

1991 (1)

1990 (2)

Aiello, A.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Arslanov, D. D.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7188–206 (2013).
[Crossref]

Averchenko, V.

G. Schunk, U. Vogl, F. Sedlmeir, D. V. Strekalov, A. Otterpohl, V. Averchenko, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions,” J. Mod. Opt., in press (2016).
[Crossref]

Bachor, H. A.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Beckmann, T.

S.-K. Meisenheimer, J. U. Fürst, C. Werner, T. Beckmann, K. Buse, and I. Breunig, “Broadband infrared spectroscopy using optical parametric oscillation in a radially-poled whispering gallery resonator,” Opt. Express 23, 24042–24047 (2015).
[Crossref] [PubMed]

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref] [PubMed]

Bowen, W. P.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Breunig, I.

Buse, K.

Byer, R. L.

Canalias, C.

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105, 239–244 (2011).
[Crossref]

Cavalcanti, E. G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Christiansen, S.

Cristescu, S. M.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7188–206 (2013).
[Crossref]

Day, T.

Douillet, A.

J. J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, “Theory of self-phase-locked optical parametric oscillators,” Phys. Rev. A 63, 023814 (2001).
[Crossref]

Drummond, P. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Ebrahim-Zadeh, M.

M. Ebrahim-Zadeh, OSA Handbook of Optics, vol. IV (McGraw-Hill, 2010).

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

Fieberg, S.

Fomin, A. E.

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Topics Quantum Electron. 12, 33–39 (2006).
[Crossref]

Förtsch, M.

Fürst, J. U.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Göbelt, M.

Gorodetsky, M. L.

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Topics Quantum Electron. 12, 33–39 (2006).
[Crossref]

Haertle, D.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref] [PubMed]

Hänsch, T. W.

Harren, F. J. M.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7188–206 (2013).
[Crossref]

Jacobsson, B.

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105, 239–244 (2011).
[Crossref]

Kühnemann, F.

Lam, P. K.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Laurell, F.

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105, 239–244 (2011).
[Crossref]

Le Berre, M.

J. J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, “Theory of self-phase-locked optical parametric oscillators,” Phys. Rev. A 63, 023814 (2001).
[Crossref]

Leidinger, M.

Leuchs, G.

G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).
[Crossref]

G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U. Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern,” Opt. Express 22, 30795–30806 (2014).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

G. Schunk, U. Vogl, F. Sedlmeir, D. V. Strekalov, A. Otterpohl, V. Averchenko, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions,” J. Mod. Opt., in press (2016).
[Crossref]

Linnenbank, H.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref] [PubMed]

Mandon, J.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7188–206 (2013).
[Crossref]

Marquardt, C.

G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).
[Crossref]

G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U. Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern,” Opt. Express 22, 30795–30806 (2014).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

G. Schunk, U. Vogl, F. Sedlmeir, D. V. Strekalov, A. Otterpohl, V. Averchenko, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions,” J. Mod. Opt., in press (2016).
[Crossref]

Mason, E. J.

Meisenheimer, S.-K.

Meschede, D.

Nabors, C. D.

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Science, 2005).

Otterpohl, A.

G. Schunk, U. Vogl, F. Sedlmeir, D. V. Strekalov, A. Otterpohl, V. Averchenko, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions,” J. Mod. Opt., in press (2016).
[Crossref]

Pasiskevicius, V.

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105, 239–244 (2011).
[Crossref]

Persijn, S. T.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7188–206 (2013).
[Crossref]

Reid, M. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Ressayre, E.

J. J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, “Theory of self-phase-locked optical parametric oscillators,” Phys. Rev. A 63, 023814 (2001).
[Crossref]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Schiller, S.

Schunk, G.

Schwefel, H. G. L.

Sedlmeir, F.

Spunei, M.

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7188–206 (2013).
[Crossref]

Steigerwald, H.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref] [PubMed]

Strekalov, D. V.

G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).
[Crossref]

G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U. Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern,” Opt. Express 22, 30795–30806 (2014).
[Crossref]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

G. Schunk, U. Vogl, F. Sedlmeir, D. V. Strekalov, A. Otterpohl, V. Averchenko, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions,” J. Mod. Opt., in press (2016).
[Crossref]

Sturman, B.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref] [PubMed]

Tallet, A.

J. J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, “Theory of self-phase-locked optical parametric oscillators,” Phys. Rev. A 63, 023814 (2001).
[Crossref]

Telle, H. R.

Thilmann, N.

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105, 239–244 (2011).
[Crossref]

Vogl, U.

Waasem, N.

Werner, C.

Wong, N. C.

Yang, S. T.

Zondy, J. J.

J. J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, “Theory of self-phase-locked optical parametric oscillators,” Phys. Rev. A 63, 023814 (2001).
[Crossref]

Appl. Phys. B (2)

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105, 239–244 (2011).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Topics Quantum Electron. 12, 33–39 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

D. D. Arslanov, M. Spunei, J. Mandon, S. M. Cristescu, S. T. Persijn, and F. J. M. Harren, “Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing,” Laser Photonics Rev. 7188–206 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (1)

Phys. Rev. A (1)

J. J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, “Theory of self-phase-locked optical parametric oscillators,” Phys. Rev. A 63, 023814 (2001).
[Crossref]

Phys. Rev. Lett. (2)

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105, 263904 (2010).
[Crossref]

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Other (4)

M. Ebrahim-Zadeh, OSA Handbook of Optics, vol. IV (McGraw-Hill, 2010).

G. Schunk, U. Vogl, F. Sedlmeir, D. V. Strekalov, A. Otterpohl, V. Averchenko, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions,” J. Mod. Opt., in press (2016).
[Crossref]

I. Breunig, “Three-wave mixing in whispering gallery resonators,” Laser Photonics Rev., in press (2016).
[Crossref]

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Science, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Simulated tuning branches of type-0 WGR-OPO with R = 1.03 mm and r = 0.13 mm and M = 225 pumped at λp = 1040.2 nm wavelength for different mode-number combinations. a) Unequal radial mode numbers for the generated waves. b) Equal radial mode numbers for the generated waves. The polar mode numbers are pp = 0 and ps = pi = 1 in both cases.
Fig. 2
Fig. 2 a) Experimental setup for analyzing the transmission spectrum of the pump light (blue) and optical parametric oscillation (signal light: orange, idler light: red) in a radially-poled WGR. b) Identification of the equatorial pump modes qp = 1 − 5 in the transmission spectrum. The theoretically predicted positions are indicated above.
Fig. 3
Fig. 3 Measured and calculated tuning branches for two different mode combinations [(pp, qp), (ps, qs), (pi, qi)]. (a) [(0, 4), (1, 3), (1, 2)] and (b) [(0, 5), (1, 3), (1, 3)]. Idler wavelengths above 2.55 μm are derived from the signal wavelengths and energy conservation. The electric field distributions of the corresponding pump, signal and idler modes are shown (not to scale).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

m p = m s + m i + M , p p p s + p i , and p p + p s + p i = 0 , 2 , 4 ,
ν p = ν s + ν i
δ ^ = 2 ( ν s = ν res , s ) Δ ν s = 2 ( ν i ν res , i ) Δ ν i .

Metrics